
C
ER

N
-T

H
ES

IS
-2

01
3-

00
3

11
/0

1/
20

13

Universitatea "POLITEHNICA" Bucureşti
Facultatea de Electronică, Telecomunicaţii şi Tehnologia Informaţiei

Teză de doctorat

Controlul accesului în
ATLAS TDAQ Online Cluster

Doctoral Thesis

Access Control in the ATLAS
TDAQ Online Cluster

Doctorand: Ing. Marius Constantin LEAHU

Conducător ştiinţific: Prof. Dr. Ing. Dan Alexandru STOICHESCU
Prof. Dr. Ing. Vasile BUZULOIU

2013

iii

Abstract

ATLAS (A Toroidal LHC Apparatus) is a general-purpose detector for studying high-energy
particle interactions: it is the largest particle detector experiment at CERN and it is built around one
of the interaction points of the proton beams accelerated by the Large Hadron Collider (LHC). The
detector generates an impressive amount of raw data: 64 TB per second as a result of 40 MHz
proton-proton collision rate with 1.6 MB data for each such event. The handling of such data rate is
managed by a three levels Trigger and Data Acquisition (TDAQ) system, which filters out the events
not relevant from physics research point of view and selects in the end in the order of 1000 events
per second to be stored for offline analyses. This system comprises a significant number of hardware
devices, software applications and human personnel to supervise the experiment operation. Their
protection against damages as a result of misuse and their optimized exploitation by avoiding the
conflicting accesses to resources are key requirements for the successful running of ATLAS. At the
same time the number of users accessing the experiment resources from CERN and external
institutes is considerable: the experiment is a collaboration involving roughly 3,000 physicists at 174
institutions in 38 countries. Additionally, the users are characterized by a high mobility between
presence on site and at home universities locations. All these operation conditions call for an access
control mechanism to protect the ATLAS resources.

This thesis presents our contribution to the analysis, design, implementation and deployment
of the access control solution for the protection of ATLAS Online cluster and the TDAQ software
running on it. The authors were involved in the research activity at CERN from 2004 to 2008 in the
ATLAS System Administration team and the TDAQ Controls and Configuration team.

The access control solution we worked on is a step forward from the model based on group
accounts used in past experiments at CERN to the model characterized by individual user accounts
and permissions assignment to users by means of roles and roles hierarchy. Hence the access control
solution for the ATLAS Online cluster revolves around the Role Based Access Control (RBAC) model
which fulfills the ATLAS experiment’s requirements for action traceability and accountability and
offers the flexibility to accommodate the high number of users.

The original contribution of this thesis consists in designing a solution on top of RBAC model
to address in a coherent way the protection needs from the cluster system administration level
(remote access, login on the nodes, restrict access to tools execution on the nodes) to the TDAQ
software level (TDAQ components protecting their functions). At the same time, the solution is open
for integration with other experiment systems through the command line client and Application
Programming Interface offered in Java and C++. Our work focuses on the authorization of user
actions based on the access control policies, while the user authentication function is handled by the
system administration specific services. The solution applies the RBAC concepts at system
administration level with Linux traditional security mechanisms for seamless integration in the
Scientific Linux CERN running on the cluster nodes. At the application level, we developed a
dedicated service (TDAQ Access Manager) to serve the TDAQ Software components in managing the
access control policies and to take the authorization decisions. We built this service on top of the
OASIS XACML industry standard while paying special attention to the critical non-functional aspects
like availability, performance, scalability and monitoring.

We finished the deployment in production in time for the first beam accelerated in LHC in
autumn 2008. The setup currently consists in a high availability cluster of 6+1 nodes running the
TDAQ Access Manager Service for ~3800 user accounts and ~440 roles. Each node of Access Manager
Service is able to handle ~800 authorization requests per second from TDAQ software running on the
~3000 nodes of the ATLAS Online cluster. It is integrated with the system administration monitoring
system for continue surveillance of service availability and performance. This production setup has
run successfully in the last 4 years and has allowed ATLAS to take data steadily and efficiently,
leading to the first major discovery: the Higgs boson.

v

Acknowledgments

Completing my PhD was a true journey and I would like to acknowledge the special persons
who kindly supported me along this way.

It started thanks to my Professor Vasile Buzuloiu who encouraged me to pursue the research
activity at CERN and supervised me since then. He sadly passed away before he could see this thesis
written. Thank you Profu’!

I am grateful to Professor Dan Alexandru Stoichescu who “adopted” me at this stage and
helped me to reach the finishing line.

I would like to thank the members of the ATLAS Trigger DAQ community at CERN, especially
the two groups I was member of: the ATLAS TDAQ SysAdmins, and Controls and Configuration. The
long discussions I had with Marc Dobson helped me to clarify the SysAdmin part of my work.

I am grateful to Giovanna Lehmann Miotto, the leader of Controls and Configuration group,
for her guidance on the RBAC topic and driving the access control solution to a wider scope in the
ATLAS experiment. Also a special thank you for Giovanna for her support and review while drafting
this thesis.

I enjoyed a lot the company of Romanian fellows at CERN with whom I spent many joyful
moments during my stay abroad. My colleagues from LAPI helped me a lot each time I had to take
exams and dissertations. Thank you to all of you!

I thank my parents for their loving support and education, and my brother for being next to
me during all these PhD years.

And most of all, I thank my wife for all her support during last years and to my boy for
encouraging me with his first smiles while I was writing this thesis.

Contents

vii

Contents

1. Introduction .. 1

1.1 About CERN .. 1

1.2 The ATLAS experiment .. 2

1.3 The ATLAS Trigger and Data Acquisition system ... 3

1.4 The Access Management in the Online Software ... 5

1.5 Thesis contribution and outline ... 6
1.5.1 Outline ... 7

2. Information security and access control models in software systems.............. 9

2.1 Information security concepts ... 9
2.1.1 Threats ... 10
2.1.2 Goals of Security .. 12
2.1.3 Requirements ... 13
2.1.4 Security mechanisms ... 13

2.2 Design principles of security .. 14
2.2.1 Least Privilege .. 14
2.2.2 Fail-Safe Defaults ... 14
2.2.3 Economy of Mechanism... 14
2.2.4 Complete Mediation .. 15
2.2.5 Open Design ... 15
2.2.6 Separation of Privilege ... 15
2.2.7 Least Common Mechanism.. 15
2.2.8 Psychological Acceptability .. 16

2.3 Access control concepts .. 16
2.3.1 Authorization versus authentication ... 16
2.3.2 Users, subjects, objects, operations and permissions ... 16
2.3.3 Policy, models and mechanisms .. 17
2.3.4 Reference monitor ... 18

2.4 Access control models .. 19
2.4.1 Discretionary Access Control ... 19

2.4.1.1 Access Control Lists .. 20
2.4.2 Mandatory Access Control ... 21

2.4.2.1 Bell-Lapadula model ... 22
2.4.3 Role Based Access Control ... 22

2.4.3.1 Brief History .. 22
2.4.3.2 Model overview .. 23
2.4.3.3 Flat RBAC .. 24
2.4.3.4 Hierarchical RBAC ... 25
2.4.3.5 Constrained RBAC ... 29
2.4.3.6 Symmetric RBAC ... 30

2.5 Conclusions .. 31

3. Access control solution for ATLAS Online computing system 33

3.1 Background and scope .. 33
3.1.1 Previous work .. 34

3.2 High level design ... 35

Contents

viii

3.2.1 Access Control System Architecture .. 35
3.2.1.1 RBAC Administration .. 36

3.2.2 Access Control Enforcement .. 39
3.2.2.1 System Administration ... 39
3.2.2.2 Control Room Desktop ... 41
3.2.2.3 TDAQ Access Manager ... 41

3.2.3 Data flow .. 42
3.2.3.1 OASIS XACML perspective .. 42
3.2.3.2 Reference monitor perspective .. 45

3.3 Security design principles coverage ... 46

4. RBAC setup and administration ... 47

4.1 Database type .. 47

4.2 RBAC setup ... 47
4.2.1 OpenLDAP service configuration ... 50

4.3 RBAC administration tool .. 50
4.3.1 Requirements ... 50

4.3.1.1 Administrative functions .. 51
4.3.1.2 User session management ... 53
4.3.1.3 Review functions .. 54

4.3.2 User accounts .. 54
4.3.3 Tools ... 55

4.3.3.1 Roles management ... 55
4.3.3.2 User’s roles management ... 59
4.3.3.3 Permissions management .. 60

4.3.4 Requirements coverage matrix .. 61

5. Access control at the system administration level .. 65

5.1 Protection of entry points into the ATLAS Online cluster 68
5.1.1 Remote access ... 68

5.1.1.1 Permissions ... 70
5.1.2 Control room desktops .. 72

5.1.2.1 Permissions ... 72

5.2 Protection on cluster nodes .. 73
5.2.1 Login restrictions.. 73

5.2.1.1 Permissions ... 74
5.2.2 Access control to sensitive tools .. 76

5.2.2.1 Permissions ... 76

6. Access control at the TDAQ Online Software level .. 79

6.1 Requirements ... 80
6.1.1 Assumptions... 80
6.1.2 Functional requirements.. 80
6.1.3 Non-functional requirements .. 81

6.2 Design .. 82
6.2.1 Policy Administration Point ... 84

6.2.1.1 XACML language for policy storage .. 86
6.2.2 Client-server model.. 88

6.2.2.1 Server.. 89
6.2.2.2 Client API .. 90
6.2.2.3 Non-functional aspects ... 93

6.2.3 Requirements coverage ... 95

Contents

ix

6.3 Implementation .. 96
6.3.1 Policy Administration Point ... 96
6.3.2 Server ... 99

6.3.2.1 Authorization requests listener .. 99
6.3.2.2 Controller interface and statistics collector ... 102
6.3.2.3 Authorization logger ... 102
6.3.2.4 Scripts ... 103

6.3.3 Client API .. 105

6.4 Tests ... 108
6.4.1 Functional Tests ... 108
6.4.2 Performance and stress tests .. 108

6.5 Production Setup ... 115
6.5.1 AM server installation .. 116
6.5.2 Monitoring ... 117
6.5.3 Notifications from LDAP server .. 118
6.5.4 Client configuration ... 119

7. Conclusions .. 121

7.1 Summary of contributions ... 121

7.2 Future work ... 122

8. Appendices .. 125

8.1 LDAP schema for AM Roles .. 125

8.2 RBAC Administration Tool – User Requirements Document 127

8.3 Roles Manager shell script ... 128

8.4 Roles Display PHP script ... 135

8.5 User’s roles management shell script ... 140

8.6 Login restriction enforcement shell script ... 148

8.7 XACML policies generation by PAP ... 154
8.7.1 Input policies .. 155
8.7.2 (PP) Permission Policies for rules ... 156

8.7.2.1 crd ... 156
8.7.2.2 DAQ .. 159
8.7.2.3 Remote Access.. 167

8.7.3 (PPSrules) Permissions Policies Sets for rules .. 167
8.7.3.1 crd ... 167
8.7.3.2 DAQ .. 168
8.7.3.3 Remote Access.. 171

8.7.4 (RPS) Role Policies Sets .. 172
8.7.5 (PPSroles) Permissions Policies Sets for roles .. 175

8.8 Server statistics log sample .. 177

9. Bibliography .. 179

xi

List of figures

Figure 1 Overall view of LHC with its four main experiments. ... 2
Figure 2 Architectural view of the ATLAS detector. ... 3
Figure 3 Diagram of principal components of TDAQ system. .. 4
Figure 4 Classes of threats and CIA specific threats. .. 11
Figure 5 Reference monitor .. 18
Figure 6 Discretionary Access Control using Access Control Lists .. 20
Figure 7 Mandatory Access Control ... 21
Figure 8 Hierarchical components in MAC. .. 22
Figure 9 Role Based Access Control .. 23
Figure 10 Flat RBAC. ... 24
Figure 11 Hierarchical RBAC. .. 26
Figure 12 Example of role hierarchies. ... 27
Figure 13 Example of limited inheritance. .. 28
Figure 14 Constrained RBAC – Static SOD. ... 29
Figure 15 Constrained RBAC – Dynamic SOD. .. 30
Figure 16 Symmetric RBAC – Static SOD. ... 31
Figure 17 Symmetric RBAC – Dynamic SOD. .. 31
Figure 18 Access control software entities in the ATLAS online computing system. 35
Figure 19 The organizational and functional roles ... 37
Figure 20 Task permissions aggregation into intermediate non assignable roles 38
Figure 21 Example of roles hierarchy in ATLAS. ... 39
Figure 22 The ATLAS system architecture. ... 40
Figure 23 Layered access control on Linux nodes. ... 41
Figure 24 Examples of Access Manager clients. ... 42
Figure 25 Data flow diagram in the XACML standard. ... 43
Figure 26 Data flow in the ATLAS access control solution. .. 44
Figure 27 User definition in LDAP ... 48
Figure 28 Roles and role hierarchy definitions in LDAP ... 48
Figure 29 Administrative Component use cases - Roles Management 51
Figure 30 Administrative Component use cases - Users, Permissions Assignments to Roles .. 52
Figure 31 Administrative Component use cases - Permissions .. 52
Figure 32 Administrative Component use cases - Separation of Duties 53
Figure 33 Use Case diagram for Users Sessions management ... 53
Figure 34 Use Case Diagram for Review Component ... 54
Figure 35 The role tree for TDAQ:expert role. ... 58
Figure 36 The role tree for ShiftLeader role. .. 58
Figure 37 The role tree for DCS:expert role. .. 58
Figure 38 ATLAS Control Room ... 66
Figure 39 Sequence diagram of how users the ATLAS Online cluster. 66
Figure 40 Access control enforcements at system administration level 67
Figure 41 Centralized configuration of AM authorization for ATLAS Application Gateways ... 69
Figure 42 AM authorization disabled on the application gateway. ... 69
Figure 43 AM authorization enabled on the application gateway. .. 70
Figure 44 RemoteAccess role inherited by TDAQ:expert .. 71
Figure 45 Choose roles when logging on CRD .. 72
Figure 46 “Authentication Configuration” in SLC 5 .. 74
Figure 47 Example of login restriction in LDAP .. 75
Figure 48 Example of sudo role in LDAP ... 77
Figure 49 TDAQ AM Service use cases ... 81

Contents

xii

Figure 50 Mapping of XACML actors to AM service components .. 83
Figure 51 XACML policy language model ... 87
Figure 52 Hierarchical RBAC profile of XACML ... 88
Figure 53 AM Server high level design ... 90
Figure 54 AM Java client API... 91
Figure 55 AM C++ client API – server interrogation ... 91
Figure 56 AM C++ client API – resource types .. 92
Figure 57 Example of how to use AM C++ client API .. 93
Figure 58 Retry mechanism in client API .. 94
Figure 59 Access Manager Policy Administration Point – Component diagram 97
Figure 60 Sequence diagram for XACML policies generation in PAP 97
Figure 61 Build and deployment of XACML policies to AM servers ... 98
Figure 62 Reactor design pattern in AM server .. 100
Figure 63 Access Manager server - Component diagram ... 101
Figure 64 Component diagram of AM Java client API .. 107
Figure 65 Component diagram of AM C++ client API ... 107
Figure 66 Histogram of first performance tests (2nd run) ... 113
Figure 67 Histogram of second performance tests .. 114
Figure 68 Production setup for TDAQ AM Service ... 116
Figure 69 AM server configuration in LDAP ... 117
Figure 70 AM server monitoring .. 118
Figure 71 Notifications from LDAP servers to AM servers ... 119
Figure 72 Sample roles hierarchy in LDAP .. 154

xiii

List of tables

Table 1 RBAC variations organized as levels... 24
Table 2 Users' frequently asked question on the access control in ATLAS experiment. 34
Table 3 Mapping of Reference Monitor concept to XACML model ... 45
Table 4 Security design principles coverage ... 46
Table 5 Roles definition in LDAP ... 49
Table 6 Permissions for remote access .. 71
Table 7 Permissions for CRD ... 73
Table 8 The components of a permission from PAP input file ... 84
Table 9 Process Manager resource category ... 85
Table 10 Run Control resource category .. 85
Table 11 IGUI resource category .. 85
Table 12 Resource Manager resource category ... 85
Table 13 Data Base resource category ... 86
Table 14 BCM resource category .. 86
Table 15 Non-functional requirements coverage by TDAQ AM ... 95
Table 16 AM server configuration on the first set of performance tests (2nd run) 111
Table 17 Client configuration on the first set of performance tests (2nd run) 112
Table 18 First performance test results (comparison between runs) 112
Table 19 AM server configuration on the second set of performance test 113
Table 20 Second performance test results ... 114
Table 21 Environment variables for client API ... 119

Introduction

1

Chapter 1

Introduction

This thesis presents the contributions of the author to the conception, development and
deployment in production of the access control system for the ATLAS experiment’s computing cluster
and data acquisition software running on it. This work has been done during the years spent by the
author at CERN [1] as part of the ATLAS TDAQ SysAdmin group [2] and ATLAS TDAQ Controls and
Configuration group.

1.1 About CERN

CERN, the European Organization for Nuclear Research, was founded in 1954 and is one of
the world’s largest and most respected centers for scientific research. CERN's main function is to
provide the particle accelerators and other infrastructure needed for high-energy physics research. It
is also noted for being the birthplace of the World Wide Web. The CERN Laboratory sits astride the
Franco–Swiss border near Geneva. It was one of Europe’s first joint ventures and now has 20
Member States, and maintains collaborations with over 200 institutes and universities from non-
member states.

Most of the activities at CERN are currently directed towards operating the new Large
Hadron Collider (LHC), and the experiments for it. The LHC start-up event [3] took place on
September 10, 2008, with a pause for maintenance until November 20, 2009 when the operation
resumed [4].

 The LHC represents a large-scale, worldwide scientific cooperation project and is the world’s
largest and most powerful particle accelerator. It mainly consists of a 27 km ring of superconducting
magnets with a number of accelerating structures to boost the energy of the particles along the way
(Figure 1).

Inside the accelerator, two beams of particles of the same kind (either protons or lead ions)
travel at close to the speed of light with very high energies before colliding with one another. The
beams travel in opposite directions in separate beam pipes – two tubes kept at ultrahigh vacuum.
They are guided around the accelerator ring by a strong magnetic field, achieved using
superconducting electromagnets. These are built from coils of special electric cable that operates in a
superconducting state, efficiently conducting electricity without resistance or loss of energy. This

requires chilling the magnets to about ‑271°C – a temperature colder than outer space!

Each proton beam flying around the LHC will have an energy of 7 TeV, so when two proton
beams collide the collision energy will be 14 TeV. Lead ions have many protons, and together they
give an even greater energy: the lead-ion beams will have a collision energy of 1150 TeV. Both
collision energies have never been reached before in a lab. Energy concentration is what makes
particle collisions so special. In absolute terms, these energies, if compared to the energies we deal
with everyday, are not impressive. In fact, 1 TeV is about the energy of motion of a flying mosquito.
What makes the LHC so extraordinary is that it squeezes energy into a space about a million times
smaller than a mosquito.

In the LHC, under nominal operating conditions, each proton beam has 2808 bunches, with
each bunch containing about 1011 protons. At full luminosity the LHC uses a bunch spacing of 25 ns

Introduction

2

(or about 7 m). This corresponds to a frequency of 40 MHz, which implies that bunches should pass
each of the collision points in the LHC 40 million times a second.

The most comprehensive model of particle interactions available today is known as the
Standard Model. With the important exception of the Higgs boson, all of the particles predicted by
the model have been observed. This model however, does not apply to energies greater than 1 TeV.
As the LHC will work at 14 TeV, it is hoped that the experiments will provide enough data for
physicists to develop a new theory that applies to higher energies and is able to predict the particles
that can appear with all their properties: masses, momenta, energies, charges and nuclear spins.

Figure 1 Overall view of LHC with its four main experiments.

The six experiments at the LHC are all run by international collaborations, bringing together
scientists from institutes all over the world. Each experiment is distinct, characterized by its unique
particle detector.

The two large experiments, ATLAS and CMS, are based on general-purpose detectors to
analyze the myriad of particles produced by the collisions in the accelerator. They are designed to
investigate the largest range of physics possible. Having two independently designed detectors is
vital for cross-confirmation of any new discoveries made.

Two medium-size experiments, ALICE and LHCb, have specialized detectors for analyzing the
LHC collisions in relation to specific phenomena.

Two experiments, TOTEM and LHCf, are much smaller in size. They are designed to focus on
‘forward particles’ (protons or heavy ions). These are particles that just brush past each other as the
beams collide, rather than meeting head-on.

1.2 The ATLAS experiment

The ATLAS experiment (A Toroidal LHC ApparatuS) [5] [6] is a general-purpose experiment for
recording proton-proton collisions at LHC. It is conducted by a collaboration of 3000 scientists from
174 universities and laboratories representing 38 countries around the world.

Introduction

3

The ambitious experimental program of ATLAS will shed light on many unanswered questions
about the origins of matter and the fundamental forces of nature. ATLAS is intended to investigate
many different types of physics that might become detectable in the energetic collisions of the LHC.
Some of these are confirmations or improved measurements of the Standard Model, while many
others are searches for new physical theories. One of the most important goals of ATLAS is to
investigate a missing piece of the Standard Model, the Higgs boson [7]. Sooner than expected, the
Higgs search has shown its first successful results [8]: the Higgs boson has been observed and now its
properties are to be measured and predictions to be verified.

The ATLAS detector (Figure 2) is not only complex but also very big – measuring 46 m long
and 25 m high, it will be the largest-volume detector ever constructed for particle physics. The head-
on collisions of protons at its centre leave debris that will reveal new particles and new processes in
the interior of matter. The detector consists of several concentric cylindrical layers built around the
LHC beam intersection point. The layers are composed of various sub-detectors from the three major
detection systems:

 Inner Detector measures the paths of electrically charged particles and is composed
of three parts: Pixel, Silicon Tracker (SCT), and Transition Radiation Tracker (TRT).

 Calorimeters measure the energy of charged or neutral particles (Tile and Liquid
Argon).

 Muon Spectrometer detects muons, heavy particles that cannot be stopped by the
calorimeters.

The curvature of particle tracks in the magnetic field will allow the momentum and electric
charges to be determined. Out of nearly 1000 million collisions each second, only a few will have the
special characteristics that might lead to new discoveries. The trigger system selects such events for
recording and avoids storing immense amounts of unnecessary information.

Figure 2 Architectural view of the ATLAS detector.

1.3 The ATLAS Trigger and Data Acquisition system

With a LHC bunch crossing rate of 40 MHz and about 23 interactions per bunch crossing, a
highly selective trigger system to reduce the expected 109 interactions per second to an acceptable
rate of a few hundred Hz is required. The Trigger and Data Acquisition (TDAQ) [9] system is

Introduction

4

responsible for the filtering and the preparation for archival of the events captured by the ATLAS
detector.

The ATLAS trigger is based on three levels of online event selection [10]: Level-1, Level-2, and
Event Filter (EF). While the Level-1 trigger is implemented in custom hardware, the second and third
level triggers (together known as the High Level Trigger (HLT)) are software based and implemented
on personal computers (PC) running the Linux operating system.

The Level-1 trigger reduces the initial event rate of 40 MHz to about 75 kHz as shown in
Figure 3 [9]. During the latency of the L1 trigger selection algorithms (up to 2.5 µs), the complete
event data is kept in the pipeline memories of the detector front-end electronics. Only the data for
the events selected by the L1 trigger is then transferred from these front-end memories into the
Read-Out Buffers (ROBs) contained in the Read-Out System units (ROSs), where it is temporarily
stored and provided on request to the following stages of event selection. The data from the large
number of detector readout channels is multiplexed into 1600 data fragments by the detector-
specific Read-Out Drivers (RODs) and each of these fragments is sent for storage to an individual
ROB. For every accepted event, the L1 system produces the “Region of Interest" (RoI) information,
which includes the positions of all the identified interesting objects in units of pseudo-rapidity and
azimuthal angle. This information is sent by the different elements of the L1 trigger system to the RoI
builder (ROIB), which assembles it into a unique data fragment and sends it to a Level 2 supervisor
(L2SV).

Figure 3 Diagram of principal components of TDAQ system.

The L2SVs are the steering elements of the second trigger level (L2), which is designed to
provide an additional factor 20-30 in reduction power. They receive the RoI information, assign the
events to one of the processing units (L2PUs) running on a L2 node, and handle the results of the
selection algorithms. To provide the requested reduction power, the L2PUs need to access detailed
information from all the ATLAS detector elements (muon system, calorimeters and inner detector).
To minimize the data transfers required at this early stage, the L2PUs retrieve only the few data
fragments related to the geographical addresses of the interesting objects identified by the L1 (1-2 %
of the total data volume). To do so it uses the RoI information received by the L2SV to identify and

Introduction

5

access only the few ROBs containing the relevant data fragments. A fast identification of the relevant
ROBs is made possible by the fact that there is simple and fixed correspondence between the RoI
regions and the ROBs, as each of them always receive data fragments from the same specific
detector front-end modules. The L2 system is really the most characteristic element of the ATLAS
architecture, and provides detailed selection power before the full event-building and consequently
reduces the overall dataflow power needs.

The results of the L2 algorithms are sent by the L2SVs to the data flow manager (DFM), which
assigns the accepted events to the event building nodes (SFIs) according to load-balancing criteria.
The SFIs collect the data fragments related to any assigned event from all the ROBs and assemble
them in a unique event fragment. The expected rate of events at this stage is 3.5 kHz, which, given a
mean ATLAS event size of 1.6 MByte, corresponds to a total throughput of about 6 GByte/s out of the
event building system.

The resulting complete event fragments are then sent to the event filter nodes, where they
are assigned to a processing task (PT) running on an Event Filter Processor (EFP) for the last selection
stage. The accepted events are finally sent to the output nodes (SFOs) to be temporarily buffered on
local disks and transferred to the CERN computing center for permanent recording on mass storage.
At this stage the rate of events is expected to be 0.2 kHz, i.e. more than a factor 105 lower than the
original LHC bunch-crossing rate.

The DFM also manages the list of events that can be removed from the data flow system, as
they have either been rejected by the L2 or received by an EFP, and periodically sends to the ROBs
the list of data fragments to be released.

The Online Software system which runs on the Online Infrastructure is responsible for
configuring, controlling, and monitoring the TDAQ system, but excludes any management,
processing, or transportation of event data. It is a framework which provides the glue between the
above trigger levels and Detector Control System (DCS), and defines interfaces to those elements. It
also includes information-distribution services and access to configuration and other meta-data
databases. An important function of the Online Software is to provide the services that enable the
TDAQ and detector systems to start up and shut down. It is also responsible for the synchronization
of the entire system, and the supervision of processes. Verification and diagnostics facilities help with
the early detection of problems. The configuration services provide the framework for storing the
large amount of information required to describe the system topology, including hardware and
software components. During data taking, access is provided to monitoring tasks, histograms
produced in the TDAQ system, and also the errors and diagnostics messages sent by different
applications. One or more user interfaces display the available information and enable the user to
configure and control the TDAQ system.

1.4 The Access Management in the Online Software

The Online Software architecture is based on a component model and consists of three high
level components, called packages. Each of the packages is associated with a group of functions of
the Online Software. For each package, a set of services which it provides are defined. The services
are clearly separated one from another and have well defined boundaries. For each service a low-
level component, called a sub-package, is identified.

Each package is responsible for a clearly defined functional aspect of the whole system.

 Control — contains sub-packages for the control of the TDAQ system and detectors.
Control sub-packages exist to support TDAQ system initialization and shutdown, to
provide control command distribution, synchronization, error handling, and system
verification. The details on the evolution of this system are in [11].

Introduction

6

 Databases — contain sub-packages for configuration of the TDAQ system and
detectors. Configuration sub-packages exist to support system configuration
description and access to it, record operational information during a run and access
to this information. There are also boundary classes to provide read/write access to
the conditions storage.

 Information Sharing — contains classes to support information sharing in the TDAQ
system. Information Sharing classes exist to report error messages, to publish states
and statistics, to distribute histograms built by the sub-systems of the TDAQ system
and detectors, and to distribute events sampled from different parts of the
experiment’s data flow chain.

The Access Management is a general Online Software security service, responsible for TDAQ
user authorization. It enforces an access policy, in order to stop non-authorized persons from
corrupting the TDAQ system and interfering with data taking. This applies in particular to sensitive
areas like the access to configuration databases, access to process management, remote access
through the Web, etc. Apart from these cases, the limited access to the network at the experiment
site is the main security measure.

1.5 Thesis contribution and outline

The main contribution of this thesis has been the design, implementation and deployment of
a complete access control solution for the TDAQ Software and the ATLAS TDAQ computing
environment.

The large scale of ATLAS collaboration (over 3000 people) with its significant experiment
resources, both hardware and software, raises the exposure to the usual computing security threats
which can cause dead time in the experiment operation and, in the end, financial loses. This issue has
been addressed in the ATLAS TDAQ Control and Configuration system where a dedicated service, the
Access Management, was put in charge with the software security. Since the protection is also
necessary at the level of the computing cluster where the TDAQ software runs, and even to other
systems in ATLAS, the need for a higher level approach on the software security solution emerged
naturally. We have embraced the challenge of designing an access control solution to harmonize the
protection at the operating system level on the cluster nodes with the Access Management
functions.

Given the high number of people foreseen to work in the ATLAS experiment, the Role Based
Access Control (RBAC) model [12] was chosen for its scalability, flexibility, ease of administration and
usability from the lowest operating system level to the highest software application level. We have
designed a centralized configuration of RBAC entities and policies, then the mechanisms to enforce
automatically the access control policies on the cluster nodes by restricting the user’s log in (locally
or remotely) and execution of sensitive tools on the nodes.

We have designed the Access Manager service to use the RBAC centralized configuration and
be compliant with the XACML (eXtensible Access Control Markup Language) standard [13] in defining
and processing the access control policies. Implemented on a client-server model, the Access
Manager server takes the authorization decisions when requested by its clients (other TDAQ
systems) and the clients enforce the decision by allowing or denying user actions.

Finally, we carried out the implementation of the access control solution, the tests in the test
laboratory cluster and the deployment in the end to the production cluster where it is currently
running.

Introduction

7

1.5.1 Outline

The following chapter introduces the information security concepts and principles that guide
the design of a software security solution. The three most widely used access control models
(Discretionary Access Control (DAC), Mandatory Access Control (MAC), and Role Based Access
Control (RBAC)) are described with their characteristics, and then the arguments for choosing RBAC
are presented.

In Chapter 3 we present the background and scope of the access control in ATLAS
experiment, and then the high level solution for access control is outlined in three parts: the RBAC
administration, where the access control is enforced and what is the data flow in the authorization
decision. The chapter ends with the coverage matrix of how the security design principles are
addressed by our solution.

Starting with Chapter 4 we dive into the solution description. First, it is presented how the
RBAC configuration is centralized in cluster’s directory service (a Lightweight Directory Access
Protocol (LDAP) [14] server) with the mapping of RBAC concepts to the LDAP structure. The tools
developed to facilitate the RBAC management are also listed. The aspects concerning the access
control at the operating system level are addressed in Chapter 5, while the Access Management
system design and implementation with its integration in the Control and Configuration software are
presented in detail in Chapter 6.

Chapter 7 concludes the work presented in this thesis and outlines the directions for further
improvements of the access control solution and integration with other systems at CERN.

Information security and access control models in software systems

9

Chapter 2

Information security and access control models in
software systems

The information is an important strategic and operational asset for any organization and a
failure in protecting it from damages or misuse affects not only a single user or an application, but
the organization itself with possible disastrous consequences. Moreover, the advent of Internet as
well as networking capabilities has made the access to information much easier, therefore the
control of the access to it represents the starting point in providing security for the organization. The
demand for security safeguards has long been dominated by the military. As a result, the orientation
is rather different from what corporations, government agencies and the public really need.
Meanwhile, the supply of security safeguards has been dominated by computing and
communications specialists. Hence the two most used access control models: Mandatory Access
Control (MAC) appropriate for multilevel secure military applications and Discretionary Access
Control (DAC) perceived as meeting the security processing needs of industry and civilian
government. The Role Based Access Control (RBAC) model has emerged as a viable alternative to
traditional DAC and MAC because it is based on an enterprise’s organizational structure.

Although role-based security models have existed for 20 years, their application has until
recently been limited. To date, most systems have based access control on the discretion of the
owner or administrator of the data as opposed to basing access on organizational or policy needs as
is done with RBAC. These owner-controlled systems worked adequately for small local area networks
(LAN) but have become cumbersome to manage and errors prone as networking capabilities have
increased. The explosion of electronic data exchange and interconnection of information systems led
to significant productivity gains in the 1990s. However, these same factors have also increased
electronic security and integrity concerns. Confidentiality restriction and regulatory requirements
have caused organizations to look for improved approaches to manage the types of users that may
have access to which data and to which applications. The result is a renewed and growing interest in
role-based security models.

This chapter presents firstly the basic concepts of information security followed by the design
principles of security and it ends presenting the DAC, MAC and RBAC with the focus on the last one.

2.1 Information security concepts

Information security deals with several different trust aspects of information. Information
security is not confined to computer systems nor to information in an electronic or machine-readable
form. It applies to all aspects of safeguarding or protecting information or data, in whatever form.
One of the definitions of information security is given by [15]:

the protection of information systems against unauthorized access to or modification of
information, whether in storage, processing or transit, and against the denial of service to authorized
users or the provision of service to unauthorized users, including those measures necessary to detect,
document, and counter such threats

One important point is that information security is not perfect. No one can ever eradicate all
risk of improper or capricious use of any information, but the level of information security should be

Information security and access control models in software systems

10

commensurate with the value of the information and the loss, financial or otherwise, that might
occur from improper use - disclosure, degradation, denial, or whatever.

2.1.1 Threats

A threat is a potential violation of security. The violation need not actually occur for there to
be a threat. The fact that the violation might occur means that those actions that could cause it to
occur must be guarded against (or prepared for). Those actions are called attacks. Those who
execute such actions, or cause them to be executed, are called attackers. All the information security
attributes are subjects of threats.

The threats can be classified in four categories:

 disclosure, or unauthorized access to information

 deception, or acceptance of false data

 disruption, or interruption or prevention of correct operation

 usurpation, or unauthorized control of some part of a system

Many common threats can be found in one of these classes. Following paragraphs will details
a few of the common threats and Figure 4 classifies them in the classes of threats with respect to the
CIA triad.

Snooping, the unauthorized interception of information, is a form of disclosure. It is passive,
suggesting simply that some entity is listening to (or reading) communications or system information.
Wiretapping, or passive wiretapping, is a form of snooping in which a network is monitored. (It is
called "wiretapping" because of the "wires" that compose the network, although the term is used
even if no physical wiring is involved.) Confidentiality requirement counter this threat.

Modification or alteration, an unauthorized change of information, covers three classes of
threats. The goal may be deception, in which some entity relies on the modified data to determine
which action to take, or in which incorrect information is accepted as correct and is released. If the
modified data controls the operation of the system, the threats of disruption and usurpation arise.
Unlike snooping, modification is active; it results from an entity changing information. Active
wiretapping is a form of modification in which data moving across a network is altered; the term
"active" distinguishes it from snooping ("passive" wiretapping). An example is the man-in-the-middle
attack, in which an intruder reads messages from the sender and sends (possibly modified) versions
to the recipient, in hopes that the recipient and sender will not realize the presence of the
intermediary. Integrity requirement counter this threat.

Masquerading or spoofing, an impersonation of one entity by another, is a form of both
deception and usurpation. For example, if a user tries to log into a computer across the Internet but
instead reaches another computer that claims to be the desired one, the user has been spoofed. This
may be a passive attack (in which the user does not attempt to authenticate the recipient, but
merely accesses it), but it is usually an active attack (in which the masquerader issues responses to
mislead the user about its identity). Although primarily deception, it is often used to usurp control of
a system by an attacker impersonating an authorized manager or controller. Integrity requirement
(called "authentication" in this context) counter this threat.

Some forms of masquerading may be allowed. Delegation occurs when one entity authorizes
a second entity to perform functions on its behalf. The distinctions between delegation and
masquerading are important. If Alice delegates to Bob the authority to act on her behalf, she is giving
permission for him to perform specific actions as though she were performing them herself. All
parties are aware of the delegation. Bob will not pretend to be Alice; rather, he will say, "I am Bob
and I have authority to do this on Alice's behalf." If asked, Susan will verify this. On the other hand, in
a masquerade, Bob will pretend to be Alice. No other parties (including Alice) will be aware of the
masquerade, and Bob will say, "I am Alice." Should anyone discover that he or she is dealing with Bob

Information security and access control models in software systems

11

and ask Alice about it, she will deny that she authorized Bob to act on her behalf. In terms of security,
masquerading is a violation of security, whereas delegation is not.

Repudiation of origin, a false denial that an entity sent (or created) something, is a form of
deception. For example, suppose a customer sends a letter to a vendor agreeing to pay a large
amount of money for a product. The vendor ships the product and then demands payment. The
customer denies having ordered the product and by law is therefore entitled to keep the unsolicited
shipment without payment. The customer has repudiated the origin of the letter. If the vendor
cannot prove that the letter came from the customer, the attack succeeds. A variant of this is denial
by a user that he created specific information or entities such as files. Integrity mechanisms cope
with this threat.

Denial of receipt, a false denial that an entity received some information or message, is a
form of deception. Suppose a customer orders an expensive product, but the vendor demands
payment before shipment. The customer pays, and the vendor ships the product. The customer then
asks the vendor when he will receive the product. If the customer has already received the product,
the question constitutes a denial of receipt attack. The vendor can defend against this attack only by
proving that the customer did, despite his denials, receive the product. Integrity and availability
mechanisms guard against these attacks.

DISCLOSURE

Unauthorized access
to information

DECEPTION
Acceptance of false

data

DISRUPTION

Interruption or
prevention of correct

operation

USURPATION

Unauthorized control
of some part of a

system

C
O

N
FID

EN
T

IA
LIT

Y

Snooping
Passive

Wiretapping

IN
T

EG
R

IT
Y

A
V

A
ILA

B
ILIT

Y

Modification - alteration
Active Wiretapping (man-in-the-middle)

Masquerading
Spoofing

Repudiation
of origin

Denial of
receipt

Masquerading
Spoofing

Delay

Denial of
service

Figure 4 Classes of threats and CIA specific threats.

Delay, a temporary inhibition of a service, is a form of usurpation, although it can play a
supporting role in deception. Typically, delivery of a message or service requires some time t; if an

Information security and access control models in software systems

12

attacker can force the delivery to take more than time t, the attacker has successfully delayed
delivery. This requires manipulation of system control structures, such as network components or
server components, and hence is a form of usurpation. If an entity is waiting for an authorization
message that is delayed, it may query a secondary server for the authorization. Even though the
attacker may be unable to masquerade as the primary server, she might be able to masquerade as
that secondary server and supply incorrect information. Availability mechanisms can thwart this
threat.

Denial of service, a long-term inhibition of service, is a form of usurpation, although it is
often used with other mechanisms to deceive. The attacker prevents a server from providing a
service. The denial may occur at the source (by preventing the server from obtaining the resources
needed to perform its function), at the destination (by blocking the communications from the
server), or along the intermediate path (by discarding messages from either the client or the server,
or both). Denial of service poses the same threat as an infinite delay. Availability mechanisms
counter this threat.

Denial of service or delay may result from direct attacks or from non security-related
problems. From our point of view, the cause and result are important; the intention underlying them
is not. If delay or denial of service compromises system security, or is part of a sequence of events
leading to the compromise of a system, then we view it as an attempt to breach system security. But
the attempt may not be deliberate; indeed, it may be the product of environmental characteristics
rather than specific actions of an attacker.

2.1.2 Goals of Security

Prior to the enumeration of security goals, it is needed to make a clear distinction between
policy and mechanism.

A security policy is a statement of what is and what is not allowed.

A security mechanism is a method, tool or procedure for enforcing a security policy.

Policies may be presented mathematically, as a list of allowed (secure) and disallowed
(nonsecure) states. In practice, the policies are rarely so precise; they normally describe in human
language what users and allowed to do. The ambiguity inherent in such a description leads to states
that are not classified as "allowed" or "disallowed".

Given a security policy's specification of "secure" and "nonsecure" actions, these security
mechanisms can prevent the attack, detect the attack, or recover from the attack. The strategies may
be used together or separately.

Prevention means that an attack will fail, i.e. security policy has not been violated. Typically,
prevention involves implementation of mechanisms that users cannot override and that are trusted
to be implemented in a correct, unalterable way, so that the attacker cannot defeat the mechanism
by changing it. Preventative mechanisms often are very cumbersome and interfere with system use
to the point that they hinder normal use of the system. Prevention mechanisms can prevent
compromise of parts of the system; once in place, the resource protected by the mechanism need
not be monitored for security problems, at least in theory.

Detection is most useful when an attack cannot be prevented, but it can also indicate the
effectiveness of preventative measures. Detection mechanisms accept that an attack will occur; the
goal is to determine that an attack is under way, or has occurred, and report it. The attack may be
monitored, however, to provide data about its nature, severity, and results. Typical detection
mechanisms monitor various aspects of the system, looking for actions or information indicating an
attack. Detection mechanisms do not prevent compromise of parts of the system, which is a serious
drawback. The resource protected by the detection mechanism is continuously or periodically
monitored for security problems.

Information security and access control models in software systems

13

Recovery has two forms. The first is to stop an attack and to assess and repair any damage
caused by that attack. In practice, recovery is very complex, because the nature of each attack is
unique. Thus, the type and extent of any damage can be difficult to characterize completely.
Moreover, the attacker may return, so recovery involves identification and fixing of the
vulnerabilities used by the attacker to enter the system. In some cases, retaliation (by attacking the
attacker's system or taking legal steps to hold the attacker accountable) is part of recovery. In all
these cases, the system's functioning is inhibited by the attack. By definition, recovery requires
resumption of correct operation.

In a second form of recovery, the system continues to function correctly while an attack is
under way. This type of recovery is quite difficult to implement because of the complexity of
computer systems. It draws on techniques of fault tolerance as well as techniques of security and is
typically used in safety-critical systems. It differs from the first form of recovery, because at no point
does the system function incorrectly. However, the system may disable nonessential functionality. Of
course, this type of recovery is often implemented in a weaker form whereby the system detects
incorrect functioning automatically and then corrects (or attempts to correct) the error.

2.1.3 Requirements

Three widely accepted elements of information security, referred to either as requirements,
principles, qualities or attributes, are: confidentiality, integrity and availability, also remembered by
the mnemonic CIA or CIA triad. A simple way to express this is "the right information to the right
people at the right time". Other elements are: accountability and completeness.

Confidentiality includes restricting access to information to those who are privileged to see
it. The term privacy is often used when information to be protected refers to individuals.

Integrity is trust that can be placed in the information. Data integrity is having trust that the
information has not been altered between its transmission and its reception. Information has to be
protected from unauthorized modifications or incorrect modifications (referred to as semantic
integrity). Source integrity is having trust that the sender of that information is who it is supposed to
be.

Availability defines that information or resources are available when required. Most often
this means that the resources are available at a rate which is fast enough for the wider system to
perform its task as intended.

Accountability, a "fourth component," is synonymous with non-repudiation. The non-
repudiation of receipt of information means that an agent can't deny receiving information. This can
prevent an online vendor from being obliged to ship replacement goods to a malicious customer who
denies receiving the original items. The non-repudiation of sourcing information means that an agent
can't deny sending information. This prevents an agent from anonymously sending spoofed emails
with malicious intent, for example.

Completeness refers to ensure that subjects receive all information they are entitled to
access, according to the stated security policies.

2.1.4 Security mechanisms

There are many types of mechanisms that aim to ensure the security characteristics of a
particular system. Confidentiality is enforced by the access control mechanism. Integrity is enforced
by the access control mechanism and by the semantic integrity constraints. Availability is enforced by
the recovery mechanism and by detection techniques for DoS attacks – an example of which is query
flood. Additional mechanisms are:

 user authentication: to verify the identity of subjects wishing to access the
information

Information security and access control models in software systems

14

 information authentication: to ensure information authenticity; it is supported by
signature mechanisms

 encryption: to protect information when being transmitted across systems and when
being stored on secondary storage

 intrusion detection: to protect against impersonation of legitimate users and also
against insider threats

2.2 Design principles of security

Saltzer and Schroeder [16] defined the 8 principles for the design and implementation of
security systems. They are based on the ideas of simplicity and restriction.

Simplicity makes design and mechanisms easy to understand and less can go wrong with
simple design. The number of inconsistencies that can occur is also minimized.

Restriction minimizes the power of an entity which can access only the information it needs.
This is also known as “need to know” principle. By inhibition of communication, an entity can
communicate with other entities only when necessary, and in a few ways as possible.

2.2.1 Least Privilege

This principle restricts how privileges are granted.

The principle of least privilege states that an entity should be given only those privileges that
it needs in order to complete its task.

If a subject does not need an access right, the subject should not have that right.
Furthermore, the function of the subject (as opposed to its identity) should control the assignment of
rights. If a specific action requires that a subject's access rights be augmented, those extra rights
should be relinquished immediately on completion of the action. This is the analogue of the "need to
know" rule: if the subject does not need access to an object to perform its task, it should not have
the right to access that object.

In practice, most systems do not have the granularity of privileges and permissions required
to apply this principle precisely. The designers of security mechanisms then apply this principle as
best they can. In such systems, the consequences of security problems are often more severe than
the consequences for systems that adhere to this principle.

2.2.2 Fail-Safe Defaults

This principle restricts how privileges are initialized when a subject or object is created.

The principle of fail-safe defaults states that, unless a subject is given explicit access to an
object, it should be denied access to that object.

This principle requires that the default access to an object is none. Whenever access,
privileges, or some security-related attribute is not explicitly granted, it should be denied. Moreover,
if the subject is unable to complete its action or task, it should undo those changes it made in the
security state of the system before it terminates. This way, even if the program fails, the system is
still safe.

2.2.3 Economy of Mechanism

This principle simplifies the design and implementation of security mechanisms.

The principle of economy of mechanism states that security mechanisms should be as simple
as possible.

Information security and access control models in software systems

15

If a design and implementation are simple, fewer possibilities exist for errors. The checking
and testing process is less complex, because fewer components and cases need to be tested.
Complex mechanisms often make assumptions about the system and environment in which they run.
If these assumptions are incorrect, security problems may result.

2.2.4 Complete Mediation

This principle restricts the caching of information, which often leads to simpler
implementations of mechanisms.

The principle of complete mediation requires that all accesses to objects be checked to ensure
that they are allowed.

Whenever a subject attempts to access an object, the system should mediate the action.
First, it determines if the subject is allowed to access the object. If so, it provides the resources for
the required access. If the subject tries to access the object again, the system should check that the
subject is still allowed to access the object. Most systems would not make the second check. They
would cache the results of the first check and base the second access on the cached results.

2.2.5 Open Design

This principle suggests that complexity does not add security.

The principle of open design states that the security of a mechanism should not depend on
the secrecy of its design or implementation.

The design should not be secret. The mechanisms should not depend on the ignorance of
potential attackers, but rather on the possession of specific, more easily protected, keys or
passwords. This decoupling of protection mechanisms from protection keys permits the mechanisms
to be examined by many reviewers without concern that the review may itself compromise the
safeguards. In addition, any skeptical user may be allowed to convince himself that the system he is
about to use is adequate for his purpose. Finally, it is simply not realistic to attempt to maintain
secrecy for any system which receives wide distribution.

2.2.6 Separation of Privilege

This principle is restrictive because it limits access to system entities.

The principle of separation of privilege states that a system should not grant permission
based on a single condition.

Where feasible, a protection mechanism that requires two keys to unlock it is more robust
and flexible than one that allows access to the presenter of only a single key. The relevance of this
observation to computer systems was pointed out by R. Needham in 1973. The reason is that, once
the mechanism is locked, the two keys can be physically separated and distinct programs,
organizations, or individuals made responsible for them. From then on, no single accident, deception,
or breach of trust is sufficient to compromise the protected information. This principle is often used
in bank safe-deposit boxes. It is also at work in the defense system that fires a nuclear weapon only if
two different people both give the correct command. In a computer system, separated keys apply to
any situation in which two or more conditions must be met before access should be permitted.

2.2.7 Least Common Mechanism

This principle is restrictive because it limits sharing.

The principle of least common mechanism states that mechanisms used to access resources
should not be shared.

Information security and access control models in software systems

16

Minimize the amount of mechanism common to more than one user and depended on by all
users. Every shared mechanism (especially one involving shared variables) represents a potential
information path between users and must be designed with great care to be sure it does not
unintentionally compromise security. Further, any mechanism serving all users must be certified to
the satisfaction of every user, a job presumably harder than satisfying only one or a few users.

2.2.8 Psychological Acceptability

This principle recognizes the human element in computer security.

The principle of psychological acceptability states that security mechanisms should not make
the resource more difficult to access than if the security mechanisms were not present.

It is essential that the human interface be designed for ease of use, so that users routinely
and automatically apply the protection mechanisms correctly. Also, to the extent that the user's
mental image of his protection goals matches the mechanisms he must use, mistakes will be
minimized. If he must translate his image of his protection needs into a radically different
specification language, he will make errors.

2.3 Access control concepts

An access control system regulates the operations that can be executed on data and
resources to be protected. Its goal is to control operations executed by subjects in order to prevent
actions that could damage or steal data and resources.

2.3.1 Authorization versus authentication

Authorization and authentication are fundamental to access control. They are distinct
concepts but often confused.

Authentication is the process of determining that a user’s claimed identity is legitimate. It is
based on one or more of the following factors:

 something you know (password, personal identification number – PIN, lock
combination etc)

 something you have (smart card, automatic teller machine (ATM) card or key)

 something you are or a physical characteristic (fingerprint, retinal pattern, facial
characteristic etc)

Authentication is normally stronger if two or more factors are used. A password can be
guessed, a key lost, and face-recognition systems have a significant false positive rate, so using only
one of these authentication methods may not provide an acceptable level of security. This is why
banks require both cards and PINs to access ATMs rather than only a password, or only a key card. If
the card were lost, a thief would have to guess the PIN in only three tries.

While authentication is the process of determining who you are, authorization determines
what you are allowed to do. Authorization refers to a yes or no decision as to whether a user is
granted access to a system resource. An information system must maintain some relationship
between user IDs and system resources. This can be done either by attaching a list of authorized
users to resources, or by storing a list of accessible resources with each user ID. Note that
authorization necessarily depends on proper authentication. If the system cannot be certain of a
user’s identity, there is no valid way of determining if the user should be granted access.

2.3.2 Users, subjects, objects, operations and permissions

Almost any access control model can be stated formally using the notions of users, subjects,
objects, operations and permissions and relationship between these entities. It is important to

Information security and access control models in software systems

17

understand these terms because they are used in the literature on access control and computer
security.

The term user refers to people who interface with the computer system. In many designs, it
is possible for a single user to have multiple login IDs, and these IDs may be simultaneously active.
Authentication mechanisms make it possible to match the multiple IDs to a single human user.

An instance of a user’s dialog with a system is called a session.

A computer process acting on behalf of a user is referred to as a subject. A user may have
multiple subjects in operation, even if the user has only one login and one session.

An object can be any resource accessible on a computer system (e.g. files, peripherals,
databases, and fine-rained entities such as individual files in a database records). Objects are
traditionally viewed as passive entities that contain or receive information, although even early
access control models included the possibility of treating programs, printers or other active entities
as objects.

An operation is an active process invoked by a subject. Early access control models that were
concerned strictly with information flow (i.e. read-and-write access) applied the term subject to all
active processes, but RBAC models require a distinction between subject and operation.

Permissions (or privileges) are authorizations to perform some action on the system. It is a
combination of object and operation. A particular operation used on two different objects represents
two distinct permissions, and similarly, two different operations applied to a single object represent
two distinct permissions.

2.3.3 Policy, models and mechanisms

While authentication mechanisms ensure that system users are who they claim to be, these
mechanisms say nothing about what operations users should or should not perform within the
system. In order to protect the system in such situations, it is necessary to use access control.

Access control is concerned with determining the allowed activities of legitimate users,
mediating every attempt by a user to access a resource in the system. A given IT infrastructure can
implement access control systems in many places and at different levels. Operating systems use
access control to protect files and directories. Database management systems apply access control to
regulate access to tables and views.

When considering any access control system, one considers three abstractions of control:
access control policies, access control models and access control mechanisms.

Policies are high level requirements that specify how access is managed and who, under
what circumstances, may access what information. Policies may pertain to resource usage within or
across organizational units or may be based on need-to-know, competence, authority, obligation or
conflict-of-interest factors. Furthermore, access control policies are dynamic in nature, in that they
are likely to change over time in reflection of ever evolving business factors, government regulations
and environmental conditions. However, because policy requirements can rarely be completely
determined in advance, access control systems are best designed to flexibly accommodate a wide
variety of changing policies.

At a high level, access control policies are enforced through a mechanism that translates a
user’s access request often in terms of a simple table lookup to grant or deny access. In general,
access control mechanisms require that security attributes be kept about users and resources. User
security attributes consist of things like user identifiers, groups and roles to which users belong, or
they can include security labels reflecting the level of trust assigned to the user. Resource attributes
can take on a variety of forms such as sensitivity labels, types or access control lists. In determining
the user’s ability to perform operations on resources, access control mechanisms compare the user’s

Information security and access control models in software systems

18

security attributes to those of the resource. Other characteristics of access control mechanisms
include attribute review and management capabilities. For example, can the access control system
determine the permissions that are associated with a user or the users that can access a resource?
Who can specify permissions? Can permission specification be delegated?

Rather than attempting to evaluate and analyze access control systems exclusively at the
mechanism level, security models are usually written to describe the security properties of an access
control system. Access control models are written at a level of abstraction to accommodate a wide
variety of implementation choices and computing environments, while providing a conceptual
framework for reasoning about the policy they support. Access control models bridge the rather
wide gap in abstraction between policy and mechanism. Users see an access control model as an
unambiguous and precise expression of requirements. Vendors and system developers see access
control models as design and implementation requirements.

2.3.4 Reference monitor

The reference monitor (Figure 5) is an abstract concept whereby all accesses that subjects
make to objects are authorized based on the information contained in an access control database.
Conceptually, the reference monitor represents the hardware and software portion of an operating
system that is responsible for the enforcement of the security policy of the system. The access
control database is the embodiment of this policy in terms of subject and object attributes and
access rights. When a subject requests access to an object, the reference monitor must perform a
check, comparing the attributes of the subject with that of the object. Moreover, the reference
monitor, with respect to some security policy, must control the specific checks that are made and all
modifications to the access control database.

Audit file

Subjects Objects

Reference
monitor

Access request

Access
Control

Database

Figure 5 Reference monitor

As an abstraction, the reference monitor does not dictate any specific policy to be enforced
by the system, nor does it address any particular implementation. But it defines an assurance
framework that has been used for over 3 decades in the design, development and implementation of
highly secure IT systems.

Information security and access control models in software systems

19

The abstract requirements of a reference monitor are comprised of three fundamental
implementation principles, described as follows:

 Completeness: It must be always invoked and impossible to bypass.

 Isolation: It must be tamper-proof.

 Verifiability: It must be shown to be properly implemented.

The degree to which a system complies with these design principles has served as a metric
for measuring the level of confidence in the correctness of the system’s security controls.

The completeness principle requires that a subject can reference an object by invoking the
reference monitor. Although this principle may seem intuitive, few mainstream operating systems
completely adhere to this principle. There are two issues that make the principle hard to be met. The
first issue is what are considered to be the objects in the system. In general, objects are interpreted
to be any entities that can store information such as files, directories, memory. But there are not so
obvious places where information is stored like file names, segments, processors, and status and
error messages. The completeness principle requires that all objects must be protected – not just the
obvious ones. The second architectural challenge pertaining to the completeness principle is the
prevention of access to objects through methods (documented or otherwise) other than through the
invocation of the policy-preserving access checker. For example, a subject could bypass a file system
and issue a read request directly to the physical location of a file on disk.

The isolation principle states that the access mediation function is tamper-proof. It must be
impossible for a penetrator to attack the access mediation mechanism in a manner that affects the
proper performance of access checks. Even though most resource management systems are
designed to protect themselves against accidental and overt break-in attempts, meeting the absolute
requirements of the isolation principle of the reference monitor usually requires a security
architecture consisting of both hardware and software features.

The principle of verifiability is met through software engineering practices and design criteria
(e.g. code inspection and positive and negative testing). In some extreme cases, formal mathematical
modeling, formal specification and verification techniques can be applied to prove the correctness of
implementation.

[17] state three additional design principles seen as critical components of any access control
system:

 Flexibility: The system should be able to enforce the access control policies of the
host enterprise.

 Manageability: The system should be intuitive and easy to manage.

 Scalability: The system’s management and enforcement functions should scale to the
number of users and the number of resources that are scattered across the
computing platforms of the host enterprise.

2.4 Access control models

2.4.1 Discretionary Access Control

Discretionary Access Control (DAC) is a mean of restricting access to objects based on the
identity of users and/or groups to which the object belongs. Controls are discretionary in the sense
that a subject with a certain access permission is capable of passing that permission (directly or
indirectly) to any other subject. To provide this discretionary control, DAC mechanisms usually
include a concept of object ownership, where the object’s owner has control permission to grant
access permission to the object for other subjects. This definition of DAC has its origins with the
Trusted Computer System Evaluation Criteria (TCSEC) [18] and is rationalized based on the DoD’s
regulatory requirements for need-to-know access to classified or sensitive information: “[…] no

Information security and access control models in software systems

20

person may have access to classified or sensitive information unless […] access is necessary for the
performance of official duties.”

DAC mechanisms tend to be very flexible and are widely used in commercial and government
sectors. Throughout the mid 1980s and 1990s, virtually every computer vendor demonstrated DAC
compliance by undergoing a C2 TCSEC (discretionary protection) evaluation.

Even though DAC mechanisms are in wide commercial use today, they are known to be
inherently weak for two reasons: first, granting read access is transitive. For example, when Alice
grants Bob read access to a file, nothing stops Bob from copying the contents of Alice’s file to an
object that Bob controls. Bob may now grant any other user access to the copy of Alice’s file. Second,
DAC mechanisms are vulnerable to “Trojan horse” attacks. Because programs inherit the identity of
the invoking user, Bob may, for example, write a program for Alice that, on the surface, performs
some useful function, while at the same time reads the contents of Alice’s file and writes the
contents of the files to a location that is accessible by both Alice and Bob. Bob may then move the
contents of the files to a location not accessible to Alice. Note that Bob’s Trojan horse program could
have destroyed the contents of Alice’s file. When investigating the problem, the audit file would
indicate that Alice destroyed her own file.

2.4.1.1 Access Control Lists

By far the most common mechanism for implementing DAC policies is through the use of
Access Control Lists (ACL). When using ACLs, every piece of data, database, or application has a list of
users associated with it who are allowed access. In this system, it is very easy for the security
administrator to see which users have access to which data and applications. Changing access to the
piece of information is straightforward; an administrator simply adds or deletes a user from the ACL.

Resource 1

Resource 3

Resource 2

Resources User

Figure 6 Discretionary Access Control using Access Control Lists

Information security and access control models in software systems

21

Each set of data or application has its own ACL, but there may or may not be a corresponding
list that gives the administrator information on all of the pieces of information to which a particular
user has access. Only by examining each piece of data individually and checking for access can the
security administrator find any potential security violations. If all accesses by a particular user need
to be revoked, the administrator must examine each ACL, one by one, and remove the user from
each list.

When a user takes on different responsibilities within the organization, the problem gets
worse. Rather than simply eliminating the user from every ACL, the network administrator must
determine which permissions need to be eliminated, left in place, or altered. Administrators have
made several attempts to improve ACLs. In some cases, users can be put into groups, making it easier
to change the ACL. In other cases, elaborate rules can be applied to ACLs to limit access to particular
pieces of data.

2.4.2 Mandatory Access Control

In addition to DAC policies, the TCSEC [18] defines Mandatory Access Control (MAC) policies
that are known to prevent the Trojan horse problem. With regard to this policy, security levels are
assigned to users, with subjects acting on behalf of users and objects. Security levels have a
hierarchical and nonhierarchical component. For instance, the hierarchical components might
include unclassified (U), confidential (C), secret (S), and top-secret (TS) while the nonhierarchical
components may include NATO and NUCLEAR.

Top Secret

Confidential

Secret

Unclassified

Resources User

Figure 7 Mandatory Access Control

The security levels are partially ordered under a dominance relation, often written as “≥”. For
example, TS ≥ S ≥ C ≥ U and S(NATO, NUCLEAR) ≥ S(NUCLEAR) ≥ S. The security level of the user,
often referred as the user’s clearance level, reflects the level of trust bestowed to the user and must
always dominate the security levels that are assigned to the user’s subjects. For example, Chris who

Information security and access control models in software systems

22

is cleared to the S(NUCLEAR) level may initiate sessions at the S(NUCLEAR), S, C, or U levels. The
security levels that are assigned to objects reflect the sensitivity of the contents of the objects.

2.4.2.1 Bell-Lapadula model

With respect to the security level of a subject and the security level of an object, the Bell-
LaPadula model defines access control decisions in accordance with two properties:

 Simple security property: A subject is permitted read access to an object if the
subject’s security level dominates the security level of the object.

 Star property: A subject is permitted write access to an object if the object’s security
level dominates the security level of the subject.

Satisfaction of these properties prevents users from being able to read information that
dominates (i.e. is above) their clearance level. The simple security property directly supports this
policy, never allowing a subject to read information that dominates the invoking user’s clearance
level. The start property supports the MAC policy indirectly, by disallowing subjects from writing
information of level x into a container (contents of an object) that could be subsequently read by a
subject with a security level that is dominated by x. Intuitively, the star property prevents high
information from ending up in a low container where a low user could read it.

Figure 8 Hierarchical components in MAC.

2.4.3 Role Based Access Control

2.4.3.1 Brief History

The concept of Role Based Access Control (RBAC) began with multi-user and multi-
application on-line systems pioneered in the 1970s. Though, only late in 1992, Ferraiolo and Kuhn
paper called “Role-Based Access Control” defines RBAC model, with access permitted only through
roles. Also, role hierarchies and constraints including separation of duty are formally defined.

Distributed Trusted Operating System (DTOS) based RBAC prototype was developed in 1994.
DTOS project was a joint effort by the National Security Agency (NSA) and Secure Computing
Corporation (SCC) to encourage strong, flexible security controls in next generation operating
systems. DTOS was a successor to the Distributed Trusted Mach (DTMach) program. The NSA
developed security enhancements for the process management, file system, and network protocol
implementations in the Lites Unix single server. DTOS was part of a broad operating system security
research program by the NSA known as Synergy. The Synergy program is no longer active, although
the Flask and Security-Enhanced Linux projects have continued to pursue its goals. First patent

Information security and access control models in software systems

23

application in RBAC area was filed by IBM in 1994 in Europe. In the same year, Nyanchama and
Osborn paper defined role graph model.

The formal model has been extended with various forms of separation of duty by Ferraiolo,
Cugini, Kuhn in 1995. Next year, Sandhu, Coyne, Feinstein, Youman paper defines a family of RBAC
models known as RBAC0, RBAC1, RBAC2 and RBAC3. As an attempt at rigorously defining RBAC
features, a number of RBAC models have been proposed and implemented since then. These models
had been independently proposed without any attempt at standardizing the RBAC features. The first
step in the direction to standardization was done by Sandhu, Ferraiolo and Kuhn in 2000 [19]. They
define consolidated RBAC model for proposed industry standard which has been adopted by the
American National Standards Institute, International Committee for Information Technology
Standards (ANSI/INCITS) in 2003 as an industry consensus standard INCITS 359:2004.

Following paragraphs will present the RBAC model as proposed to the industry standard.

2.4.3.2 Model overview

RBAC provides a valuable level of abstraction to promote security administration at a
business enterprise level rather than at the user identity level. The basic role concept is simple:
establish permissions based on the functional roles in the enterprise, and then appropriately assign
users to a role or set of roles (Figure 9). With RBAC, access decisions are based on the roles individual
users have as part of an enterprise. Roles could represent the tasks, responsibilities, and
qualifications associated with an enterprise. Because the roles within an enterprise are relatively
persistent with respect to user turnover and task re-assignment, RBAC provides a powerful
mechanism for reducing the complexity, cost and potential for error in assigning user permissions
within the enterprise. Because roles within an enterprise typically have overlapping permissions,
RBAC models often include features to establish role hierarchies, where a given role can include all
permissions of another role.

 Resources User

Resource 1

Resource 2

Resource 3

Roles

Role 1

Role 2

Role 3

Figure 9 Role Based Access Control

RBAC is a rich and open-ended concept which ranges from very simple at one extreme to
fairly complex and sophisticated at the other. It has been recognized that a single definitive model
for RBAC is therefore unrealistic. Such a model would either include or exclude too much, and would

Information security and access control models in software systems

24

represent one point along a spectrum of choices. The NIST (National Institute of Standards and
Technology) RBAC model is consequently organized in a four step sequence of increasing functional
capabilities given below. These levels are cumulative in that each includes the requirements of the
previous ones in the sequence: Flat RBAC, Hierarchical RBAC, Constrained RBAC and Symmetric RBAC
(see Table 1).

Level Name RBAC Functional Capabilities

1
Flat RBAC

(Figure 10)

- users acquire permissions through roles
- must support many-to-many user-role assignment
- must support many-to-many permission-role
assignment
- must support user-role assignment review
- users can use permissions of multiple roles
simultaneously

2
Hierarchical RBAC

(Figure 11)

Flat RBAC +

- must support role hierarchy (partial order)
- level 2a requires support for arbitrary hierarchies
- level 2b denotes support for limited hierarchies

3
Constrained RBAC

(Figure 14, Figure 15)

Hierarchical RBAC +

- must enforce separation of duties (SOD)
- level 3a requires support for arbitrary hierarchies
- level 3b denotes support for limited hierarchies

4
Symmetric RBAC

(Figure 16, Figure 17)

Constrained RBAC +

- must support permission-role review with
performance effectively comparable to user-role review
- level 4a requires support for arbitrary hierarchies
- level 4b denotes support for limited hierarchies

Table 1 RBAC variations organized as levels.

2.4.3.3 Flat RBAC

Flat RBAC is illustrated in Figure 10. The features required of flat RBAC are obligatory for any
form of RBAC and are almost obvious. The main issue with flat RBAC is the features that have been
excluded.

Flat RBAC captures the features of traditional group-based access control as implemented in
operating systems through the current generation. The NIST RBAC model recognizes traditional
group-based access control as the first level of RBAC because it is widely deployed and familiar
technology that serves well as the starting point for RBAC. At the same time by allowing additional
more sophisticated levels of RBAC, the NIST model recognizes that RBAC is more than just another
name for traditional but robust group-based access controls.

Figure 10 Flat RBAC.

U
Users

R
Roles

P
Permissions

UA
User Assignment

PA
Permission
Assignment

Information security and access control models in software systems

25

The requirement that users acquire permissions through roles is the essence of RBAC. Flat
RBAC does not exclude other means by which users can acquire permissions such as by direct
assignment to the user or by means of security labels in lattice based access control.

Figure 10 shows three sets of entities called users (U), roles (R), and permissions (P). A user in
this model is a human being or other autonomous agent such as a process or a computer. A role is a
job function or job title within the organization with some associated semantics regarding the
authority and responsibility conferred on a member of the role. A permission is an approval of a
particular mode of access to one or more objects in the system. The terms authorization, access right
and privilege are also used in the literature to denote a permission. Permissions are always positive
and confer the ability to the holder of the permission to perform some action(s) in the system. Still,
flat RBAC does not rule out the use of so-called negative permissions which deny access. The nature
of a permission depends greatly on the implementation details of a system and the kind of system
that it is. A general model for access control must therefore treat permissions as uninterpreted
symbols to some extent. The exact nature of permissions in a system is left open by flat RBAC.

Flat RBAC requires that user-role assignment (UA) and permission-role assignment (PA) are
many-to-many relations. This is an essential aspect of RBAC. The concept of a session is not explicitly
a part of flat RBAC. A session corresponds to a particular occasion when a user signs on to the system
to carry out some activity. The NIST model does not require support for sessions with discretionary
role activation. It does require the ability to activate multiple roles simultaneously and in a single
session.

Flat RBAC requires support for user-role review whereby it can be efficiently determined
which roles a given user belongs to and which users a given role is assigned to. Permission-role
review enables efficient answers to questions about which permissions are assigned to a role and
which roles a permission is assigned to. In the NIST model requirement for permission-role review is
deferred until level 4 in recognition of its intrinsic difficulty in large-scale distributed systems.

The flat RBAC model leaves open many important issues of RBAC that must be addressed in
the implementation:

 scalability: there are no scalability requirements on the numbers of roles, users,
permissions etc that should be supported

 nature of permissions

 support for discretionary role activation

 revocation behavior: revocation can occur when a user is removed from a role or a
permission is removed from a role. How quickly the revocation actually takes place,
particularly with respect to activity which is already under way, is left unspecified.

 role administration: who gets to assign users to roles and permissions to roles.

2.4.3.4 Hierarchical RBAC

Hierarchical RBAC is illustrated in Figure 11. It differs from Figure 10 only in introduction of
the role hierarchy relation RH. Role hierarchies are often included whenever roles are discussed.
They are also commonly implemented in systems that provide roles.

Role hierarchies are a natural means for structuring roles to reflect an organization's lines of
authority and responsibility. Mathematically, these hierarchies are partial orders. A partial order is a
reflexive, transitive and anti-symmetric relation. By convention more powerful (or senior) roles are
shown toward the top of role-hierarchy diagrams, and less powerful (or junior) roles toward the
bottom. There is strong consensus regarding the benefits of supporting arbitrary partial orders.
Nevertheless there are products which support only limited hierarchies, but nevertheless provide
substantially improved capabilities beyond a flat model. Hence, the recognition of two sub-levels in
this context as follows:

Information security and access control models in software systems

26

 General Hierarchical RBAC: In this case there is support for an arbitrary partial order
to serve as the role hierarchy.

 Limited Hierarchical RBAC: If any restriction is imposed on the structure of the role
hierarchy then we are in this case. Most commonly, hierarchies are limited to simple
structures such as trees or inverted trees.

Figure 11 Hierarchical RBAC.

 Figure 12 (a) shows an inverted tree hierarchy that might exist in a hypothetical engineering
department. In these diagrams senior roles are shown towards the top with edges connecting them
to junior roles. The inverted tree facilitates sharing of resources. Resources made available to the
junior role are also available to senior roles. However, an inverted tree does not allow aggregation of
resources from more than one role.

Figure 12 (b) shows a tree hierarchy in which senior roles aggregate the permissions of junior
roles. Trees are good for aggregation but do not support sharing. In this hierarchy there can be no
sharing of resources between the project 1 roles on the left and project 2 roles on the right.

Figure 12 (c) shows a general hierarchy that facilitates both sharing and aggregation. This
structure can be extended to dozens and even hundreds of projects within the engineering
department. Moreover, each project could have a different structure for its roles. The example can
also be extended to multiple departments with different structure and policies applied to each
department. Practical hierarchies will typically have an irregular structure rather than the highly
symmetrical construction of this example.

U
Users

R
Roles

P
Permissions

UA
User Assignment

PA
Permission
Assignment

RH
Role Hierarchy

Information security and access control models in software systems

27

Director (DIR)

Project Lead 1
(PL1)

Project Lead 2
(PL2)

Production
Engineer 1 (PE1)

Quality
Engineer 1 (QE1)

Production
Engineer 2 (PE2)

Quality
Engineer 2 (QE2)

Engineering Department (ED)

Engineer 1 (E1) Engineer 2 (E1)

Production
Engineer 1 (PE1)

Quality
Engineer 1 (QE1)

Production
Engineer 2 (PE2)

Quality
Engineer 2 (QE2)

Director (DIR)

Project Lead 1
(PL1)

Project Lead 2
(PL2)

Production
Engineer 1 (PE1)

Quality
Engineer 1 (QE1)

Production
Engineer 2 (PE2)

Quality
Engineer 2 (QE2)

Engineering Department (ED)

Engineer 1 (E1) Engineer 2 (E1)

(a) A inverted tree hierarchy

(b) A tree hierarchy

(c) A general hierarchy

Figure 12 Example of role hierarchies.

Information security and access control models in software systems

28

We emphasize there is no requirement that there be a “senior most” role such as DIR in this
example. Similarly, there is no requirement that there be a “junior most” role such as ED. The design
of a suitable hierarchy is a matter of policy. The requirement is to support general hierarchies in level
2a and limited ones in level 2b.

(a)

(b)

Project Member

Test Engineer Programmer

Project Supervisor

Project Member

Test Engineer Programmer

Project Supervisor Programmer’ Test Engineer ‘

Figure 13 Example of limited inheritance.

Senior roles such as DIR in Figure 12 (c) are often considered dangerous because they
aggregate too much power. It is possible to limit inheritance in role hierarchies as illustrated in the
Figure 13. Figure 13 (a) shows that the Project Supervisor role inherits all permissions of the project.
Figure 13 (b) on the other hand allows Test Engineers to have permissions in the Test Engineer' role
that are not inherited by Project Supervisor. Test engineers are assigned to the Test Engineer' role
whereas the Test Engineer role is simply a placeholder for those permissions of the Test Engineer'
role that need to be inherited upwards. Roles such as Test Engineer' are called private roles.

There are two distinct interpretations of a role hierarchy that, have been discussed in the
literature.

 In one interpretation members of a senior role in the hierarchy are regarded as inheriting
permissions from juniors. This is called the permission-inheritance interpretation and the hierarchy
is called an inheritance hierarchy. Interpreting Figure 12 (c) as an inheritance hierarchy, when role
PL1 is activated the permissions assigned to PL1, PEl, QEl, El, ED and E are all available for use.

In the alternate interpretation, activation of a senior role does not automatically activate
permissions of junior roles. This is called the activation interpretation and the hierarchy is called an
activation hierarchy. In this case activation of role PL1 does not activate permissions of the junior

Information security and access control models in software systems

29

roles. Each junior role must be explicitly activated to enable its permissions in a session. It is possible
to have both interpretations simultaneously applied.

The NIST model leaves open the exact meaning of role hierarchies since multiple
interpretations are possible.

2.4.3.5 Constrained RBAC

Constrained RBAC, shown in Figure 14 and Figure 15, adds constraints to the hierarchical
RBAC model. Constraints may be associated with the user-role assignment (static, Figure 14), or with
the activation of roles within user sessions (dynamic, Figure 15). Separation requirements are used to
enforce conflict of interest policies that organizations may employ to prevent users from exceeding a
reasonable level of authority for their positions.

Separation of duty refers to the partitioning of tasks and associated privileges among
different roles so as to prevent a single user from garnering too much authority. The motivation is to
ensure that fraud and major errors cannot occur without deliberate collusion of multiple users to this
end. Within an RBAC system separation concepts are supported by the principle of least privilege.

The NIST model allows for both static and dynamic separation of duty, but leaves open which
of these should be supported and exactly in what form.

Static Separation of Duties (SSD) specifies constraints on the assignment of users to roles.
This means that if a user is authorized as a member of one role, the user is prohibited from being a
member of a second role. The SSD policy can be centrally specified and then be uniformly imposed
on specific roles.

Constraints are inherited within a role hierarchy. Because a containing role is effectively an
instance of its contained roles, no SSD relationship can exist between them.

Figure 14 Constrained RBAC – Static SOD.

While SSD provides an organization with the capability to address potential conflict-of-
interest issues at the time a user's membership is authorized for a role, with Dynamic Separation of
Duty (DSD) it is permissible for a user to be authorized as a member of a set of roles which do not
constitute a conflict of interest when acted in independently, but produce policy concerns when
allowed to be acted in simultaneously. Although this effect could be achieved through the
establishment of an SSD relationship, DSD relationships generally provide the enterprise with greater
operational flexibility.

U
Users

R
Roles

P
Permissions

UA
User Assignment

PA
Permission
Assignment

RH
Role Hierarchy

SOD Constraints

Information security and access control models in software systems

30

Figure 15 Constrained RBAC – Dynamic SOD.

Note that unlike roles in an SSD relation, roles in a DSD relation can be hierarchically related
through the containment relation. This is consistent with the DSD property of restricting
simultaneous activation of roles and that of a role hierarchy as a representation of a user's implicit
and explicit authorizations for a role. As such, authorization and activation can be treated as
independent notions.

The NIST model requires role hierarchies as a prerequisite in systems providing separation of
duty because most of the benefits of RBAC are tightly integrated with the provision of hierarchies.
Separation of duty mechanisms implemented without hierarchies have serious limitations on
flexibility and functionality.

2.4.3.6 Symmetric RBAC

Starting at Level 1 RBAC systems are required to establish and maintain many-to-many
relationships among user-role and permission-role assignments. Among these relations level 1 and
level 2 RBAC systems require an interface for the review of user-role assignments. Level 1
requirements include the establishment of the set of roles that are directly assigned to a user. Level 2
RBAC extends coverage of user-role review to include not only the roles that are assigned to a user
but also the roles that are inherited by the roles that are assigned to the user.

Level 4 RBAC further extends these requirements to include an interface for permission-role
review with respect to a defined user or role. These requirements pertain to the type of data that is
returned to the administrator as a result of a review, the ability to select direct or indirect permission
assignments, and for distributed systems the ability to select the target systems in which the
permission review will be applied.

Level 4 or symmetric RBAC requires that the permission-role review interface provide the
capability to return any one of two types of results. These results include the complete set of objects
that are associated with the permissions assigned to a particular user or role, or the complete set of
operation and object pairs that are associated with the permissions that are assigned to a particular
user or role. As an option on this query symmetric RBAC requirements further include the ability to
selectively define direct and indirect permission assignment.

U
Users

R
Roles

P
Permissions

UA
User Assignment

PA
Permission
Assignment

RH
Role Hierarchy

SOD Constraints

Sessions

Information security and access control models in software systems

31

Figure 16 Symmetric RBAC – Static SOD.

Direct permission assignment pertains to the set of permissions that are assigned to the user
and/or to the role(s) for which the user is assigned.

Indirect permission assignments pertain to the set of permissions that are included in the
direct permission assignment in addition to the permissions that are assigned to the roles that are
inherited by the roles assigned to the user.

As a further option on a permission query symmetric RBAC requires the ability to select the
target systems for which the review will be conducted.

Figure 17 Symmetric RBAC – Dynamic SOD.

2.5 Conclusions

As organizations increase the functionality and information offered on internal and external
networks, controlling access to information and other resources becomes more important and
complex. Organizations must develop and enforce access policies that protect sensitive and
confidential information; prevent conflict of interest; and protect the system and its contents from
intentional and unintentional damage, theft, and unauthorized disclosure. Security failures can
disrupt an organization’s operations and can have financial, legal, human safety, personal privacy,
and public confidence impacts.

Safeguarding information resources can be very complicated and expensive. Network
administrators must maintain access control lists that specify the resources each user is allowed to
access. They must issue passwords and permissions to enforce the access lists and update them as
personnel change and as users’ needs and permissions change. Maintaining access while enforcing a
comprehensive, coherent security policy has become an expensive and complex task. Simplifying it
could have an important impact on the cost and effectiveness of electronic resource access policies.

U
Users

R
Roles

P
Permissions

UA
User Assignment

PA
Permission
Assignment

RH
Role Hierarchy

SOD Constraints

U
Users

R
Roles

P
Permissions

UA
User Assignment

PA
Permission
Assignment

RH
Role Hierarchy

SOD Constraints

Sessions

Information security and access control models in software systems

32

RBAC is a technology that offers an alternative to traditional DAC and MAC policies. RBAC
allows companies to specify and enforce security policies that map naturally to the organization’s
structure. That is, the natural method for assigning access to information in a company is based on
the individual’s need for the information, which is a function of his job, or role, within the
organization. RBAC allows a security administrator to use the natural structure of the organization to
implement and enforce security policy. This technology decreases the cost of network administration
while improving the enforcement of network security policies.

The following chapter describes the ATLAS TDAQ requirements from security point of view
and draws the access control model needed to fulfill its needs.

Access control solution for ATLAS Online computing system

33

Chapter 3

Access control solution for ATLAS Online computing
system

3.1 Background and scope

The ATLAS experiment comprises a significant number of hardware devices, software
applications and human personnel to supervise the experiment operation. Their protection against
damages as a result of misuse and their optimized exploitation by avoiding the conflicting accesses to
resources are key requirements for the successful running of ATLAS.

From the organization point of view, the ATLAS experiment’s computing infrastructure is
supported in CERN by the Information Technology (IT) department [20]. This relation imposes
constraints on how ATLAS sets up its cluster and internal services because some of them must be
integrated with IT services. On the other hand, CERN IT leverages the user management from the
administrative and bureaucratic point of view; it also offers service for network monitoring, offline
databases, emails, websites and many more.

The main security threat acknowledged by experiment management is denial of service
because having beam in LHC and not benefiting of it due to downtime of the experiment acquisition
software translates directly in waste of resources: human, hardware, financial and, last but not least,
time! Modification threat can contribute to the denial of service: modification of experiment
functionality by changing hardware or software configuration which, if done improperly, may lead to
hardware damages and possible to human injuries.

The “attackers” for these threats are in fact the experiment’s users themselves, being them
physicists or engineers. The number of users accessing the experiment resources from CERN and
external institutes is considerable. Additionally, the users are characterized by a high mobility and
various levels of expertise (from students to experienced researchers). Hence, the risk of experiment
resources misuse due to mistakes on part of the user or simply lack of information is estimated as
very high.

The other threats mentioned in 2.1.1 are considered too in ATLAS, but they are addressed
mainly by IT’s services which, integrated in ATLAS, eliminate them or diminish their chances to occur.

The previous experiments run at CERN did not address all the security requirements (2.1.3) in
a consistent manner and, especially, the accountability one. Researchers have used group accounts
in their daily tasks: one user account known by all people in a group with the password shared in an
informal way. The reasons for wanting to use group accounts comes from the natural splitting of
users into categories of people and tasks which they are allowed to do, for example some users are
shifters, detector experts, TDAQ experts. Given the large computing power put in place by the ATLAS
experiment and the potential interest of worldwide attackers to exploit it, the security level in the
experiment must be increased. Hence the accountability and traceability of actions became
mandatory and it has been decided to have user based authentication and not group based
authentication as it used to be.

In order to keep the categorization provided by group accounts and still have the user
authentication/authorization for accountability and traceability, it has been decided in TDAQ to

Access control solution for ATLAS Online computing system

34

implement the Role Base Access Control model which fulfills these needs, as outlined in 2.4.3, and
brings also more flexibility in the access control management. In this way, the psychological
acceptability (2.2.8) security principle is carefully addressed by making the transition to the new
model smoother for the physicists and diminishing the resistance to change. However, concerns did
exist and the physicists questioned the opportunity of such change in the way they work, being afraid
that the research will be hindered by this new access control model. Table 2 summarizes most
frequently asked questions and how they have been addressed.

Table 2 Users' frequently asked question on the access control in ATLAS experiment.

Question Answer

We are all part of ATLAS collaboration. Why do
you want to check on us? We don't need access
management (neither authentication nor
authorization...)

One of the primary goals of this mechanism is to
reduce the risk of resources misuse. Given the
high number of experiment resources, this risk is
assessed as very high. Secondly, the high number
of users increases also the risk of compromising
computing accounts credentials. Hence the
traceability and accountability are of paramount
importance when dealing with security incidents.

We are all experts. Why do you want to limit our
freedom?

The access control is meant to provide the user
with the set of roles necessary for his or her
tasks. This is also in line with the “Least Privilege”
security principle. So the freedom is not limited
because, in the end, is a matter of policies
definition.

What happens if access management doesn't
work and experts cannot do what they need?

The access management solution will have a turn
off functionality to disable it in case of severe
system malfunction. However, the changes to
happen are minimized by designing the solution
with high availability in mind.

If an expert is asked to intervene, he cannot
waste time asking for access.

Experts will have necessary rights by default, but
they still need to inform the shift leader about
his intentions so that activities in the experiment
environment are synchronized. The activation of
expert roles is designed to be at a “click”
distance.

Will the shared folder disappear too? The need for shared folders modifiable by sets of
people was never questioned. Moving from
group accounts to individual accounts does
impact the usage of shared folders. This is a
matter of organizing the permissions on the files
and folders.

3.1.1 Previous work

The access control issue in the ATLAS Trigger and Data Acquisition (TDAQ) system was
addressed first time by an access management component [21] using the RBAC model. This
implementation was limited to protection of the applications integrated in the TDAQ system that
communicate over a CORBA (Common Object Request Broker Architecture) based inter process
communication mechanism. The access management performed authorizations only while the TDAQ

Access control solution for ATLAS Online computing system

35

system is running. No access control was provided for applications that run independently of the
TDAQ or on tools accessible from Linux shell. Nevertheless, this first implementation confirmed that
the RBAC model is the right one for ATLAS TDAQ needs.

The work described by this thesis extends the scope of access control to whole ATLAS Online
computing cluster: from the remote access to the cluster to the protection of command line tools on
the cluster nodes, login to the Control Room desktops and, of course, the data acquisition software
itself. The solution we describe in the following chapter can be easily integrated in future with other
applications or tools thanks to the Application Programming Interface libraries made available for
this purpose.

3.2 High level design

The ATLAS experiment operational model defines activity areas with their tasks and
responsibilities for various systems (e.g. detectors). The organizational structure resulting from this
operational model is naturally reflected by the roles associated to systems. Each system in turn is
organized internally in subsystems and the best mapping of this characteristic is the role hierarchy.
Therefore, the Hierarchical RBAC model is the best approach for an access control schema in the
ATLAS experiment. At the same time, the systems considered critical for the experiment operation
may require a higher protection level by enforcing the SSD or DSD constraints.

At this stage, the ATLAS access control system implements the Hierarchical RBAC model
(described in 2.4.3.4) and allows for extensions with SSD or DSD constraints.

3.2.1 Access Control System Architecture

The scope of the ATLAS access control is the ATLAS online computing system [22] where
most of the hardware and software resources are located or are controlled from. This wide scope
requires a design for the access control system that allows for a centralized management of the
access policies and, at the same time, permits implementations from the lowest operating system
level to the highest software application level.

Figure 18 Access control software entities in the ATLAS online computing system.

OPERATING SYSTEM SOFTWARE
APPLICATIONS

DAQ
Access Manager

Other
Access Control
Enforcement

DATABASES

Users,
Groups

Roles

RBAC ADMINISTRATION TOOL

Data flow Notification

Control Room
Desktop

Security
Mechanisms

RBAC
Relations

Permissions

Access control solution for ATLAS Online computing system

36

Figure 18 provides an overview of the ATLAS access control software entities and their
relations to meet these requirements. The following paragraphs detail the main software entities in
the ATLAS online computing system involved in the implementation of the RBAC.

The databases are the coordination points for the access control within the experiment
context. All the RBAC elements and relations can be defined in there: the users, the roles, the
permissions, the roles hierarchies, the user assignments to role, and the permission assignment to
role. The databases are the single point of storage for the RBAC constituents. There are multiple
advantages of this approach: less data repositories to secure, less redundancy mechanisms to
implement, and better control over the coherence of the access control policies among all the
systems.

The access control policies are defined in the databases as RBAC relations between users,
roles and permissions. The enforcement of these access control policies is the responsibility of the
software entities interested in the protection of their functionality and the data they manipulate.

The operating system running on the cluster nodes is the software entity with the largest
spectrum of functionalities. The cluster nodes play various roles in the online computing system from
the service providers (e.g. file servers, boot servers, application gateways, network services) to
processing nodes with functions in the data acquisition. The users’ access to each of the cluster
nodes is restricted with the operating system native access control mechanisms and, in addition,
taking into account the role of the user in the system. The mechanisms are detailed later in the
system administration enforcement example.

The software applications executed in the operating system environment may be able to
control directly hardware devices in the ATLAS experiment infrastructure or to access data sources
with configuration parameters for hardware and software systems. These types of software entities
are also subject to access control restrictions and they are responsible for enforcing the policy in
their working area.

While the databases are the passive entities in the access control implementation, the
operating system and the software applications are active entities which enforce the access control
policies.

The last software entity is the RBAC Administration Tool which has the most complex set of
functionalities and it is presented in detail in a dedicated paragraph.

3.2.1.1 RBAC Administration

The RBAC Administration Tool is responsible for the management of most of the RBAC
elements sets and relations. The functionalities of the RBAC Administration Tool are split over three
categories corresponding to the following components: Administrative Component, Users Sessions
Component, and Review Component. There are two categories of users for this tool: the
administrators and the shifters. The administrative component is controlled by the administrators,
the users sessions component by the shifters and the review component by both user categories. The
following paragraphs detail the RBAC Administration Tool components enumerated above.

3.2.1.1.1 Administrative Component
This component is in charge of the creation and maintenance of the RBAC elements sets and

relations: create and delete roles, define resources and actions, define permissions by associating
actions to resources, build role hierarchies, assign/revoke roles to/from users, assign/revoke
permissions to/from roles, and allow to define SSD or DSD relations. The user accounts creation and
deletion operations are not part of this component’s functionalities and are detailed later in 4.3.2.

Access control solution for ATLAS Online computing system

37

Figure 19 The organizational and functional roles

Figure 19 represents the two types of roles a user can have: the organizational roles and the
functional roles. The organizational roles correspond to the ATLAS administrative groups or projects
(e.g. subdetector group such as Hadronic Calorimeter (TILE), Electromagnetic Calorimeter (LAR),
Muon, or TDAQ). The functional roles are associated to the expertise levels within an administrative
group or project (e.g. administrator, expert, shifter, or observer). The set of roles assigned to a user
comprises pairs of both types of roles in order to better describe the user’s abilities and permissions
in the ATLAS system. For example, the user Alice is a member of the TILE group and has been trained
to be a shifter, so she’s assigned to the role TILE-Shifter (inherits the organizational role TILE and the
functional role shifter). The user Bob member of the MUON group has the highest level of expertise,
so he is entitled with the MUON-Expert role (inherits the roles MUON and shifter). This kind of roles
is assignable directly to users and is called from now on “role assignable”.

There can be also roles not assignable to users which can be used in a role hierarchy for the
sole purpose of aggregating permissions.

The role hierarchies incorporate the knowledge about the administrative group and project
hierarchies in the ATLAS experiment. The hierarchies are defined for the functional roles: the shifter
includes the observer’s privileges, and the expert includes the shifter’s privileges for example. The
hierarchy granularity can be increased by defining roles per tasks within the same group or project.
Here, the roles not assignable to users can facilitate this increased granularity.

Alice’s
Roles

Functional
Role

Expert

Observer

Shifter

Organizational
Role

TDAQ TILE MUON

Bob’s
Roles

Access control solution for ATLAS Online computing system

38

Figure 20 Task permissions aggregation into intermediate non assignable roles

Figure 20 shows how at the bottom of hierarchies the tasks permissions are gathered in
groups which are assigned to intermediate not assignable roles, so that, in the end, the roles
assignable to users (Role A, B, C) to inherit from intermediate roles the set of permissions necessary
for each specific role. Sharing of permissions is of course possible by using the same intermediate
role in two distinct top level roles.

In order to keep the administrative task as intuitive as possible, the roles hierarchies are
limited to tree or inverted tree structures. The roles hierarchy example depicted in Figure 21 is
composed of 2 types of roles hierarchies:

- Tree hierarchy (e.g. Shift Leader, TDAQ Shifter, DCS Shifter): senior roles aggregate the
permissions of junior roles. Trees are good for aggregation but do not support sharing.

- Inverted tree hierarchy (e.g. Observer, TDAQ Shifter, DCS Shifter): senior roles are shown
towards the top with edges connecting them to junior roles. The inverted tree facilitates
sharing of resources. Resources made available to the junior role are also available to
senior roles.

The resources types and the actions are predefined for each software entity designed to
incorporate an access control mechanism. Therefore, the Administrative Component defines
permissions in terms of what action is allowed on what resource value. For example, the predefined
resource type “process manager” with the attribute “process name” has associated the predefined
actions type “start” and “terminate” with the attributes “time”. A permission in this case could be:
Allow action type “start” with value “12:00” for attribute “time” to be performed on the resource type
“process manager” with value “kdestart”.

Permissions
Task 1

P12
P11 P13

Permissions
Task 2

P22
P21 P23

Permissions
Task 3

P32
P31 P3

3

Role
A

Role B Role C

Access control solution for ATLAS Online computing system

39

Figure 21 Example of roles hierarchy in ATLAS.

3.2.1.1.2 Users Sessions Component
The users in the ATLAS experiment have at most one session active at a time. The session

creation and destruction is the responsibility of the Users Sessions Component. When a user session
is created, a subset of roles is enabled from the set of roles assigned to the user. The enabling
operation checks in addition the validity of the enabled subset of roles against the DSD relations if
any were defined. The user session is visible in all the software entities with the access control
implementations, and they are responsible for policy enforcement with the subset of roles enabled in
the session.

3.2.1.1.3 Review Component
The administrator and shifter users may want to view the current status of the RBAC

elements and relations. This goal is accomplished by the Review Component. It is able to display the
permissions, the roles, the roles inheritance relationships, the user-to-role assignments, and the
permission-to-role assignments.

The Administrative Component and the Users Sessions Component can change the RBAC
elements and relations during the ATLAS experiment operation, and the new access policies must be
enforced immediately everywhere. The access control implementations may cache some RBAC
specific data to minimize the performance impact over the system they protect, so the cache is
invalidated each time the RBAC Administration Tool notifies them about a change in the RBAC
elements or relations.

The multitude of functions the RBAC Administration Tool is able to perform and their
consequences on the good operation of the ATLAS experiment, makes from this tool a good
candidate for an access control implementation. Indeed, the tool should protect itself with access
control policies allowing only the administrators and shifters users to control it.

3.2.2 Access Control Enforcement

This section addresses the RBAC enforcement in the System Administration area, the Control
Room Desktop implementations, and the TDAQ software.

3.2.2.1 System Administration

The access control in the System Administration concerns the protection of the software
infrastructure in the ATLAS experiment and the operating system running on each online computing

TDAQ
Expert

TDAQ
Shifter

Observer

DCS
Shifter

Shift
Leader

DCS
Expert

Access control solution for ATLAS Online computing system

40

node. Since more than 90% of the machines are running a Linux operating system (based on Scientific
Linux CERN distribution [23]), the following chapters focuses on that operating system. The access
control implementation on Windows OS is not in the scope of our work described in this thesis, but
the integration with ATLAS RBAC is addressed. The few machines running the Windows OS are used
by the ATLAS Detector Control Systems (DCS) where they run the PVSS SCADA software [24]. The
access control is then implemented at the application level by the PVSS Access Control tool [25]
extended on top of JCOP framework [26]. This extension was designed to meet CERN’s requirements
on access control [27]. This development has enabled the use of the RBAC specific data from the
databases presented in the previous section to enforce the ATLAS access policies.

The software infrastructure [22] provides generic services like the network services (Domain
Name System (DNS), Network Time Protocol (NTP), Dynamic Host Configuration Protocol (DHCP)),
the network booting service for the online computing nodes (network booted for easy
administration), the users information, and the users home directories.

The first protection level for the ATLAS experimental area (Figure 22) is provided by the
Application Gateways which separate the ATLAS Technical Control Network (ATCN) from the rest of
the CERN network. The users outside the experimental area and wishing to login to machines in the
ATLAS Control Network have to first login to the Application Gateways and then hop to the desired
machine. The Application Gateways are the single access point to the experimental area and it is
therefore the best place to implement access.

Once the users have hopped through the Application Gateway, they are free to attempt to
login to any machine in the experimental area (the online computing nodes, the file servers etc).
However, each machine is protected with the Linux native security mechanisms extended to take
into account the user’s roles defined by ATLAS policy and the machine’s functionality.

Figure 22 The ATLAS system architecture.

The computers functionalities in the ATLAS experimental area vary from public nodes where
the users can display web pages of the safety information to the control room nodes where the
detectors operational parameters can be changed. While the security level should be minimum for
the first case (the users must be able to view the safety instructions as quickly as possible without

Local Server

1

Local Server

2

Local Server

n

Client 1

Client n

Client 1

Client n

Client 1

Client n

ATLAS

Technical

Control

Network

CERN

Public

Network
Gateways

(login necessary)

Users

access

CTN

S
e

rv
ic

e
 p

a
th

Sync path
Central Server

1

Sync paths

Central Server

2

Alternative

sync paths

Clients are netbooted.

Network

Services

CERN IT

Bypass

Access control solution for ATLAS Online computing system

41

any role checking, but only the security officers must be able to edit and update these instructions),
the second case needs the maximum security level (the user at the control room desktop console
must have all the necessary roles enabled to be able to change the detector running conditions). This
variety of computer functionalities requires a solution to configure the access control granularity for
each individual node. This goal can be achieved by adding more access control filters with finer
restrictions each time the security level needs to be increased for a node, so that the node’s access
control is in the end a stack of access control filters.

The layered approach for access control is implemented on the Linux machines in the ATLAS
experiment with the Pluggable Authentication Module (PAM) [28] as represented in Figure 23. The
RBAC check is integrated in the Linux security mechanism as a PAM module which is used by any
PAM aware application to enforce an access policy. The local and remote login (e.g. Secure Shell
[29]), and the Sudo [30] tools are a few examples of tools using the PAM.

Figure 23 Layered access control on Linux nodes.

The file server machines allow only the users with administrator roles to login and the
execution of some commands (e.g. reboot, fdisk) is restricted to the administrator or experts. The
online computing nodes can restrict the login access only to the users from the detector group the
nodes belong to. These two examples are possible use cases of the layered access control on the
Linux nodes.

All these protection levels are detailed later in the dedicated Chapter 5.

3.2.2.2 Control Room Desktop

The Control Room Desktop (CRD) is the Graphical User Interface (GUI) environment available
on the desktop machines in the ATLAS Control Room. It is based on the Linux K Desktop Environment
and exploits its KIOSK [31] configuration mode. The KIOSK framework provides a set of features to
easily and powerfully define and restrict the capabilities of a KDE environment based on the user’s
credentials. It permits the construction of a controlled environment by customizing and locking
almost all the desktop functionalities. The restrictions range from disabling the background
wallpaper customization to disabling the user log out button or the possibility to access a command
shell. The details on this CRD customization based on access control policies are described later in
chapter 5.1.2.

3.2.2.3 TDAQ Access Manager

The management and control aspects of the TDAQ software are covered by the TDAQ
Control and Configuration (chapter 10.5 in [10]) software components. The TDAQ Access Manager
component is responsible for the access control implementation in the TDAQ software. The
component has a client – server architecture where the client sends authorization requests to the
server, and the server processes the requests and sends back the responses (authorized or not, the
reasons etc) to the client.

The clients are in general TDAQ Controls software components that need to protect their
functions based on an access control policy. A few examples are the Process Manager, Run Control,

Access control solution for ATLAS Online computing system

42

or IGUI [10]. The authorization decision task is complex and requires communications with the
databases holding the RBAC specific data. Another constraint put on the decision taker is to be very
fast to not impact the client’s performance. The optimal solution is to implement the decision
algorithm in a separate software component that is optimized to process and deliver access control
decisions as fast as possible. The Access Manager (AM) server accomplishes this task. The clients call
functions provided by the AM Client Application Programming Interface (API) to ask for authorization
and take the appropriate action according to the response received from the server.

Figure 24 Examples of Access Manager clients.

Other examples of AM Server clients are: the remote access to the ATLAS cluster (the shell in
Figure 24) and the CRD (more details are later on their chapters). As it can be seen, AM has interfaces
to both OS and Application layer, thus assuring a cohesion in the access control enforcements.

The TDAQ Access Manager component is extensively described in its dedicated chapter
Chapter 6.

3.2.3 Data flow

3.2.3.1 OASIS XACML perspective

TDAQ AM server component implements the OASIS [32] XACML (eXtensible Access Control
Markup Language) standard [13] for its internal policies management and authorization algorithm.
The standard defines a declarative access control policy language implemented in XML (Extensible
Markup Language) [33] and a processing model describing how to evaluate authorization requests
according to the rules defined in policies. An introduction to standard’s terminology is given in
chapter Chapter 6. What we are interested in at this moment is the data flow defined by the
standard and the mapping to our access control solution.

Linux Security Mechanisms

Access Manager

Application Interface

OS Interface

Control Room

Desktop

TDAQ components: PMG, Run Control, others

Applications: ELOG, OHP, others…

Shell

Application

Security

Level

OS

Security

Level

Access control solution for ATLAS Online computing system

43

Figure 25 Data flow diagram in the XACML standard.

Figure 25 describes the XACML data flow where the following main actors can be identified:

 Policy Administration Point (PAP): creates and manages the policies definitions.

 Policy Information Point (PIP): acts as a provider of attribute values required in the policy
evaluation.

 Policy Decision Point (PDP): evaluates applicable policy and renders an authorization
decision.

 Policy Enforcement Point (PEP): performs the access control by making decision requests
and enforcing authorization decision.

The access requester may be for example a user who wants to log in through the application
gateway inside ATCN, or the TDAQ Process Manager application that is requested by the user to stop
a critical application running on a cluster node.

As it can be seen, the main actors described above have clear responsibilities so the mapping
to our actors in the access control solution comes naturally and is depicted in Figure 26.

Policy

Enforcement

Point

context

handler

 4. request notification

Policy

Information

Point

6. attribute

query

11. response context

1. policy

8. attribute

resource

7b. environment

attributes

obligations

service
13. obligations

Policy

Decision

Point

access

requester
2. access request

9. resource

content

3. request 12. response

7c. resource

attributes

7a. subject

attributes

 5. attribute queries

10. attributes

environmentsubjects

Policy

Administration

Point

Access control solution for ATLAS Online computing system

44

A T L A S T e c h n i c a l & C o n t r o l N e t w o r k

TDAQ Access Manager

Servers

Application Gateways

Online Cluster Nodes
Control Room Desktops

Servers
(Files,Web, DNS, NTP,

DHCP, Boot, Monitoring)

Policy Decision Point Policy Information Point

Access policies in

XACML format

Sudo rules

Login restriction rules

Policy Administration Point

OS Level

(sudo, PAM

access)

Directory

(LDAP)

TDAQ

Software

OS

access

Policy Enforcement Point

Contains user account

information, roles,

roles hierarchies, and

assignment of roles to

users.

KDE desktop is customized with KIOSK

so that only a limited number of functions

and applications are available to the

user. Then the application execution is

authorized by the Access Manager.

This is the access point for remote

connection via SSH to the ATCN.

Access control is implemented in

the login application.

The SSH login is restricted

with PAM.

Critical commands are

protected with sudo.

The TDAQ processes are

started by the Process

Manager who asks the Access

Manager for authorization.

Access policies for:

- TDAQ specific components: process

manager, run control

- remote access to ATCN

- control room desktop applications

Sudo configuration is stored centrally in LDAP.

The configuration files for PAM access module

are generated from the rules stored in LDAP.

Cluster of redundant high

performance Java servers.

Uses the Sun’s open source

implementation of XACML standard.

Used by the Detector

Control System PVSS

access control as well.

Figure 26 Data flow in the ATLAS access control solution.

Access control solution for ATLAS Online computing system

45

Policy Administration Point together with the management of Policy Information Point fall
under the RBAC Administration Tool responsibility. The Policy Information Point in turn plays the role
of source of information about the users, roles hierarchy and assignment of users to roles.

The Policy Decision Point role is taken by:

 TDAQ AM servers which decides if an account requested by a client is approved or not.
The decision is taken based on the permission assignment to role in XACML format and
the users/roles information from PIP - Directory server (LDAP).

 OS level specific tools used for restriction on the login and tools execution. Both have
configurations (in PAP) based on users and roles information (from PIP).

The enforcements of the decisions provided by PDP are done right at the resource under
protection. Hence, the Policy Enforcement Points are:

 The Application Gateways which permit the access to ATCN

 The machine’s login (both locally and remote), being them working nodes or servers

 Once logged on a node, the sudo tool which executes the application protected by the
access control policy

 The TDAQ software components which run on the cluster nodes and execute user’s
command if approved by PDP (TDAQ AM server in this case)

 The Control Room Desktop where people are provided with the appropriate screen
configuration according to the policy checked by PDP

 And the list is open for future integration of TDAQ Software components with TDAQ AM
server (e.g. database control)

3.2.3.2 Reference monitor perspective

The data flow in our access control can be viewed also from the perspective of reference
monitor concept described in chapter 2.3.4. The mapping to the XACML actors described before is
shown in Table 3.

Table 3 Mapping of Reference Monitor concept to XACML model

Reference monitor XACML model

Subjects Access requester

Access request 2. access request

Reference monitor PDP and PEP

Access Control Database PAP and PIP

Audit file Obligations service (the logging of enforcement
actions like action allowed/denied with reason)

Objects Resource content

Access control solution for ATLAS Online computing system

46

3.3 Security design principles coverage

At the end of this chapter which presented the high level design of the access control
solution, we summarize below (Table 4) how the security design principles described in chapter 2.2
are addressed by our solution.

Table 4 Security design principles coverage

Security design principle How it is addressed

Simplicity The design is focused on solving the today ATLAS needs in terms of
access control: Hierarchical RBAC model is sufficient for the moment,
but the extension is always possible to constrained or symmetric
RBAC.

Our motto in designing the solution is: “Do not re-invent the wheel”

XACML standard is used to benefit from the standards organization
validation of the concepts and to leave the door open for future
integration with systems compliant with XACML.

The mechanisms and tools used in the implementation described
later are well known in Linux world and their security is continuously
validated by the community.

Restriction The granularity of permissions defined in the policies allows only one
operation to be executed on the resource. Hence, this is more a
matter of configuration of the solution.

Least privilege Same as “Restriction”

Fail-Safe defaults The default role assigned to new users is “Observer” which has a
minimum set of permissions. Then, the users can take on more roles
after they are trained on new field’s expertise.

Economy of mechanism Same as “Simplicity”

Complete mediation Caches are used in the implementation, but a notification mechanism
is also set up to propagate the changes to the PDPs.

Open design We fully describe in this thesis the solution design and
implementation details.

Separation of privilege Even if a user is recognized to have the expertise necessary for a role,
the user is allowed to use the role only in a controlled manner (e.g.
when the Shift Leader considers necessary the intervention of an
expert on a faulty system for a limited time interval).

Least common mechanism This principle is taken in consideration in the implementation of the
access control solution, for example the AM server is designed with
overload protection. But the fulfillment of this principle must be
extended to the other TDAQ software components which are clients
of TDAQ AM server. The later part is not in the scope of this thesis.

Psychological acceptability The users of the access control solution (physicists, engineers with
experience in other CERN experiments) are used to work with group
accounts which are mapped now to roles, so the transition to the new
access control model is smoother and the resistance to change is
minimized.

RBAC setup and administration

47

Chapter 4

RBAC setup and administration

In this chapter we describe how the access control model chosen for ATLAS is set up in the
ATLAS Online cluster and the tools developed to manage it.

4.1 Database type

As shown in the previous chapter where the high level solution is outlined (3.2.1.1), a central
database is meant to store the RBAC model elements: users, roles, permissions and relationships.

The characteristics of this data to be stored are:

 Data type: the users, roles, permission names are String data types with a short size (the
users and roles are at most 50 characters, while the permissions can be a bit longer, but
this depends very much on the application where the permissions are enforced)

 Access:
o Write: the users are defined in the database when the researcher joins CERN, the

roles are created or modified with every internal experiment organization change,
the permissions are set and associated to roles when the application protected by
the permission is installed or updated, and the users are assigned to roles when they
expertise level is certified by the organization. As it can be seen, all the write
operations on RBAC elements are very rare (order of days) compared with the data
write frequencies in computing software (order of seconds, even milliseconds).

o Read: by contrary, the read operations on this RBAC data are very often and the
frequency is given by the needs of applications under protection. The order can be
of seconds.

 Availability: RBAC data must be always available because the experiment functioning
depends on it. Downtime of database holding RBAC data implies downtime of access
control system in general and the critical operations under access control protections
can not be performed anymore. It is obvious that the risk of not being able to control the
experiment must be avoided.

For all these reasons, we’ve considered that in fact a LDAP [14] directory service fits [34] the
profile of a RBAC model repository. Moreover, the integration of many Linux services with LDAP is
out of the box and we can benefit from it in the deployment of the access control solution in the
ATLAS Online cluster.

4.2 RBAC setup

As detailed in the previous chapter, the RBAC configuration is centralized in an LDAP
directory service in the ATLAS Online cluster. Therefore, all entities specific to Hierarchical RBAC
model (users, roles, permissions) and relationships (user assignment to roles, permissions
assignment to role, role hierarchies) are defined in an OpenLDAP [35] server hosted on one of the
cluster central servers.

The users are defined in the LDAP directory as posixAccount object class so that the standard
PAM [28] authentication on the Linux nodes to be able to recognize them as user accounts on the

RBAC setup and administration

48

node. Figure 27 shows an example of user definition in LDAP as it can be viewed with an LDAP
browser (phpLDAPAdmin [36]).

Figure 27 User definition in LDAP

Figure 28 Roles and role hierarchy definitions in LDAP

RBAC setup and administration

49

 The roles are mapped in LDAP as nisNetgroup object class and amRole object class. The use
of NIS netgroups [37] brings the following advantages:

 Out of the box integration with many Linux tools (e.g. Sudo [30]) and mechanisms (e.g.
various PAM modules are able to work with netgroups), hence the roles are seen as
natural components in Linux environment

 Aggregation of more netgroups in one netgroup. This is very helpful to set up the role
hierarchies and permission inheritance over the hierarchy.

We defined a dedicated LDAP schema [38] to be used by OpenLDAP instances to extend
netgroups definitions with details necessary for the RBAC model. The appendix 8.1 details the
schema specification. The amRole object class defined in this schema brings the following
enhancements:

 Label the NIS netgroups defined in LDAP with the “amRole” qualifier for easier
differentiation in LDAP queries

 Attach more properties to netgroups to be used in more advanced RBAC models
definition, such as:

o if the role is assignable to users or not (in that case, the role is just internally in
the hierarchy just to allow permissions sharing)

o future constraints like Static Separation of Duties or Dynamic Separation of
Duties.

Figure 28 shows the role definition in LDAP as netgroups for the example of role hierarchy
from Figure 21. The columns from the figure are described in Table 5.

Table 5 Roles definition in LDAP

Object attribute Description

dn the “path” to the object in the LDAP tree

objectClass specifies a set of attributes used to describe an object; in our case, the
object classes described above are mandatory

cn the role name prefixed with RA or RE. There are two netgroups defined
in LDAP for each role:

- RA-<rolename> shows that the <rolename> is assigned to an
user

- RE-<rolename> shows that the <rolename> is enabled for an
user during its session (see 3.2.1.1.2 for details on user sessions)

The roles not assignable to user (see 3.2.1.1.1 for details) are prefixed
with RN.

nisNetgroupTriple used for user assignment relationship

memberNisNetgroup used for role hierarchy relationship

The permissions and permission assignment relations are specific to the applications
enforcing them, so we will describe them in the following chapters dedicated to each enforcement
type.

The user assignment to roles is accomplished by setting role’s netgroup property
nisNetgroupTriple to the user name in the format (,<username>,). The roles assigned to a user have 2
states:

RBAC setup and administration

50

 assigned: this is the initial state when the user is certified for the role. For example, a
user who graduated training on DCS technology is recognized as expert in DCS
department, hence he gets the DCS expert role assigned.

 enabled: a role already assigned to a user is enabled so that the user is able to perform
the tasks allowed by this role. This corresponds to a user session as described in
3.2.1.1.2. The user with DCS expert role can work on DCS hardware only when his role is
enabled. In this way, the exclusive access to resources can be regulated by the group
leaders.

The example in Figure 28 has three users with the following roles assignment:

 roles assigned: mleahu – TDAQ:shifter, alice – ShiftLeader, bob – DCS:expert

 roles enabled: mleahu – TDAQ:shifter, alice – ShiftLeader, bob – no roles enabled.

The role hierarchy is mapped to the netgroup aggregation relationship. This is configured in
LDAP thanks to the memberNisNetgroup attribute of a role: the value of this attribute represents a
senior role for the current role. For example in Figure 21, the role DCS shifter has senior roles
ShiftLeader and DCS expert, both represented as values of its memberNisNetgroup attribute; on the
other hand, DCS shifter role is senior for Observer, hence Observer’s memberNisNetgroup value
contains it. The role hierarchy managed through netgroups permits permission inheritance from
junior to senior roles. This means that permission assigned to role Observer is allowed to users with
the role Observer and all Observer’s seniors (direct or indirect).

4.2.1 OpenLDAP service configuration

As mentioned in the previous chapter, the OpenLDAP is used as LDAP service in the ATLAS
online cluster. The central servers that host this service run the CERN’s Linux version, namely
Scientific Linux CERN 5 (SLC 5) [23] based on the Red Hat Enterprise 5 Linux version. In order to
configure the RBAC in LDAP directory as described above, the following configuration checks or
adjustments are necessary after the installation of OpenLDAP package on SLC 5 server:

 nis.schema must be included in the server configuration file (slapd.conf). This schema
is necessary to support the NIS netgroups information in the LDAP structure [39].

 sudo.schema [40] (shipped also in the sudo package in /usr/share/doc/sudo-

1.7.2p1/schema.OpenLDAP) must be included in the server configuration to allow the
definitions of sudo permissions (more details in the chapter 5.2.2).

 amRBAC.schema must be also included in the server configuration. Its content is included
in the Appendix section 8.1.

4.3 RBAC administration tool

The RBAC Administration tool described in 3.2.1.1 addresses a large spectrum of
functionalities meant to cover the RBAC model administration in the ATLAS Online cluster. We
identified the requirements to be fulfilled by the RBAC Administration tool and these are presented
in the following chapter. Our worked focused first on the top priority needs from the RBAC
Administration tool and, at this stage, they are fulfilled by a set of shell scripts and web interface for
LDAP management. The requirements coverage matrix is filled in the last chapter of this section. The
development of a unique tool to gather under its umbrella all RBAC administration functions is an
action point on the “future work” list.

4.3.1 Requirements

The requirements for the RBAC Administration tool are gathered in a structured document
“ATLAS RBAC Administration Tool Requirements” which is included in this thesis in the Appendices

RBAC setup and administration

51

chapter, 8.2. The document contains the requirements organized by use cases split over 3 main
categories detailed in the following sub chapters. The actors in the use cases are of two types:

 administrators: define the roles, the access policies and assign/revoke the roles
to/from users.

 shifters: enable and disable the roles already assigned to users by the administrators.

4.3.1.1 Administrative functions

The administrative functions refer to creation and maintenance of elements sets and
relations for building the RBAC model. Figure 29, Figure 30, Figure 31 and Figure 32 summarize the
use cases which fall in the administrative category:

 Roles administration

 Permissions administration

 Relations administration:
o Role hierarchy (RH)
o User assignment (UA)
o Permission Assignment (PA)
o Static Separation of Duties(SSD)/Dynamic Separation of Duties(DSD)

Figure 29 Administrative Component use cases - Roles Management

RBAC setup and administration

52

Figure 30 Administrative Component use cases - Users, Permissions Assignments to Roles

Figure 31 Administrative Component use cases - Permissions

RBAC setup and administration

53

Figure 32 Administrative Component use cases - Separation of Duties

Note that users management is not in the scope of RBAC Administration tool and this point is
tackled in 4.3.2.

4.3.1.2 User session management

The user session management addresses the need of having the users acting with their role
in a controlled manner. Certain roles (e.g. expertise on sensitive hardware) may need a careful
management and the actions allowed by them may need to be approved also by the Shifter user (the
users who monitor the experiment functioning). The user session represents the time interval when
the user’s role is enabled, hence he can perform action allowed by the role.

Figure 33 Use Case diagram for Users Sessions management

RBAC setup and administration

54

4.3.1.3 Review functions

The results of the actions created by the administrative functions are reviewed thanks to the
“Review functions”. The use cases addressed by this category of functions are represented in Figure
34.

Figure 34 Use Case Diagram for Review Component

4.3.2 User accounts

The CERN users and implicitly the ATLAS experiment users are administrated by the CERN
Human Resources (HR) department in a centralized HR database. The department is responsible for
keeping the users information up to date, so the HR database is the reference database for the CERN
user computing accounts database. The CERN IT department administrates the CERN user computing
accounts and keeps it synchronized with the HR database. At the same time, one of the ATLAS
experiment requirements is to be able to run and take data for up to 24 hours while disconnected
from the CERN IT department. Consequently, the direct use of the CERN user computing accounts
database by the ATLAS computing system would make the experiment impossible to run. The
solution [22] is to mirror the ATLAS user accounts from the CERN user computing accounts database
in a database located in the experimental area, more specifically, the LDAP directory service running

RBAC setup and administration

55

on the central file servers. The management of ATLAS user accounts and their synchronization with
CERN IT is performed by TDAQ SysAdmin specific tools not addressed exhaustively in our thesis.

4.3.3 Tools

During the activities performed to set up the access control solution in the ATLAS online
computing cluster, we developed a set of tools to fulfill the majority of requirements mentioned in
the previous paragraph. The access to LDAP server is facilitated by the LDAP command line tools
available on SLC in the openldap-clients package:

/usr/bin/ldapadd

/usr/bin/ldapdelete

/usr/bin/ldapmodify

/usr/bin/ldapsearch

As Graphical User Interface (GUI) for the LDAP server administration, we used the
phpLDAPAdmin web application also available in the SLC 5 distribution (package phpldapadmin).

The write operations on the RBAC model in the LDAP server are allowed to be performed by
the AccessManagerAdmin user account. The read operations are allowed to everybody.

The following sub chapters detail the tools functionalities.

4.3.3.1 Roles management

We developed a bash [41] shell script to manage the roles and roles hierarchies in LDAP:
amRolesManager (listing available in appendix 0). The summary of its functionalities are shown in its
help screen:

./amRolesManager -h

amRolesManager, version $Revision: 52065 $

Access Manager utility to administrate roles and roles hierarchies.

Usage: amRolesManager [-c|-C|-d|-u "(attribute=value)"|[-s|-S senior]|[-j|-J

junior]|-L] <-r ROLE> [-m userBindDN] [-M] [-p password] [-l ldapserver] [-b

basedn] [-v] [-f] [-h]

No arguments will make the script display all the roles found in LDAP.

 -c create the role ROLE not assignable to users

 -C create the role ROLE assignable to users

 -d delete the role ROLE

 -u update the ROLE attribute with a new value. The format must be

'(attribute1=value1)(attribute2=value2)'

 -s add a senior role for the ROLE

 -S remove a senior role from the ROLE

 -j add a junior role for the ROLE

 -J remove a junior role from the ROLE

 -L dump the LDIF for role

 -r the ROLE name; if no other script argument provided, the ROLE details are

displayed.

 -m authenticate as <userBindDN> to the LDAP server; default is AccessManagerAdmin

 -M authenticate as [cn=Manager] to the LDAP server

 -p password to bind to the LDAP server

 -l use this ldapserver; default is [localhost]

 -b use this basedn; default is [ou=atlas,o=cern,c=ch]

 -f force mode; no confirmation asked for change operations

 -v verbose mode

 -h this info

Author: mleahu@CERN

In order to prepare the roles hierarchy from example in Figure 21, the following commands
are executed with the amRolesManager script:

RBAC setup and administration

56

 create all roles as assignable to users:

#./amRolesManager -C -r "Observer TDAQ:shifter DCS:shifter TDAQ:expert DCS:expert

ShiftLeader"

>>> Create ASSIGNABLE role [Observer]...>>> DONE!

>>> Create ASSIGNABLE role [TDAQ:shifter]...>>> DONE!

>>> Create ASSIGNABLE role [DCS:shifter]...>>> DONE!

>>> Create ASSIGNABLE role [TDAQ:expert]...>>> DONE!

>>> Create ASSIGNABLE role [DCS:expert]...>>> DONE!

>>> Create ASSIGNABLE role [ShiftLeader]...>>> DONE!

 Set the relationships between Observer (junior) and TDAQ:shifter, DCS:shifter (seniors):

./amRolesManager -j Observer -r "TDAQ:shifter DCS:shifter"

>>> add juniors for role [TDAQ:shifter]...

...junior [Observer]:OK

modifying entry "cn=RA-Observer,ou=netgroup,ou=atlas,o=cern,c=ch"

modifying entry "cn=RE-Observer,ou=netgroup,ou=atlas,o=cern,c=ch"

>>> DONE!

>>> add juniors for role [DCS:shifter]...

...junior [Observer]:OK

modifying entry "cn=RA-Observer,ou=netgroup,ou=atlas,o=cern,c=ch"

modifying entry "cn=RE-Observer,ou=netgroup,ou=atlas,o=cern,c=ch"

>>> DONE!

 Set the relationships between ShiftLeader (senior) and TDAQ:shifter, DCS:shifter (juniors):

./amRolesManager -s ShiftLeader -r "TDAQ:shifter DCS:shifter"

>>> add seniors for role [TDAQ:shifter]...

...senior [ShiftLeader]:OK

modifying entry "cn=RA-TDAQ:shifter,ou=netgroup,ou=atlas,o=cern,c=ch"

modifying entry "cn=RE-TDAQ:shifter,ou=netgroup,ou=atlas,o=cern,c=ch"

>>> DONE!

>>> add seniors for role [DCS:shifter]...

...senior [ShiftLeader]:OK

modifying entry "cn=RA-DCS:shifter,ou=netgroup,ou=atlas,o=cern,c=ch"

modifying entry "cn=RE-DCS:shifter,ou=netgroup,ou=atlas,o=cern,c=ch"

>>> DONE!

 Set the relationships between TDAQ:expert (senior) and TDAQ:shifter (junior):

./amRolesManager -s TDAQ:expert -r "TDAQ:shifter"

>>> add seniors for role [TDAQ:shifter]...

...senior [TDAQ:expert]:OK

modifying entry "cn=RA-TDAQ:shifter,ou=netgroup,ou=atlas,o=cern,c=ch"

modifying entry "cn=RE-TDAQ:shifter,ou=netgroup,ou=atlas,o=cern,c=ch"

>>> DONE!

 Set the relationships between DCS:expert (senior) and DCS:shifter (junior):

./amRolesManager -s DCS:expert -r "DCS:shifter"

>>> add seniors for role [DCS:shifter]...

...senior [DCS:expert]:OK

modifying entry "cn=RA-DCS:shifter,ou=netgroup,ou=atlas,o=cern,c=ch"

modifying entry "cn=RE-DCS:shifter,ou=netgroup,ou=atlas,o=cern,c=ch"

>>> DONE!

RBAC setup and administration

57

If desired, an additional role not assignable can be defined to aggregate permissions on the
usage of DAQ expert tools. This role is inherited by TDAQ:expert and can be inherited also by other
DAQ expert roles (e.g. LAR:DAQ:expert etc). The commands are:

./amRolesManager -c -r "DAQ:expert:tools"

>>> Create NOT ASSIGNABLE role [DAQ:expert:tools]...>>> DONE!

./amRolesManager -s TDAQ:expert -r "DAQ:expert:tools"

>>> add seniors for role [DAQ:expert:tools]...

...senior [TDAQ:expert]:OK

modifying entry "cn=RA-DAQ:expert:tools,ou=netgroup,ou=atlas,o=cern,c=ch"

modifying entry "cn=RE-DAQ:expert:tools,ou=netgroup,ou=atlas,o=cern,c=ch"

>>> DONE!

A verbose display of the roles defined so far can be obtained by running:

./amRolesManager -v

DISPLAY THE ROLE INFORMATION

7 ROLES IN LDAP [DAQ:expert:tools DCS:expert DCS:shifter Observer ShiftLeader

TDAQ:expert TDAQ:shifter]

#------ DETAILS ------#

ROLE [DAQ:expert:tools] #######

amRoleAssignable: false

JUNIORS(0)

SENIORS(1) TDAQ:expert

ROLE [DCS:expert] #######

amRoleAssignable: true

JUNIORS(1) DCS:shifter

SENIORS(0)

ROLE [DCS:shifter] #######

amRoleAssignable: true

JUNIORS(1) Observer

SENIORS(2) DCS:expert ShiftLeader

ROLE [Observer] #######

amRoleAssignable: true

JUNIORS(0)

SENIORS(2) DCS:shifter TDAQ:shifter

ROLE [ShiftLeader] #######

amRoleAssignable: true

JUNIORS(2) DCS:shifter TDAQ:shifter

SENIORS(0)

ROLE [TDAQ:expert] #######

amRoleAssignable: true

JUNIORS(2) DAQ:expert:tools TDAQ:shifter

SENIORS(0)

ROLE [TDAQ:shifter] #######

amRoleAssignable: true

JUNIORS(1) Observer

SENIORS(2) ShiftLeader TDAQ:expert

A subset of roles can also be looked up with a filter. For example, the list of roles with names
starting with TDAQ is retrieved by running:

./amRolesManager -r "TDAQ*"

Found more roles with name [TDAQ*]: 2 roles #######

ROLE [TDAQ:expert] #######

amRoleAssignable: true

JUNIORS(2) DAQ:expert:tools TDAQ:shifter

SENIORS(0)

RBAC setup and administration

58

ROLE [TDAQ:shifter] #######

amRoleAssignable: true

JUNIORS(1) Observer

SENIORS(2) ShiftLeader TDAQ:expert

The visual display of roles and roles hierarchies is possible thanks to a PHP [42] script that we
developed for integration in administration pages of ATLAS Online cluster. The listing of the script is
included in the appendix 8.4.The script algorithm consists into following steps:

 Retrieve roles from LDAP according to an input filter
o For example, the roles which don’t belong to DAQ can be retrieved by inserting the

following script call into an HTML page:

 Prepare the list of nodes to be fed to the script which generates the visual tree:
GDRenderer.php [43]. One more filter can be applied here too: the top role names to match
a certain regular expression.

o For example, from the list of roles retrieved from LDAP, display only the trees with
the root containing DAQ. The script call in this case is:

Only the tree hierarchies are displayed by this script, hence the roles hierarchy from
commands executed in the previous chapter is shown in three distinct trees: one tree corresponding
to each top role.

Figure 35 The role tree for TDAQ:expert role.

Figure 36 The role tree for ShiftLeader role.

Figure 37 The role tree for DCS:expert role.

Assignable roles are depicted in blue with the number of users having the role
enabled/assigned. The roles not assignable to users are colored in red.

RBAC setup and administration

59

4.3.3.2 User’s roles management

The management of user assignment to roles relationships is handled by the amUserRoles
shell script (its listing is included in appendix 8.5). Its functions are summarized in its help screen:

./amUserRoles -h

amUserRoles, version $Revision: 52762 $

Access Manager script to manage the users-roles RBAC relationship.

Usage: amUserRoles [-h] [-G role_category] [-L] [-a|-A|-r|-e|-d|-c|-C|-Q roles] [-

s|-S|-D] [-f] [-u usernames] [-F input_file] [-m userBindDN] [-M] [-p password] [-

l ldapserver] [-b basedn] [-v]

 -h this info

 -G <role_category> to be used as prefix for the <roles>;

 Roles operations (only ONE operation from the list below can be called):

 -L list the roles defined in LDAP in the role_category (if specified)

 -a assign the <roles> to the <username>

 -A assign and enable the <roles> to the <username>

 -r revoke the <roles> for the <username>

 -e enable the <roles> for the <username>

 -d disable the <roles> for the <username>

 -c display the users with the <roles> assigned

 -C display the users with the <roles> assigned and enabled

 -Q display the users with the <roles> assigned and disabled

 -s show the roles assigned to the user

 -S show the roles assigned and enabled to the user

 -D show the roles assigned and disabled for the user

 -f display the roles in a format to be stored in files

 -u user names; default user is [root]

 -F input text file with usernames one per line at the beginning; comments start

with #

 -m authenticate as <userBindDN> to the LDAP server; default is AccessManagerAdmin

 -M authenticate as [cn=Manager] to the LDAP server

 -p password to bind to the LDAP server

 -l use this ldapserver; default is [localhost]

 -b use this basedn; default is [ou=atlas,o=cern,c=ch]

 -v verbose mode

Author: mleahu@CERN

The role assignment to users for the example in Figure 28 can be achieved by running the
following commands:

./amUserRoles -A "TDAQ:shifter" -u mleahu

>>> Assign and enable roles to user [mleahu]...

>>> ...role [TDAQ:shifter]...assign >>> OK! ...enable >>> OK!

./amUserRoles -a "ShiftLeader" -u alice

>>> Assign roles to user [alice]...

>>> ...role [ShiftLeader]...assign >>> OK!

./amUserRoles -e "ShiftLeader" -u alice

>>> Enable roles for user [alice]...

>>> ...role [ShiftLeader]...enable >>> OK!

./amUserRoles -a "DCS:expert" -u bob

>>> Assign roles to user [bob]...

>>> ...role [DCS:expert]...assign >>> OK!

The script allows also the following lookups:

 roles assigned (and enabled) directly to a user:

./amUserRoles -s -u mleahu -v

Check user names against LDAP...

RBAC setup and administration

60

DISPLAY USER[mleahu]'S ROLES IN STATE [ASSIGNED] ###

TDAQ:shifter

./amUserRoles -S -u bob -v

Check user names against LDAP...

DISPLAY USER[bob]'S ROLES IN STATE [ENABLED] ###

 the user with a given role assigned (and enabled) directly to them:

./amUserRoles -C ShiftLeader -v

DISPLAY THE CONTENT OF ROLES [ShiftLeader] IN STATE [ENABLED]

alice

./amUserRoles -c DCS:expert -v

DISPLAY THE CONTENT OF ROLES [DCS:expert] IN STATE [ASSIGNED]

bob

./amUserRoles -C "ShiftLeader TDAQ:expert TDAQ:shifter" -v

DISPLAY THE CONTENT OF ROLES [ShiftLeader TDAQ:expert TDAQ:shifter] IN STATE

[ENABLED]

ROLE [ShiftLeader]

alice

ROLE [TDAQ:expert]

ROLE [TDAQ:shifter]

mleahu

In order to get the list of users which are belong directly or indirectly (by inheritance) to a
certain role, the following system commands which interrogate directly the role’s netgroup content
can be used:

getent netgroup RA-Observer

RA-Observer (, bob,) (, alice,) (, mleahu,)

getent netgroup RE-Observer

RE-Observer (, alice,) (, mleahu,)

getent netgroup RA-TDAQ:shifter

RA-TDAQ:shifter (, mleahu,) (, alice,)

getent netgroup RA-DCS:shifter

RA-DCS:shifter (, bob,) (, alice,)

getent netgroup RE-DCS:shifter

RE-DCS:shifter (, alice,)

The roles can be easily disabled or revoked by calling the amUserRoles script:

./amUserRoles -d "TDAQ:shifter Observer" -u mleahu

>>> Disable roles for user [mleahu]...

>>> ...role [TDAQ:shifter]...disable >>> OK!

>>> ...role [Observer]...SKIPPED! Role not assigned!

./amUserRoles -r "ShiftLeader Observer" -u alice

>>> Revoke roles from user [alice]...

>>> ...role [ShiftLeader]...disable >>> OK! ...revoke >>> OK!

>>> ...role [Observer]...SKIPPED! Role not assigned!

4.3.3.3 Permissions management

The permissions are very specific to the application types being protected and how they are
processed in the access control solution: either by the operating system mechanism or by the TDAQ
Access Manager server.

In the case of permissions enforced with the help of OS mechanisms (e.g. sudo, PAM), the
permissions configuration is performed in LDAP through the web interface. The LDAP web

RBAC setup and administration

61

administration interface is offered by the phpLDAPAdmin [36] package available in SCL 5 distribution.
More details on its usage will be provided later in the chapter Chapter 5.

The TDAQ Access Manager component operates with the access control policies in XACML
[13] format stored in files. However, the permissions for AM clients are defined in a simplified format
in files which are then transformed in XACML format by a dedicated tool. The format of this file and
the tool to be used to generate XACML policies are addressed in Chapter 6.

4.3.4 Requirements coverage matrix

After we presented the tools put in place to manage the RBAC model, we summarize the
coverage of the RBAC administration tool requirements in the tables below.

Requirement
ID

Requirement Title Priority Fulfilled Observations

URA01 Role Creation High Yes amRolesManager -C

URA02 Role Update High Yes amRolesManager -u

URA03 Role Deletion High Yes amRolesManager -d

URA04 Role Listing High Yes amRolesManager [-r]

URA05 Role Inheritance Creation High Yes amRolesManager [-s|-j]

URA06 Role Inheritance Deletion High Yes amRolesManager [-S|-J]

URA07 Senior Role Creation High Yes amRolesManager -C

&& amRolesManager -s

URA08 Junior Role Creation High Yes amRolesManager -C

&& amRolesManager -j

URA09 SSD Set Creation Low No Not in the current scope

URA10 SSD Set Deletion Low No Not in the current scope

URA11 SSD Set Listing Low No Not in the current scope

URA12 SSD Role Member Addition Low No Not in the current scope

URA13 SSD Role Member Deletion Low No Not in the current scope

URA14 DSD Set Creation Low No Not in the current scope

URA15 DSD Set Deletion Low No Not in the current scope

URA16 DSD Set Listing Low No Not in the current scope

URA17 DSD Role Member Addition Low No Not in the current scope

URA18 DSD Role Member Deletion Low No Not in the current scope

URA19 Resource Instance Creation High Yes See permission definition

URA20 Resource Instance Update High Yes See permission definition

URA21 Resource Instance Deletion High Yes See permission definition

URA22 Resource Instance Listing High Yes See permission definition

URA23 Action Instance Creation High Yes See permission definition

RBAC setup and administration

62

URA24 Action Instance Deletion High Yes See permission definition

URA25 Action Instance Listing High Yes See permission definition

URA26 Permission Creation High Yes See permission definition

URA27 Permission Deletion High Yes See permission definition

URA28 Permission Listing High Yes See permission definition

URA29 Role Assignment to Users High Yes amUserRoles -a

URA30 Role Revocation from Users High Yes amUserRoles -r

URA31 Grant Permission to Role High Yes See permission definition

URA32 Revoke Permission from Role High Yes See permission definition

URA33 Relationships Integrity Normal No

URA34 Selection Filters Normal No

URUS01 User’s Role Enabling Normal Yes amUserRoles -e

URUS02 User’s Role Disabling Normal Yes amUserRoles -d

URUS03 View Roles Enabled for User Normal Yes amUserRoles -S

URUS04 View Roles Disabled for User Normal Yes amUserRoles -D

URUS05 View Users with a Role Enabled Low Yes amUserRoles -C

URUS06 View Users with a Role Disabled Low Yes amUserRoles -Q

URR01 View Role’s Juniors Normal Yes amRolesManager -r

URR02 Graphical Display of Role’s
Juniors

Low No Not in the current scope

URR03 View Role’s Seniors Normal Yes amRolesManager -r

URR04 Graphical Display of Role’s
Seniors

Low No Not in the current scope

URR05 View Roles from a SSD Set Low No Not in the current scope

URR06 View Roles from a DSD Set Low No Not in the current scope

URR07 View the SSD Sets a Role is
Member of

Low No Not in the current scope

URR08 View the DSD Sets a Role is
Member of

Low No Not in the current scope

URR09 View Roles Assigned to User Normal Yes amUserRoles -s

URR10 View Users Assigned to Role Normal Yes amUserRoles -c

URR11 View Permissions Granted to
Role

Normal Yes See permission definition

URR12 View Permissions Granted to
User

Low No

URR13 View Roles with Permission Normal Yes See permission definition

RBAC setup and administration

63

Granted

URR14 View Users with Permission
Granted

Low No

URR15 Search Permissions Normal Partially See permission definition

Requirement
ID

Requirement Title Priority Fulfilled Observations

URPER01 Normal Yes

URPOR01 Operating System Normal Yes

URI01 Graphical User Interface Low No Not in the current scope

URI02 Command Line Interface Normal Partially Permission management is
not fully covered.

URO01 Remote Operation Normal Yes

URS01 Self Protection Normal Yes

URS01 Operation Traceability Normal Partially Not all tools log messages.

URRES01 Hardware Requirements Normal Yes Runs on standard
hardware in ATLAS Online
cluster

URRES01 Software Requirements Normal Yes

URD01 User Manual Normal Partially Documentation must be
structured in a dedicated
manual for users. Currently
available in the SysAdmin
FAQ (Frequently Asked
Questions) web page.

Access control at the system administration level

65

Chapter 5

Access control at the system administration level

The ATLAS Online cluster has the requirement to be able to run the experiment and take data
for up to 24 hours while having lost the connection to the IT department and database centre
(responsible for long term storage of the data). Given these requirements, the cluster is designed to
be as autonomous as possible with its own cluster services (DNS, NTP, LDAP, File servers etc) and
isolated from direct internet access. The users can access the cluster by two means depending on
their geographical location:

 Users not in the ATLAS site premises can access remotely the ATLAS Online cluster by
hopping through an Application Gateway. These users are detectors and sub detectors
experts located sometimes at their universities or at home. They need access to the
computers connected to their detector hardware to debug problems or adjust
configurations. In order to reach the cluster nodes, the users must go through the following
steps:

o the users must go first to the CERN Public Linux service (LXPLUS [44])
o from there, they can open a secure shell connection (ssh [29]) to the ATLAS

Application gateway (atlasgw.cern.ch) where they are invited to type in the
destination node within the ATLAS Online cluster

 Users present in the ATLAS Control Room (ACR) [45] (Figure 38) can access the desktops
installed in the control room from where they can monitor and control detector hardware or
the running of acquisition software. Each detector has its own desk in the control room and
the experts and shifters of that detector have their own GUI configuration on the desktops.
Depending on the tools available on the desktop, the users can access directly the cluster
nodes via ssh.

Access control at the system administration level

66

Figure 38 ATLAS Control Room

Having only these two entry points in the ATLAS Online cluster, the access control is enabled
on each entry point: at the Application Gateway level and Control Room Desktop level.

Figure 40 shows the cluster with its two entry points and a more in-depth look into the
cluster organization from system administration point of view.

The cluster’s nodes are grouped by TDAQ system components (see Figure 3) which are
partitioned into sub-systems, typically associated with sub-detectors. Some nodes may be also
shared between groups for various reasons (sharing data, common services for the clusters managed
by experts from more areas). With this node grouping in place, it is obvious that users should be
allowed to access only the nodes assigned to their groups and allowing them to perform the tasks
relevant to their expertise domain.

Once the user is logged on a node where he is allowed to, he is free to work on that node or
connect to another node from the cluster where he has access too. However, on each node there can
be tools which require a higher level of protection and only a very specific expertise can use them.
For this purpose, an additional level of access control is put in place to protect these sensitive tools
on the nodes.

Figure 39 summarizes the access control enforcements at the system administration level.
They are cascaded from the cluster entry points down to the specific tools on cluster nodes. This
offers flexibility in choosing the right access control granularity on the cluster nodes: some of them
are more important than others and only there it is suitable to make use of all access control
mechanisms.

Figure 39 Sequence diagram of how users the ATLAS Online cluster .

The following sub chapters go into the details of each access control enforcement level.

Access control at the system administration level

67

ATLAS Control Room

ATLAS Online cluster

Directory server
Network servers

Policy enforcement on the access to

sensitive command line tools on each node.

Cluster nodes grouped by TDAQ component and sub-systems.

Access control policy enforced on users login to the nodes.

Access control on remote

access to the cluster

Application Gateways

Research institute member

of ATLAS Collaboration
Remote expert user

Control Room DesktopControl Room Desktop

Access control on local

access to the cluster

from ATLAS site

Figure 40 Access control enforcements at system administration level

Access control at the system administration level

68

5.1 Protection of entry points into the ATLAS Online cluster

The two entry points in the ATLAS Online cluster make use of the TDAQ Access Manager
(AM) service (detailed later in chapter Chapter 6) to define the access control permissions and take
the authorization decisions. The application running on each entry point uses the AM command line
client to send authorization requests to the AM server and get the decision in return. It is then the
client application responsibility to enforce the decision computed by the AM server.

The AM command line client is wrapped in a standalone script with the name
wrapped_amServerInterrogator. Its help screen reads the following:

$./wrapped_amServerInterrogator -h

amServerInterrogator, version $Revision: 44692 $

Run the AM's Server Interrogator binary for the Operating System resource type.

Usage: amServerInterrogator [-s server_host] [-p server_port] [-l log_level] <-L

resource_location> <-P application> [-G arguments] <-A action> [-u

access_subject_username] [-o access_subject_hostname] [-h]

 -s the hostname where Access Manager server is running

 Default is [pc-tdq-onl-ams]

 -p the port number on which the Access Manager server is listening

 Default is [20000]

 -l the ERS debug level. Should be a positive number

 Default is [0]

 -L the resource location. Valid values: crd, gateway

 -P the application to be accessed. Valid values: for crd-

>shell/lockscreen/am_tool, for gateway->login

 -G the application arguments

 -A the action to be performed. Valid values: for shell->open, lockscreen-

>lock/unlock, am_tool->role_state_change, for login->remote or inside

 -u the access subject's username

 Default is []

 -o the access subject's hostname

 Default is []

 -h this info

The return codes are:

 0 - the authorization request has been successfuly sent to the server and

the server granted the access to the resource

 1 - the authorization request has been successfuly sent to the server and

the server denied the access to the resource

 any other number - the authorization request has not been sent to the

server or the request processing has failed

The usage of this tool is described under each Permission sub chapters below.

5.1.1 Remote access

The ATLAS Online cluster is not directly exposed to access from internet. The users logging in
from internet must go first through the CERN LXPLUS service (ssh username@lxplus.cern.ch), then
log in to the ATLAS Application Gateways (ssh username@atlasgw.cern.ch). Behind the atlasgw
alias sits a battery of nodes running the Application Gateway: each of them accepts connections over
ssh from CERN network and runs an application to assist the user in connecting further to a node
inside the ATLAS Online cluster. One of the first steps performed by the application is to authorize
the user logging in against the AM service. This authorization functionality can be turned on or off
from a centralized configuration in LDAP server as shown in Figure 41. Turning off this authorization
on the application gateways can be useful during maintenance periods or in case of a severe issue
with the AM service which can block totally the remote access to the ATLAS Online cluster.

Access control at the system administration level

69

Figure 41 Centralized configuration of AM authorization for ATLAS Application Gateways

Figure 42 AM authorization disabled on the application gateway.

Figure 42 presents a screenshot of an attempt to access remotely a node in the cluster
through the application gateway when the AM authorization is disabled. As it can be seen, the
service status is disabled and the user is invited to provide the hostname of the destination node in
the cluster.

Enable/disable the AM
authorization in the gateway

login script

This is the status of AM
authorization service.
The text will be displayed
during gateway login.

Access control at the system administration level

70

Figure 43 AM authorization enabled on the application gateway.

The AM in action in the application gateway is shown in Figure 43:

 The AM authorization functionality is enabled in the application gateway

 The user trying to login has successfully passed the authentication phase, but the
authorization has failed: Request authorization from TDAQ Access Manager service
…DENIED(1)!!!

 The user status shows that he has only the ATLAS:observer role enabled from the whole
list of roles assigned. The reason for the authorization refuse is that the permission to
access remotely the application gateway “is not applicable” to the set of role enabled for
the user.

 The login procedure stops

The user found in this situation can obtain the access to the cluster by submitting a request
to the shift leader to enable his expert role which inherits the remote access permission. Once the
shift leader has enabled the role for the user, the next attempt to pass through the application
gateway will be successful.

5.1.1.1 Permissions

The permissions and the association of permissions to roles are defined at the TDAQ AM
service which is also in charge with the permissions management for its clients. More details on how
the permissions are managed internally by AM are provided in its chapter (Chapter 6). Table 6 lists
the permission details for the protection of the remote access to the ATLAS Online cluster. The
permission is represented as an association of action that is allowed to be performed on a resource:

 The resource is characterized by three properties:
o category: os showing that this resource is represented at the Operating System

level being checked by the command line client
o id: gateway because this is enforced at the gateway level
o type: login refers to the gateway function

 There is only one action that can be performed on this single resource definition: remote
access.

Access control at the system administration level

71

Table 6 Permissions for remote access

Resource
Action

category id type

os gateway login remote

This single permission definition is associated to the RemoteAccess role by the TDAQ AM
service. This role is not assignable to users because it behaves as an intermediate role (see Figure 20)
which collects all the low level permissions needed for someone to access remotely the ATLAS Online
cluster. This role is then inherited by the assignable roles which need to have this high level
permission: remote access to the online cluster.

The commands to prepare the RemoteAccess role, make the inheritance relationship with
TDAQ:expert role and assign a user to the TDAQ:expert role are shown as an example below:

$./amRolesManager -c -r RemoteAccess

>>> Create NOT ASSIGNABLE role [RemoteAccess]...>>> DONE!

$./amRolesManager -s TDAQ:expert -r RemoteAccess

>>> add seniors for role [RemoteAccess]...

...senior [TDAQ:expert]:OK

modifying entry "cn=RA-RemoteAccess,ou=netgroup,ou=atlas,o=cern,c=ch"

modifying entry "cn=RE-RemoteAccess,ou=netgroup,ou=atlas,o=cern,c=ch"

>>> DONE!

$./amUserRoles -A TDAQ:expert -u mleahu

>>> Assign and enable roles to user [mleahu]...

>>> ...role [TDAQ:expert]...assign >>> OK! ...enable >>> OK!

Figure 44 shows the role hierarchy after the previous commands are run.

Figure 44 RemoteAccess role inherited by TDAQ:expert

Assuming that AM service is up and running, the remote access permission can be checked
for the user set up in the example above:

$./wrapped_amServerInterrogator -s localhost -L gateway -P login -A remote -u

mleahu

$ echo $?

0

According to the tool return code (0), the authorization is successful and the authorization
check logged on the AM server side reads:

[121020 15:54:39,541] ALLOWED Client[127.0.0.1:60701][access-subject(authn-

locality:dns-name=localhost.localdomain)(authn-locality:ip-

address=127.0.0.1)(subject-id=mleahu)intermediary-subject(authn-locality:dns-

name=localhost.localdomain)(authn-locality:ip-address=127.0.0.1)(subject-

id=mleahu)] requests access to [(resource-id=gateway)(resource-

type:application=login)(resource-category=os)] for [(action-id=remote)].

Disabling the role TDAQ:expert for the user, results in immediate authorization failure for the
same permission:

Access control at the system administration level

72

$./amUserRoles -d TDAQ:expert -u mleahu

>>> Disable roles for user [mleahu]...

>>> ...role [TDAQ:expert]...disable >>> OK!

$./wrapped_amServerInterrogator -s localhost -L gateway -P login -A remote -u

mleahu

[AUTHORIZATION=DENIED]

$ echo $?

1

5.1.2 Control room desktops

The control room desktops (CRD) are installed with more KDE [46] desktop configurations
which are chosen by the user at login time based. When the user logs in to a control room machine,
the CRD’s GUI initialization script retrieves the user’s roles using amUserRoles script, then asks the
user what role to use for the current session (Figure 45). Based on the role chosen by the user, the
corresponding KDE configuration is loaded. The KDE GUI environment offered to the user is
generated from KIOSK [47] profiles preinstalled on CRD, so the user has access only to the functions
and applications specific to his current roles.

Figure 45 Choose roles when logging on CRD

Each KDE desktop configuration offers to the user applications which can be also under
access control protection: shell, the possibility to lock or unlock the desktop screen, utility to manage
user roles.

5.1.2.1 Permissions

As in the case of remote access permissions, the permissions used by the access control at
CRD are managed by TDAQ AM service. Table 7 shows the permissions specific to CRD in terms of
resources and their actions:

 The resources are of category os and id crd. There are three types:
o shell: this represents a shell window opened in CRD
o lockscreen: the screen locking feature
o am_tool: the AM tool for RBAC model management

 The actions that can be performed on the resources are:
o open a shell:
o lock or unlock the screen
o change the user’s role state from enabled/disabled (role_state_change) using the

am_tool

Hence, the valid checks with the AM command line tool are:

$./wrapped_amServerInterrogator -s localhost -L crd -P shell -A open -u mleahu

$./wrapped_amServerInterrogator -s localhost -L crd -P lockscreen -A lock -u mleahu

$./wrapped_amServerInterrogator -s localhost -L crd -P lockscreen -A unlock -u

mleahu

$./wrapped_amServerInterrogator -s localhost -L crd -P am_tool -A role_state_change

-u mleahu

Access control at the system administration level

73

Table 7 Permissions for CRD

Resource
Action

category id type

os crd

shell open

lockscreen
lock

unlock

am_tool role_state_change

5.2 Protection on cluster nodes

The protection mechanisms on the cluster nodes are implemented using the standard Linux
features without the need of interaction with the TDAQ AM service. The RBAC data (users, roles,
users association to roles and roles hierarchies) are shared between these mechanisms and the
TDAQ AM service. The following chapters detail the login restrictions enforcement on cluster nodes,
then the protection of the sensitive tools on the cluster nodes.

5.2.1 Login restrictions

This access control mechanism makes sure that users are allowed to log in (either locally
from the computer’s console or remotely via ssh) only on the machines which are allocated to groups
they belong.

In order to make a fresh SLC 5 node aware of centralized LDAP configuration, its local
services must be adjusted to look up the LDAP server to read their configuration and other
information they may need. The LDAP support is enabled on the “Authentication Configuration” (as
shown in Figure 46) for “User Information”, “Authentication” and other Options (especially the
authorization based on access.conf). After this change, the following configuration files are
updated:

 the LDAP configuration file /etc/ldap.conf used by all tools from the current node that
need to know the identifier of central LDAP server. Its content can be like the following
one:

the server hostname where LDAP service is installed

host localhost

the Base Distinguish Name to use on the LDAP service

base ou=atlas,o=cern,c=ch

 the PAM generic configuration /etc/pam.d/system-auth includes calls to pam_ldap.so
plugin in all its stacks (auth, account, password, session). Consequently, all system
services (e.g. sshd, sudo, login) making use of PAM stack for their user authentication,
account information, user password management and user session management will
access the LDAP server as a central information repository. The pam_access.so is also
added in the account stack to enforce the authorization rules defined in the
/etc/security/access.conf. The account stack definition looks like this:

account required pam_access.so fieldsep=|

account required pam_unix.so broken_shadow

account sufficient pam_succeed_if.so uid < 500 quiet

account[default=bad success=ok user_unknown=ignore] pam_ldap.so

account required pam_permit.so

Access control at the system administration level

74

 the Name Service Switch [48] configuration file /etc/nsswitch.conf has LDAP as second
source of information for system services. For example, at least the following services
will lookup LDAP:

passwd: files ldap

shadow: files ldap

group: files ldap

netgroup: ldap

automount: files ldap

sudoers: files ldap

Figure 46 “Authentication Configuration” in SLC 5

At this stage, the node is ready to enforce login restrictions based on the permissions defined
in /etc/security/access.conf [49].

5.2.1.1 Permissions

The permissions and permission assignment to role from our RBAC model are centralized in
LDAP in the form of sudo roles. The example in Figure 47 shows the main characteristics of a sudo
role definition that transforms it in a login restriction definition:

 sudo role name which represents the permission name must start with LOGIN- keyword.

 permission is defined as the hostname where the login is allowed. The hostname can be
also a simple regular expression (for example, all the nodes with the hostname starting
with pc-tdaq-control-), thus making the permission valid for a group of machines
obeying a hostname naming convention (e.g. the hostname can have the structure <type
of machine: pc/sbc>-<group name>-<subgroup>-<index>).

 permission assignment to role is given by the netgroup name specified in the sudoUser
field. This netgroup must correspond to a role defined in LDAP as mentioned previously
in chapter 4.2.

 the other attributes of a sudo role in LDAP are set to default values as in the example
below.

Access control at the system administration level

75

Figure 47 Example of login restriction in LDAP

 The access.conf file is generated by a shell script included in the appendix 8.6. Its help
screen reads:

$./amLoginRestriction -h

amLoginRestriction - $Revision: 1.18 $

Get the AM specific rules from LDAP to restrict the login on cluster nodes based on

roles/netgroups.

Usage: amLoginRestriction [-n machine_name] [-u] [-B] [-s] [-c minutes] [-C] [-r]

[-l ldapserver] [-H ldapuri] [-b basedn] [-v] [-h]

 -n specify the machine where the rule applies. Default is the current machine.

 -u update the file [/etc/security/access.conf]

 -B make a backup copy of [/etc/security/access.conf] before update

 -s show the users allowed to login to the machine_name as specified in LDAP rules

 -c set a cronjob in [/var/spool/cron/mleahu] on the current machine to run the

command [/home/mleahu/am_scripts/amLoginRestriction -u] every 'minutes' minutes

 -C remove the cronjob set with -c if any found. If -c provided in the same time,

then first the current cronjob is removed.

 -r restart the services with PAM support (e.g., sshd)

 -l use this ldapserver; default is [localhost]

 -H use this ldapuri; default is []

 -b use this basedn; default is [ou=atlas,o=cern,c=ch]

 -v verbose mode

 -h this info

Author: mleahu@CERN

 This script is set to run periodically on the node as a cron [50] job to look up in LDAP all
permissions defined for the current node. An example of its execution output is shown below:

./amLoginRestriction -n pc-tdaq-control-001 -v

>>> ======= LOGIN RESCTRICTION CONFIGURATION ==========

The permission

The permission
assignment to role

The permission name:
LOGIN-*

Access control at the system administration level

76

ldapsearch -h localhost -b ou=atlas,o=cern,c=ch -x -LLL -S cn (&(|(sudoHost=pc-

tdaq-control-001)(|(sudoHost=pc-tdaq-control-*)(|(sudoHost=pc-tdaq-

)(sudoHost=pc-))))(&(cn=LOGIN-*)(objectClass=sudoRole))) sudoUser cn sudoHost

dn: cn=LOGIN-RE-TDAQ:shifter,ou=SUDOers,ou=atlas,o=cern,c=ch

cn: LOGIN-RE-TDAQ:shifter

sudoHost: pc-tdaq-control-*

sudoUser: +RE-TDAQ:shifter

>>> PAM ACCESS configuration generated from LDAP information!

Login access control table.

Generated automatically by the script './amLoginRestriction'

SUDO RULE DN:

cn=LOGIN-RE-TDAQ:shifter,ou=SUDOers,ou=atlas,o=cern,c=ch

+ | @RE-TDAQ:shifter | ALL

- | ALL EXCEPT root | ALL

We can check also the users who get the access to this node and it can be observed that alice
is also granted the permission through the permission inheritance over role hierarchy:

./amLoginRestriction -n pc-tdaq-control-001 -s

>>> Users allowed to login to [pc-tdaq-control-001]:

>>> Netgroup [RE-TDAQ:shifter]:

alice

mleahu

5.2.2 Access control to sensitive tools

This mechanism comes on top of the previous one to increase the granularity of access
control to the sensitive tools available on the node.

The prerequisite of enabling this level of access control is the presence (by default in SLC 5)
of sudo [30] application on each node of the Linux network. The application description provided in
[30] states: “Sudo (su "do") allows a system administrator to delegate authority to give certain users
(or groups of users) the ability to run some (or all) commands as root or another user while providing
an audit trail of the commands and their arguments”. Since we are interested in having a centralized
LDAP configuration of this access control mechanism, the sudo tool must be available with support
for LDAP – by default in SLC 5. The sudo configuration must be also adjusted to point to the right
LDAP server and base DN:

 /etc/ldap.conf must contain the Base DN where the sudo roles are defined besides the
server identifiers already mentioned in the previous chapter:

sudoers_base ou=SUDOers,ou=atlas,o=cern,c=ch

5.2.2.1 Permissions

The protection of tools (e.g. shell scripts or binaries) subject to access control must be done
in two steps:

 restrict the file access permissions of the targeted tool to a generic Linux user created
only for this purpose. For example, the tool FarmToolsLauncher is owned and allowed to
be run only by farmtoolsuser:

chown farmtoolsuser /sw/tdaq/scripts/FarmToolsLauncher

chmod u=rwx /sw/tdaq/scripts/FarmToolsLauncher

chmod og-rwx /sw/tdaq/scripts/FarmToolsLauncher

Access control at the system administration level

77

 prepare a sudo role in the LDAP to allow the execution of the protected tool. Figure 48
shows an example of sudo role for the tool FarmToolsLauncher where:

o the permission name is by convention the sudo role name
o the permission is represented by the tool identifier and the user to run as
o the permission assignment to role is defined as the netgroup corresponding to

the role allowed to execute the tool

Figure 48 Example of sudo role in LDAP

Assuming that role hierarchy from Figure 28 where the user alice has the role ShiftLeader
assigned and enabled, then we can check her sudo permissions by running the following sudo
command:

sudo -l -U alice

User alice may run the following commands on this host:

(farmtoolsuser) NOPASSWD: /sw/tdaq/scripts/FarmToolsLauncher

Hence, the alice user is able to run the FarmToolsLauncher application thanks to the
permission defined in LDAP and permission inheritance over the role hierarchy. Disabling alice’s role
makes her sudo permission to be revoked:

./amUserRoles -d ShiftLeader -u alice

>>> Disable roles for user [alice]...

>>> ...role [ShiftLeader]...disable >>> OK!

sudo -l -U alice

User alice may run the following commands on this host:

The permission

The permission
assignment to role

The permission name: role name

Access control at the TDAQ Online Software level

79

Chapter 6

Access control at the TDAQ Online Software level

The access control at the TDAQ software level is implemented with the help of a dedicated
service: TDAQ Access Manager Service (referred from now on as AM). The need for this dedicated
service was first acknowledged in “ATLAS high-level trigger, data-acquisition and controls: Technical
Design Report” [10] where it is seen as a component of the Online Software – Control package with
the following high level scope:

Access Management: The control package provides a general Online Software safety service,
responsible for TDAQ user authentication and the implementation of an access policy for preventing
non-authorized users corrupting TDAQ functionality.

The formal requirements for AM were drafted in document “ATLAS TDAQ Online Software –
Access Manager Requirements“ [51] and the first implementation followed the design referenced in
[52]. This implementation was tightly integrated in the TDAQ Online Software infrastructure where it
was intercepting the communication (Inter Process Communication - IPC) between TDAQ
components to authorize the requests made by a TDAQ component to another one. The RBAC data
was stored in the AM internal relational database. After the experience gathered with this
implementation, it was understood the need for a wider scope of AM service:

 The access control must be applied not only in the components of TDAQ Online Software,
but in the other applications running in the ATLAS Online cluster. This requires that RBAC
model is well “understood” by all entities involved, even by the operating system specific
protection mechanisms.

 The enforcement mechanism should not be dependent on the communication between
TDAQ components because the communication can take various forms (not only IPC) and
the solution should scale independent of communication channels.

 The non-functional requirements (high availability, performance) are important for this
service and are not trivial to fulfill.

We took the challenge of extending the AM solution and implement the AM service to fulfill
the high level requirements mentioned above. The AM service has kept the same client-server
approach as in the first implementation. We designed the Access Manager server as an highly
scalable server architecture based on the reactor pattern to handle hundreds of client requests in
parallel. It retrieves the RBAC data from the databases, listens for authorization requests from
clients, processes the requests with the access policies taking into account the user’s roles enabled at
that time, and communicates the response to the client.

The following chapters describe the requirements for the AM service, how it is designed and
important aspects from its implementation. The tests run on the test bed are described from two
perspectives: functional tests (both unitary an integration tests) and performance and stress tests to
prepare the production setup. The production setup in the ATLAS Online cluster is presented
extensively in a dedicated chapter outlining the deployment of a high available cluster of AM servers,
notification mechanisms from LDAP servers and integration with the SysAdmin monitoring tool.

Access control at the TDAQ Online Software level

80

6.1 Requirements

Following the experience with the first AM implementation, the requirements have changed
towards a more open scope of AM in the ATLAS Online cluster. The main changes in the high level
requirements are:

 The goal is to have an AM service open for integration with more client types besides the
TDAQ Online software components. The remote access protection and access control in
CRD are a few examples of such integrations.

 The main RBAC model entities (users, roles and their relationships) are not anymore in
the scope of the TDAQ AM service, but at a higher level to be usable by other
enforcements mechanism such as the OS specific ones detailed in the previous chapters.
The RBAC Administration Tool is in charge with that, and only the permissions
management remains in the scope of AM service. As a future action point is the
integration of RBAC Administration tool with all the permissions management entities.

 The AM service should not be intrusive in the way its clients communicate between each
other.

 The AM service takes the authorization decision. Its enforcement is in charge of the client
who requested the authorization decision.

6.1.1 Assumptions

The AM service must run in the ATLAS Online cluster and be open for interrogation from
every node of this cluster. This implies that the communication between clients and AM service is
directly through the network without any intermediate entities such as Network Address Translation
service, Application Gateway, Load Balancers.

The ATLAS Online cluster is assumed to be isolated from the outside world (CERN General
Public Network, Public Internet) and a certain level of trust can be put on this environment. This
implies that secured communication between clients and AM service is not critical or mandatory.

The authentication of user on clients using AM Service is handled by cluster system
administration services (the OS specific mechanisms) and is not to be addressed by the AM Service.

The hardware configuration of nodes running the AM Service is a standard server
specification for ATLAS Online cluster.

6.1.2 Functional requirements

The main use cases (Figure 49) to be implemented by the AM service are the following:

 Permission Management

The permissions definition is composed of resource types and their actions definition.
These are tightly coupled with the algorithm for taking the authorization decision; hence they
must be addressed in the context of AM Service.

 Permission association to Roles

Since the permissions are defined by AM Service, the association of permissions to roles
must be performed here too. These permissions and permissions association relationships
are the last pieces of the RBAC model deployment in ATLAS Online cluster – the TDAQ service
part (the system administration level was addressed in the previous chapters).

 Check authorization for actions on system resources

The AM Service must answer to authorization requests from clients based. The
authorization request must provide all necessary information to take a decision based on the

Access control at the TDAQ Online Software level

81

policies configured in the AM Service. This authorization request information contains the
following mandatory data:

o Resource identifier: the unique identifier of the resource to be accessed
o Action: the action to be performed on the resource
o The user to act on the resource: the identifier of the user who will act on the

resource if the authorization is granted. Usually, a generic software application
acts on behalf of other users, so the one who asks for authorization must ensure
that the user on behalf of who is running is allowed to perform the action on the
resource. Of course, there can be simple cases when the user asking for
authorization will also perform the action on the resource.

The AM service must answer to the client with a decision (authorization granted or
denied) and, when possible, with a reason which is useful for the client in cases of denial.
Besides taking authorization decisions on client requests, the AM Service must record each
authorization requests for later audit purposes.

Figure 49 TDAQ AM Service use cases

The actors can be of two types:

 Administrator: The human user who is responsible for defining the access control policies
for the TDAQ components integrated with the AM service.

 Client: Software application that performs actions on resource on behalf of other users
(human users or other applications).

6.1.3 Non-functional requirements

The most important non-functional requirements for this service operation consist in:

 Availability: A system's availability, or "uptime," is the amount of time that it is
operational and available for use. The AM Service must run without interruption as long
as the experiment is in the running state too. However, in case there is a major
unscheduled downtime of this service, there must be put in place a procedure to control
the access control enforcements in ATLAS Online cluster to not block the experiment
functioning.

 Flexibility: The AM service must be designed in such way to allow future integration in
the access control of TDAQ components or other services in the ATLAS Online cluster
which are not included in the scope at this moment.

Access control at the TDAQ Online Software level

82

 Portability: The AM service must be able to run on current and future versions of SLC
since this is the official version of Linux to be used in the ATLAS Online cluster.

 Performance: The clients which integrate access control checks in their functioning
should not be impacted from performance point of view by the interaction with the AM
service. A measurable requirement for this aspect is to have the time spent on the server
to process an authorization request of the order of hundreds of milliseconds at most.

 Reliability: Reliability specifies the capability of the software to maintain its performance
over time. The AM service must run continuously with 0 failures during experiment
functioning.

 Robustness: A robust system is able to handle error conditions gracefully, without failure.
This includes a tolerance of invalid data, software defects, and unexpected operating
conditions. The AM service must be designed in such way to handle unexpected errors
that may occur on the environment where it runs.

 Scalability: Since the ATLAS Online cluster is likely to increase its size, the AM service
must be designed to scale horizontally (scale out).

6.2 Design

Challenges to design access control software systems were taken in the past by many
governmental agencies and enterprises, each one if their own proprietary manners in setting up the
access control model and communication protocols between system entities. These differences
made the integration of various access control systems difficult and inter-operability required many
translation layers. At the same time, there is increasing pressure on corporate and government
executives from consumers, shareholders and regulators to demonstrate "best practice" in the
protection of the information assets of the enterprise and its customers. Hence the need for
standardization emerged.

XACML (eXtensible Access Control Markup Language) [13] is an initiative of OASIS
(Organization for the Advancement of Structured Information Standards) [32] to develop a standard
for access control and authorization systems. The standard defines a declarative access control policy
language implemented in XML (eXtensible Markup Language) [53] and a processing model describing
how to evaluate authorization requests according to the rules defined in policies.

As a published standard specification, one of the goals of XACML is to promote common
terminology and interoperability between authorization implementations by multiple vendors.
XACML is primarily an Attribute Based Access Control system (ABAC), where attributes (bits of data)
associated with a user or action or resource are inputs into the decision of whether a given user may
access a given resource in a particular way. Role-based access control (RBAC) can also be
implemented in XACML as a specialization of ABAC.

After analyzing the AM service needs and the XACML standard, we found XACML to be
suitable for building RBAC with it in the AM service. Hence the high level design of AM service follows
the XACML approach outlined in the XACML data flow model in Figure 50. The XACML model
operates in the following steps (as described in [54]):

1. PAPs write policies and policy sets and make them available to the PDP. These policies or
policy sets represent the complete policy for a specified target.

2. The access requester sends a request for access to the PEP.
3. The PEP sends the request for access to the context handler in its native request format,

optionally including attributes of the subjects, resource, action and environment.
4. The context handler constructs an XACML request context and sends it to the PDP.
5. The PDP requests any additional subject, resource, action and environment attributes

from the context handler.
6. The context handler requests the attributes from a PIP.

Access control at the TDAQ Online Software level

83

7. The PIP obtains the requested attributes.
8. The PIP returns the requested attributes to the context handler.
9. Optionally, the context handler includes the resource in the context.
10. The context handler sends the requested attributes and (optionally) the resource to the

PDP. The PDP evaluates the policy.
11. The PDP returns the response context (including the authorization decision) to the

context handler.
12. The context handler translates the response context to the native response format of the

PEP. The context handler returns the response to the PEP.
13. The PEP fulfills the obligations.
14. (Not shown) If access is permitted, then the PEP permits access to the resource;

otherwise, it denies access.

Figure 50 Mapping of XACML actors to AM service components

The mapping of XACML actors to AM service components is the following:

 Policy Administration Point (PAP): This component of AM service corresponds to PAP
from XACML and addresses the use cases Permission Management and Permission
association to Roles. It prepares the policies in XACML format using the RBAC concepts.

Policy

Enforcement

Point

context

handler

 4. request notification

Policy

Information

Point

6. attribute

query

11. response context

1. policy

8. attribute

resource

7b. environment

attributes

obligations

service
13. obligations

Policy

Decision

Point

access

requester
2. access request

9. resource

content

3. request 12. response

7c. resource

attributes

7a. subject

attributes

 5. attribute queries

10. attributes

environmentsubjects

Policy

Administration

Point

Client API AM Server

AM PAP

Access control at the TDAQ Online Software level

84

 AM server and APIs: These client-server components implement the use case Check
authorization for actions on system resources. The AM server corresponds to XACML’s
PDP, PIP and the client API to the PEP.

The following chapters detail the design of AM service components ending with a summary
of requirements coverage by the design.

6.2.1 Policy Administration Point

This component’s responsibility is to translate the permissions defined in “ATLAS language”
into policies in XACML format to be used by the AM server when taking authorization decisions.

The input of this component is represented by the permissions specified in a simple format
with the resources and actions specific to ATLAS needs (the sysadmin or TDAQ components specific
permissions). The permissions and permissions assignment to roles are expressed in an input file with
the following format:

The lines starting with # are comments

############## PERMISSIONS DEFINITIONS AS RULES ################

The rules should be in the following format:

[Rule=_the_rule_name_] [ResourceCategory=<value>] [ResourceId=<value>]

[ResourceType=] [<custom_property_specific_to_some_resource_types>=<value>]

[ActionId=<value>]

############## RULES ASSIGNMENTS TO ROLES ################

[Role=_the_role_name_] [IncludeRule=_rule_1] [IncludeRule=_rule_2]

The components of a permission rule are summarized in Table 8. The values of each
component can be a strict value (a string) or a regular expression (in this case, the value must start
with {regexp}).

Table 8 The components of a permission from PAP input file

Permission Rule Component Component Property Description

Resource

ResourceCategory

The high level category of the resource.
This can correspond to a TDAQ
component (e.g. PMG – Process
Manager), a sub system (e.g. BCM) or
another area of resources (e.g. os -
Operating System specific tools and
tasks). This is mandatory.

ResourceId These play the role of sub category of
ResourceCategory and are specific to
each category instance. ResourceType*

Action ActionId
The identifier of the action to be
performed on the resource.

Decision Permit, Deny

By default, a rule has the meaning of
“Permit the action on the resource”. It is
possible to change the rule purpose by
specifying another decision to be
considered if an authorization requested
matches this rule.

Access control at the TDAQ Online Software level

85

A rule can consist in one or more associations of resources, actions and decisions, meaning
that more lines in the input file can have the same rule name. For example:

[Rule=rule1] [ResourceCategory=category1] [ResourceId=id1] [ActionId=action1]

[Rule=rule1] [ResourceCategory=category11] [ResourceId=id11] [ActionId=action11]

In this case, the rule is matched against an authorization request if the resource and actions
from the request match one of the resource and action associations defined for the rule.

The following tables list the permissions rule components for various resource categories
specific to TDAQ components.

Table 9 Process Manager resource category

Resource Action

Resource
Category

ResourceId
ResourceType

Hostname
ResourceType

Arguments
ResourceType

OwnedByRequester
ActionId

pmg
<process

_binary_path>
<hostname> <arguments> true/false

start

terminate

Table 10 Run Control resource category

Resource Action

Resource
Category

ResourceType
Command

ResourceType
Partition

ActionId

RunControl

<empty>
(meaning any command)

<partition_name> exec_cmd publish

publish_statistics

Table 11 IGUI resource category

Resource Action

ResourceCategory ResourceId ActionId

IGUI

display

view control

expert

Table 12 Resource Manager resource category

Resource Action

ResourceCategory ResourceTypePartition ActionId

ResourceManager <partition_name>
free

lock

Access control at the TDAQ Online Software level

86

Table 13 Data Base resource category

Resource Action

ResourceCategory ResourceId ResourceTypePath ActionId

DataBase

directory <directory_path_value>
create_subdir

delete_subdir

file <file_path_value>

create_file

update_file

delete_file

admin admin

Table 14 BCM resource category

Resource Action

ResourceCategory ResourceId ActionId

BCM bcm

configure

update

The permissions assignment to roles consists in associating permissions rules to the role
names. These roles must be already defined in the central directory server where roles and roles
hierarchies are stored. For example, a role can have one or more permissions associated:

[Role=TDAQ:expert] [IncludeRule=rule1] [IncludeRule=rule2]

The output of PAP component is represented by the set of XACML policy files that represent
the permissions in the form of XACML rules and their association to roles and roles hierarchies. The
following chapter details the XACML policy structure.

6.2.1.1 XACML language for policy storage

The policy language model as defined [54] is shown in Figure 51 and consists in the following
components: Rule, Policy and Policy set.

A rule is the elementary unit of a policy and can not be exchanged between actors unless it is
encapsulated in a policy. The evaluation of a rule is based on its content:

 target composed of subject, resource, action and environment. The meaning of the
target is that the subject wants to perform the action on the resource in a given
environment.

 effect indicates what is the purpose of the rule in case of matching the request with the
target. The effect can be “Permit” or “Deny”.

 condition represents a Boolean expression that refines the applicability of the rule
beyond the predicates implied by its target. Therefore, it may be absent and we don’t
use it.

A policy aggregates more rules which are evaluated and the final decision for this policy is taken
by a “rule-combining-algorithm”. The target of the policy has the same structure as in the case of
rules. The obligations defined for a policy are returned to the clients if their request matched this
policy. We don’t use obligations in our solutions.

Access control at the TDAQ Online Software level

87

A policy set gathers more policies and is similar to a policy component. One important difference
is that a policy set can reference another policy set which allows the modeling of a policy set
hierarchy.

Figure 51 XACML policy language model

The Hierarchical RBAC policy model used in the TDAQ AM service is a version of the generic
XACML policy model shown in Figure 52 and based on the recommendations from [55]. Its main
characteristics are the following:

 the rules have a target composed of resource types and actions without subject and
environment. The rule’s default effect is “Permit” and no condition is attached.

 the rules for resources from the same category and same id are gathered in a single
Permission Policy (pp). The target of a pp has defined only the resource id attribute. The
rule combining algorithm is “rule-combining-algorithm:deny-overrides”. No additional
obligations are set.

1

0..*

1

0..*

1

0..*

Condition

Target

Rule

1

0..1

Policy

1

1

Obligation

1

1

1

0..*

1 0..*

Action Resource Subject

PolicySet

1

0..*

1
1

Policy
Combining
Algorithm

Rule
Combining
Algorithm

1

0..*

1

0..1

1 1

Effect

1

1

Environment

1
0..*

1
0..*

Access control at the TDAQ Online Software level

88

 Permissions Policy Set (ppsrule) gather more Permission Policies which contain rules for
resources of the same category. The target of ppsrule contains only the resource
category identifier. The ppsrule references the other pp by <PolicyIdReference> tag. The
policy combining algorithm is “policy-combining-algorithm:first-applicable”.

 From the roles perspective, we use two levels of role policy sets:
o The top ones are the Role Policy Sets (rps) which have the target composed only

of the subject role attribute. The rps references further the second level of policy
sets.

o The second level is represented by Permission Policy Set for Roles (ppsroles):
the policy sets used only to link roles to permissions (ppsrules) AND implement
the roles hierarchies (references other ppsroles). The ppsroles don’t have any
target, just <PolicyIdReference> tags.

Figure 52 Hierarchical RBAC profile of XACML

6.2.2 Client-server model

The XACML model supports and encourages the separation of the authorization decision
from the point of use. When authorization decisions are taken into client applications (or based on
local machine user identifiers and Access Control Lists), it is very difficult to update the decision
criteria when the governing policy changes. When the client is decoupled from the authorization
decision, authorization policies can be updated on the fly and affect all clients immediately.

We’ve designed the AM service on the client server model with the client asking the server
for authorization decision, the server taking the decision based on the RBAC data and replying to the

Role Policy
Set

Target

Subject

roles

Target

Resource

Action

Environment

Permission
Policy Set

Policy

Should not
restrict the
resource, action
or environment

1 1

1
0..*

0..*

0..*
1

1

1

1 1
0..* 0..* 0..*

Inheritance:
reference to PPS
of junior roles

Access control at the TDAQ Online Software level

89

client with the decision result. It is the client then who stops the user action or not depending on the
authorization decision.

The following chapters describe the AM server high level design and the client API to be used
by the server’s clients. At the end the critical non-functional aspects of AM service are addressed.

6.2.2.1 Server

The server component has the main responsibility to handle authorization requests from
clients by taking a decision and communicating this decision back to the requester. The UML [56]
component diagram in Figure 53 shows the high level interfaces exposed by the server and the
interaction with other XACML specific components. The main functional interfaces are the following:

 Authorization requests listener receives network connections from clients, reads the
request content and pass it further to other internal components for processing. Once
the request processing has finished, the response is sent back to the client over the same
network connection.

 Controller interface is meant to be used for monitoring of AM server functioning. Server
information and its Key Performance Indicators (KPI) are exposed over this interface:

o Server start timestamp
o Server up time
o Various server counters about the number of authorization requests handled

from service start up
o The average values of server counters
o The peak values of server counters

Short notifications can be also received over this interface (e.g. cache
invalidation triggered by an update of the LDAP information).

The server gathers periodically data about its internal KPIs and exposes them through the
statistic collector interface. These data are useful in monitoring of server functioning in production
and diagnosis in case performance and service availability issues. These KPIs are:

 The rate of new requests received by the server

 The rate of requests processed with success

 The rate of requests processed with error

 The server load peak

 The rate of requests received by the server when it is in busy state

 The rate of busy responses sent to the clients

 The rate of errors when busy responses were sent to the clients

 Java Virtual Machine information (total memory, maximum memory, free memory)

One important function of an authorization service is the auditing of actions allowed or
denied. The authorization logger interface is responsible of collecting the authorization decision
taken by the server.

The server’s PDP uses as input in its decision algorithm the information provided by other
XACML specific entities:

 PolicyStorage interface is used to access the repository of access control policies
administrated by PAP

 The user information enhanced with RBAC data (e.g. the Role associated to him/her) are
obtained from PIP through the RBACUser and Role interfaces.

Access control at the TDAQ Online Software level

90

Figure 53 AM Server high level design

6.2.2.2 Client API

The client API is designed to facilitate the interaction between the clients of AM service (e.g.
TDAQ components) and the AM server. The implementation of this API is offered in two flavors (Java
and C++) to address the needs of the majority of client’s languages.

The API is structured in 2 sets of classes and interfaces to help a client in the implementation
of its access control steps:

1. authorization request preparation
2. get the authorization decision from the AM server

The preparation of an authorization request consists in gathering the following information
necessary to take an authorization decision:

 who request the access authorization for the resource under protection. Sometimes the
user asking the permission is not the same with the user accessing the resource, so the
additional information about the user who will access the resource is necessary. The
RequestorInfo classes described in Figure 54 and Figure 55 are in charged with the
subject definition.

 what resource is going to be accessed and what action to be performed on the resource.
The resources and actions definitions are very specific to the client’s needs and, to ease

Access control at the TDAQ Online Software level

91

their integration with the AM service, special Resource and Action classes are envisaged
for each TDAQ component. Figure 56 lists the resource and actions definitions for TDAQ
components integrated with the AM service. Note that some resources have a limited set
of actions which are not offered as individual classes, but as resource properties.

Figure 54 AM Java client API

Figure 55 AM C++ client API – server interrogation

Access control at the TDAQ Online Software level

92

Figure 56 AM C++ client API – resource types

Access control at the TDAQ Online Software level

93

Once the subject, resource and actions are known for an authorization request, the decision
is retrieved from the AM server thanks to the ServerInterrogator interface (Figure 54 and Figure 55).
The implementation of ServerInterrogator interface does the job necessary to obtain a clear
authorization decision:

 initiates the communication with the server

 assembles the authorization request in the format known by the server: XACML

 sends the request to the server and waits for an answer

 decodes the answer to return a true/false decision

 handles errors that occur in the communication with the server and tries to recover from
unsuccessful conversation with the AM servers; implements fall back mechanism

The UML sequence diagram in Figure 57 is an example of client API usage to authorize the
start of a TDAQ process by the TDAQ Process Manager (PMG) component. The PMG component uses
the resource type special designed for its use case: PMGResource has properties meaningful for a
TDAQ process and the two possible actions (start/terminate). Note that it is the PMG component
which enforces the decision obtained from AM server: the process is started by PMG only if the
answer from AM server is positive.

Figure 57 Example of how to use AM C++ client API

6.2.2.3 Non-functional aspects

The AM server is stateless from the point of view of communication with the client. If the
client-server communication session drops unexpectedly, then the client must start over again by
initiating a new communication session. This retry mechanism is the responsibility of client API
implementation and must be transparent for the TDAQ component which plays the client role. The
sequence diagram for retry mechanism is presented in Figure 58.

Access control at the TDAQ Online Software level

94

Figure 58 Retry mechanism in client API

The High Availability (HA) and load balancing characteristics of AM service are designed as a
combination of retry mechanism on the client API side and a cluster of AM servers split in two levels
by Domain Name Server (DNS) means. CERN IT provides a Round Robin DNS [57] service which
supports the assignment of one host name to more than one Internet Protocol (IP) address. These IP
addresses are returned in a round robin manner each time the host name is resolved by the DNS
service.

This allows the splitting of AM servers in two levels: primary AM servers sitting behind one
host name and secondary or backup AM servers defined on another host name. The client API is
configured to access two AM server host names: the one corresponding to the primary set of AM
servers and the one assigned for the backup AM servers.

The AM service availability and performance depends also on how fast the AM servers can
process an authorization request. If a server becomes overloaded, then the response time increases
and the clients may time out before receiving the authorization decision. This leads to delay on the
client side and waste of processing power on the server side. To avoid such situations, an overload
detection mechanism is necessary to preserve the AM service quality in terms of speed of answers to
clients. The mechanism consists in monitoring the server’s processing rate and, when reaches a
configurable threshold, the server answers immediately to the clients request with a “busy” status
until the processing rate decreases in the safe limits. Besides the “busy” state, the answer can
include a list of other AM servers (e.g. the backup ones) to be interrogated by the client in another
attempt to resolve its authorization request.

The mechanisms described above offer the necessary flexibility in customization of a
production setup for the ALTAS Online cluster and TDAQ software needs.

Access control at the TDAQ Online Software level

95

6.2.3 Requirements coverage

The high level functional requirements are covered by the two main components of AM
service: PAP and AM server together with client API. The coverage of use cases is outlined in the
previous chapter.

The fulfillment of non-functional requirements is summarized in the table Table 15.

Table 15 Non-functional requirements coverage by TDAQ AM

Non-functional
requirement

Fulfilment

Availability Setting up the AM service as a cluster of AM servers with primary and
backup layers insures the service availability in case of malfunctions of
individual AM server nodes. Moreover, a client API flag to disable temporary
the authorization with AM servers can be used as a safe measure if there is
a major problem with AM service (e.g. network problems which make the
AM cluster not accessible).

Flexibility The AM client API allows for future integration of new clients. The
command line tool used now for checking authorizations on the OS resource
categories can be used in future with other OS specific shell scripts.

Portability The AM server is developed in Java which by its nature is OS agnostic, hence
easily portable to OSs where Java Virtual Machines are available. The client
API is developed on both Java and C++ offering alternatives in two of the
most used programming languages these days.

Performance The responsibility is split between the AM server and the clients making the
requests:

- Server makes sure that takes the authorization decision is taken as
fast as possible

- Clients making the requests should not abuse of server availability
and should be designed in such way to minimize the calls to the
server.

Reliability The overload detection mechanism implemented in the server guarantees
that the each server performance is optimal and any extra requests beyond
server limit are delegated to the other servers from the AM cluster.

Robustness AM server is designed to handle incorrect requests from the clients or
clients not being able to finish the conversation. The unavailability of user or
roles information from LDAP does not stop the service functioning and, as
soon as the directory service is back online, the AM service continues
normally its execution.

If the policies files are not available or corrupted, the AM service denies any
authorization request with the appropriate reason and recovers to normal
functioning as soon as the input XACML files are restored.

Scalability The AM Server is designed to scale horizontally by increasing the processing
power with the addition of new AM server instances in the AM server
cluster.

Access control at the TDAQ Online Software level

96

6.3 Implementation

This chapter covers the implementation details of Policy Administration Point component,
AM server and client API (Java and C++). We developed the applications in Java, C++ and Bash shell
scripting languages suitable for SLC environment and integration with TDAQ software.

The Sun’s basic implementation of XACML standard [58] is used in our AM components to
encode and decode the XACML policy files, authorization requests and answers formatted in XACML,
and to compute the final authorization decision. We implemented the RBAC model on top of XACML
in the Policy Administration Point following the design presented in previous chapter.

6.3.1 Policy Administration Point

The PAP is developed in Java as a standalone tool which can be run thanks to a bash shell
script. The internal design of PAP Java application is shown in the UML component diagram in Figure
59 where main packages are outlined:

 A set of common packages used also later by the server implementation:
o am.config: Configuration interface backed by implementation to get the

configuration parameters from environment variables or configuration files.
o am.util: gathers packages for logging, common constants shared between

server implementation and PAP, the AM specific exception class.
o am.rbac: contains the interfaces specific to RBAC model entities.
o am.xacml: defines an additional layer of classes specific to XACML - Hierarchical

RBAC to be used on top of the basic XACML implementation (sunxacml)

 The am.pap packages contain the main classes to drive the policies assembling and
generation in XACML format:

o am.pap.input package provides the classes to read the permissions and
permissions assignment to roles from the AM specific input format

o PAPtoFiles class implements the workflow described in the sequence diagram
in Figure 60.

o PPBuilder class is in charge with the preparation of Permission Policies and
Permission Policies Sets

o RPS_PPS_Builder class manages the transformation of roles and roles
hierarchies in structure specific cu XACML policy model

o am.pap.storage package provides the classes to be used for XACML policies
storage.

 The am.pip package is in charge with retrieving information about roles and roles
hierarchies from LDAP. They are returned as Roles and Roles sets from am.rbac package.

 The com.sun.xacml package represents the Sun’s implementation of XACML standard
and is used by our implementation to generate the raw XACML data into files from our
XACML RBAC model.

Access control at the TDAQ Online Software level

97

Figure 59 Access Manager Policy Administration Point – Component diagram

Figure 60 Sequence diagram for XACML policies generation in PAP

Access control at the TDAQ Online Software level

98

The PAP component can be executed by calling the helper shell script amPAP which has the
following help screen:

$./amPAP -h

amPAP, version $Revision: 1.10 $

Run the AM's Policy Access Point to generate the policies into files.

Usage: amPAP [-d LDAP_host] [-b LDAP_basedn] [-P policies_path] [-L log_dir] [-l

log_level] [-s] [-D policies_dest_dir] [-x external_jar_classpath] [-h]

 -d the LDAP server name

 Default is [localhost]

 -b the LDAP base DN

 Default is [ou=atlas,o=cern,c=ch]

 -P the policies directory where the XACML policy files are stored

 Default is [/home/mleahu/amsrv/data/AccessManager/policies]

 -L the log directory where the log files are written

 Default is [/home/mleahu/amsrv/logs/]

 -l the log level. Can be one of the following:

 NONE - no logs at all

 MINIMUM - log the errors and warnings

 NORMAL - log the information messages

 VERBOSE - log the configuration messages

 DEBUG - log the debug messages

 ALL - log all the messages

 Default is [NORMAL]

 -s show all the AM server configurations from LDAP

 -D copy the policies from policies_path to the policies_dest_dir via ssh on all

AM server nodes.

 The policies_path directory must be available on the AM server nodes!

 ONLY THIS OPERATION WILL BE PERFORMED, NO OTHER POLICY GENERATIONS!

 -x external JAR classpath

 -h this info

A sample execution of this script with the output generated for a given set of AM permissions
and roles hierarchy is listed in the Appendix 8.7.

Once generated, the XACML policies are pushed to the AM servers running in the ATLAS
Online cluster. The workflow of policies deployment on AM servers is described by the sequence
diagram in Figure 61. The successful execution of this procedure relies on the LDAP centralized
description of AM servers deployed in the production setup.

Figure 61 Build and deployment of XACML policies to AM servers

Access control at the TDAQ Online Software level

99

6.3.2 Server

The AM server is implemented in Java language using the Sun’s XACML implementation as
underlying layer for handling XACML protocol. The low level design of AM server is shown in the UML
component diagram in Figure 63. The following chapters present the important implementation
details of the interfaces described in the design chapter.

6.3.2.1 Authorization requests listener

The server listens for incoming network connections from clients to receive the authorization
request over TCP/IP protocol, process them and sends back the answer over the same network
connections. This is the key functionality of AM server and the challenge to overcome is the
performance of its implementation, both from throughput and latency point of views: the server
should handle as many concurrent requests from clients as possible and the time spent to process a
request should be minimum.

First version of this functionality implementation was based on threads dedicated to each
client connection which was handled with blocking server sockets from java.net package. The
performance tests run with this implementation were found not satisfactory (details in chapter 6.4),
although improvements have been obtained by fine tuning the threads, JVM and sockets
configurations.

We reviewed the low level design of this interface implementation and the second approach
led to better results as outlined in the performance test chapter 6.4. The package
am.server.NIOReactor is the implementation of reactor pattern1 on top of java.nio package.
Figure 62 shows how the client’s connections are handled by the reactor pattern implementation:

 The selector provides notifications when interests IO operations are ready for one or
more handlers which subscribed in advance. The IO operations are specific to TCP
network sockets (accept, read, write, close).

 The dispatcher receives the notifications from the selector and routes the events to the
right handler. Each handler runs in a dedicated thread managed by a thread pool.

 The handlers running in threads build iteratively the request received over the network.
Once the request has been assembled, it is forwarded further to a processor from the
am.pdp package.

 The response prepared by the processor is then returned by the handler to the client
over the same socket used by the selector in first place.

The am.pdp package gathers the clients request processors which have the role of PDP from
XACML data flow. They are implementation of InputHandler interface:

 PolicyDecisionPoint runs the algorithm to take the authorization decision for the
client request. It uses:

o FinderModuleForAttributeInRBACPIP to obtain the user’s roles from PIP
(am.pip contains the link to LDAP users repository)

o FinderModuleForPolicyStorage to access the XACML policy files with support
from am.pap.storage package.

o PDP’s implementation from com.sun.xacml package to compute the decision
based on the input from the finder modules described above.

 PolicyDecisionPointBUSY prepares a default “busy” answer for the clients. This is used
by the overload protection mechanism detailed below.

 PolicyDecisionPointOK prepares a default “ok” answer used for testing purposes.

1
 According to Wikipedia: The reactor design pattern is an event handling pattern for handling service

requests delivered concurrently to a service handler by one or more inputs. The service handler then
demultiplexes the incoming requests and dispatches them synchronously to the associated request handlers.

http://en.wikipedia.org/wiki/Reactor_pattern

Access control at the TDAQ Online Software level

100

Figure 62 Reactor design pattern in AM server

The overload protection is handled by am.server.NIOReactor.PerformanceMonitor which
monitors the server’s processing rate. When the threshold is reached, the reactor’s dispatcher calls
PolicyDecisionPointBUSY to send an immediate pre-formatted “busy” message to the client
including also a configurable list of alternative AM server hostnames.

We have improved more the authorization handling performance by employing caches for
the PDP’s inputs:

 User’s information cache: there are high chances to have more than one request for the
same user in short period of time, so caching user information saves many expensive
LDAP interrogations. am.pip.RBACPIP uses and internal cache for LDAP information and
am.pdp.FinderModuleForAttributeInRBACPIP stores the PIP evaluation result for a
user also in a cache.

 Policies cache: the processing of XACML files and preparation of policies object is
expensive, hence their caching in FinderModuleForPolicyStorage is necessary.

Access Manager server

Pool of execution threads

Client

Dispatcher

Client
Client

Accept the client
connection

Authorization request handling

Receive req Send answer process

Authorization request

Decision

Selector

Access control at the TDAQ Online Software level

101

Figure 63 Access Manager server - Component diagram

Access control at the TDAQ Online Software level

102

6.3.2.2 Controller interface and statistics collector

The controller interface is implemented in the am.server.controller package. The network
connections from clients who interrogate this interface are managed by the reactor pattern
described in the previous chapter. am.server.NIOReactor.ControlChannelHandler is the reactor
handler for commands to be routed to the controller interface.

am.server.control.AccessManagerServerController handles the commands received on
the controller interface. Each implementation of MessageHandler interface is in charge with the
processing of a command known by the server:

 MessageHandlerCounter, MessageHandlerAverageRate, MessageHandlerPeakRate:
returns to the caller the value, average rate and peak rate of servers’s KPIs:

o Rate of new requests received by the server
o Rate of requests processed successfully
o Rate of requests processed with error
o Rate of new requests received by the server when it is in busy state
o Rate of responses with busy status
o Rate of errors occurred when trying to send the busy state
o Server load counter

 MessageHandlerCacheInvalidation: triggers the caches invalidation

 MessageHandlerGenericString: generic message handler for predefined string
messages; e.g. it is used for the server identifier

 MessageHandlerSTART_TIME: returns the server start time

 MessageHandlerUP_TIME: returns the server up time

This interface is intended to be used by the ATLAS Online cluster monitoring system to check
periodically the AM server status and trigger alarms in case of troubles.

The package am.server.statistics is in charge with the collection of statistics information
about server’s functioning and logging them periodically. Basically, the same counters exposed on
controller interface are also written in log files to keep the history of server’s behavior. This is
especially useful during performance tests and analysis in case of server malfunctioning.

6.3.2.3 Authorization logger

The package am.server.authlogger implements the interface for authorization logging. The
current implementation of LoggerHandler is the class LoggerHandlerToFile which writes the
authorization decisions into a text file using the java logging API. The integration of authorization
logging with others systems (e.g. Log Servers) can be easily done with a special implementation of
LoggerHandler interface.

AuthorizationLogger is the collector of information concerning one authorization requests.
It is called in various points in server classes along the authorization request handling flow to
assemble the final authorization log message. When the handling of authorization request is finished,
the information collected so far is finally passed to the LoggerHandler to be logged. The
authorization log message contains the following information:

[date] decision client subject resource action reason

The following examples show two real messages logged by the authorization logger:

[071203 09:00:28,100] ALLOWED Client[137.138.130.220:34518][access-subject(subject-

id=mleahu)(authn-locality:dns-name=lnxatd79.cern.ch)(authn-locality:ip-

address=137.138.130.220)] requests access to [(resource-category=pmg)(resource-

id=)] for [(action-id=start)].

[071203 09:00:42,536] DENIED Client[137.138.130.220:34520][intermediary-

subject(subject-id=mleahu)(authn-locality:dns-name=lnxatd79.cern.ch)(authn-

Access control at the TDAQ Online Software level

103

locality:ip-address=137.138.130.220)access-subject(authn-locality:ip-

address=137.138.130.220)(subject-id=UKNOWN_USER)(authn-locality:dns-

name=lnxatd79.cern.ch)] requests access to [(resource-category=pmg)(resource-id=)]

for [(action-id=start)]. Status detail(The requestor's user name was not found in

the DB!No OS valid user [UKNOWN_USER]!)

6.3.2.4 Scripts

Besides the AM server application itself, we developed also a set of bash shell scripts to
manage it at the OS level: start it as a service, stop it, and interrogate its status.

The AM server can be started as a Linux service thanks to the amServerService script:

$./amServerService -h

amServerService, version $Revision: 1.7 $

Starts the TDAQ Access Manager server on the current machine with the configuration

stored in LDAP.

Usage: amServerService [-l ldapserver] [-b basedn] [-s] [-h]

<start|stop|status|reload>

 -l the ldapserver; default is [localhost]

 -b the basedn; default is [ou=atlas,o=cern,c=ch]

 -s show all the AM server configurations from LDAP

 -h the help screen

The AM server configuration is retrieved from LDAP and the server itself is controlled by the
dedicated shell script amServer:

$./amServer -h

amServer, version $Revision: 1.53 $

Start or stops the Access Manager server.

Usage: amServer [-D config_LDAP_host] [-B config_LDAP_basedn][-p am_server_port] [-

d LDAP_host] [-b LDAP_basedn] [-P policies_path] [-L log_dir] [-l log_level] [-t

proc_threads] [-s] [-a|-A] [-k server_backlog] [-S saturation_factor] [-B

secondary_servers] [-u am_server_user] [-c N_minutes] [-i jvm_heap_ini] [-j

jvm_heap_max] [-m] [-x external_jar_classpath][-h]

<start|stop|force_stop|status|restart|force_restart>

 -D the LDAP server host name for the AM server configuration

 Default configuration source is the environment.

 -B the LDAP base DN for the AM server configuration

 Default is [ou=atlas,o=cern,c=ch]

 -p the port number on which the AM server will listen for requests

 Default is [20000]

 -d the LDAP server name

 Default is [localhost]

 -b the LDAP base DN

 Default is [ou=atlas,o=cern,c=ch]

 -P the policies directory where the XACML policy files are stored

 Default is [./../data/AccessManager/policies/]

 -L the log directory where the log files are written

 Default is [/home/mleahu/amsrv/logs/]

 -l the log level. Can be one of the following:

 NONE - no logs at all

 MINIMUM - log the errors and warnings

 NORMAL - log the information messages

 VERBOSE - log the configuration messages

 DEBUG - log the debug messages

 ALL - log all the messages

 Default is [NORMAL]

 -t the maximum number of AM Processing Threads

 -s enable the statistics feature

 Default is [off]

 -a turn off the authorization logger

 -A turn on the authorization logger for all the messages

 Currently is [minimum]

 -k server socket backlog size (default 200)

 -S set the saturation factor above which the server responds with SERVER_BUSY

 -B specify the seconday AM servers to be sent to the clients when responds with

SERVER_BUSY

Access control at the TDAQ Online Software level

104

 -u the user as who the AM server will run

 Default is [mleahu]

 -c append to the crontab the command to archive the server logs each N minutes

 -i the initial JVM heap size. 0 to use the JVM default

 Script default is [512m]

 -j the maximum JVM heap size. 0 to use the JVM default

 Script default is [512m]

 -m start the JVM in debug mode for socket connection on port 8000

 -x external JAR classpath

 -h this info

Once the server is started, its controller interface can be accessed through a dedicated client
shell script (and a binary behind it) amServerRemoteController:

$ amServerRemoteController -h

amServerRemoteController, version $Revision: 59448 $

Send messages to AM Servers using their LDAP configuration.

Usage: amServerRemoteController [-l ldapserver] [-H ldapuri] [-b basedn] [-s] [-t

am_server_name] <-c command> [-h]

 -l the ldapserver; default is []

 -H the ldapuri; default is [ldap://xldap.cern.ch/]

 -b the basedn; default is [dc=cern,dc=ch]

 -s show all the AM server configurations from LDAP

 -c the command to send to the server. The valid commands are:

 SERVER_ID Ask the Access Manager server identifier

 START_TIME Ask the Access Manager server start time

 UP_TIME Ask the Access Manager server up time

 SERVER_STOP Ask the Access Manager to shut down

 LDAP_UPDATED Inform the Access Manager server that the LDAP

information was updated

 PAP_UPDATED Inform the Access Manager server that the Policy

Administration Point was updated

 SECONDARY_SERVERS Ask the list of secondary servers

 BUSY_RESP Ask the number of busy responses

 BUSY_RESP_ERR Ask the number of busy response errors

 NEW_REQ Ask the number of new requests for authorization

received from clients

 REQ_PROC_ERR Ask the number of requests processed with error

 REQ_PROC_OK Ask the number of requests processed successfully

 REQ_WHEN_BUSY Ask the number of new requests for authorization

received from clients when the server was busy

 AVG_RATE_BUSY_RESP Ask the average rate of busy responses

 AVG_RATE_BUSY_RESP_ERR Ask the average rate of busy responses errors

 AVG_RATE_NEW_REQ Ask the average rate of new requests for authorization

received from clients

 AVG_RATE_REQ_PROC_ERR Ask the average rate of requests processed with error

 AVG_RATE_REQ_PROC_OK Ask the average rate of requests processed successfully

 AVG_RATE_REQ_WHEN_BUSY Ask the average rate of new requests for authorization

received from clients when the server was busy

 PEAK_RATE_BUSY_RESP Ask the peak rate of busy responses

 PEAK_RATE_BUSY_RESP_ERR Ask the peak rate of busy responses errors

 PEAK_RATE_NEW_REQ Ask the peak rate of new requests for authorization

received from clients

 PEAK_RATE_REQ_PROC_ERR Ask the peak rate of requests processed with error

 PEAK_RATE_REQ_PROC_OK Ask the peak rate of requests processed successfully

 PEAK_RATE_REQ_WHEN_BUSY Ask the peak rate of new requests for authorization

received from clients when the server was busy

 -t send the command only to this AM server. Default: send the command to all AM

servers configured in LDAP.

 -h the help screen

This script uses also the AM server configurations defined in LDAP to reach them on the right
hostname and port number.

The script amServerLDAPNotifier is necessary to run as a service on each LDAP server with
users and roles information deployed in the ATLAS Online cluster. The script responsibility is to notify

Access control at the TDAQ Online Software level

105

all AM servers each time the LDAP information is updated so that the AM servers invalidate their
user’s cache.

$ amServerLDAPNotifier -h

This shell script takes care of starting and stopping the dnotify daemons to notify

the AM servers about the LDAP update events

Usage: amServerLDAPNotifier {start|stop|restart|status}

6.3.3 Client API

The client API is implemented in two flavors (a Java jar library and a C++ library) because the
TDAQ components are implemented in both Java and C++. However, the format of messages
exchanged between the client and the server is the same in both implementations.

The authorization request is prepared by the client API in the XACML format including the
subject information, the resource to be accessed and the action to be performed on the resource. A
sample authorization request for user mleahu on the resource os/gateway/login with action remote
is listed below:

<?xml version="1.0" encoding="UTF-8"?>

<Request>

 <Subject SubjectCategory="urn:oasis:names:tc:xacml:1.0:subject-category:access-

subject">

 <Attribute AttributeId="urn:oasis:names:tc:xacml:1.0:subject:authn-locality:ip-

address" DataType="http://www.w3.org/2001/XMLSchema#string">

 <AttributeValue>127.0.0.1</AttributeValue>

 </Attribute>

 <Attribute AttributeId="urn:oasis:names:tc:xacml:1.0:subject:authn-

locality:dns-name" DataType="http://www.w3.org/2001/XMLSchema#string">

 <AttributeValue>localhost.localdomain</AttributeValue>

 </Attribute>

 <Attribute AttributeId="urn:oasis:names:tc:xacml:1.0:subject:subject-id"

DataType="http://www.w3.org/2001/XMLSchema#string">

 <AttributeValue>mleahu</AttributeValue>

 </Attribute>

 </Subject>

 <Subject SubjectCategory="urn:oasis:names:tc:xacml:1.0:subject-

category:intermediary-subject">

 <Attribute AttributeId="urn:oasis:names:tc:xacml:1.0:subject:authn-locality:ip-

address" DataType="http://www.w3.org/2001/XMLSchema#string">

 <AttributeValue>127.0.0.1</AttributeValue>

 </Attribute>

 <Attribute AttributeId="urn:oasis:names:tc:xacml:1.0:subject:authn-

locality:dns-name" DataType="http://www.w3.org/2001/XMLSchema#string">

 <AttributeValue>localhost.localdomain</AttributeValue>

 </Attribute>

 <Attribute AttributeId="urn:oasis:names:tc:xacml:1.0:subject:subject-id"

DataType="http://www.w3.org/2001/XMLSchema#string">

 <AttributeValue>mleahu</AttributeValue>

 </Attribute>

 </Subject>

 <Resource>

 <Attribute AttributeId="urn:oasis:names:tc:xacml:1.0:resource:resource-

type:application" DataType="http://www.w3.org/2001/XMLSchema#string">

 <AttributeValue>login</AttributeValue>

 </Attribute>

 <Attribute AttributeId="urn:oasis:names:tc:xacml:1.0:resource:resource-id"

DataType="http://www.w3.org/2001/XMLSchema#string">

 <AttributeValue>gateway</AttributeValue>

 </Attribute>

 <Attribute AttributeId="urn:oasis:names:tc:xacml:1.0:resource:resource-

category" DataType="http://www.w3.org/2001/XMLSchema#string">

 <AttributeValue>os</AttributeValue>

 </Attribute>

 </Resource>

 <Action>

Access control at the TDAQ Online Software level

106

 <Attribute AttributeId="urn:oasis:names:tc:xacml:1.0:action:action-id"

DataType="http://www.w3.org/2001/XMLSchema#string">

 <AttributeValue>remote</AttributeValue>

 </Attribute>

 </Action>

 <Environment />

</Request>

The response from the server is also in the XAML format. The client API implementation
decodes the response into a true/false or error status for the API caller. A sample answer for the
authorization request above is listed below:

<?xml version="1.0" encoding="UTF-8"?>

<Response>

 <Result ResourceId="gateway">

 <Decision>Permit</Decision>

 <Status>

 <StatusCode Value="urn:oasis:names:tc:xacml:1.0:status:ok" />

 </Status>

 </Result>

</Response>

The component diagram of Java client API (Figure 64) outlines the following main packages:

 am.xacml.context: contains the implementation of entities which compose an
authorization request; the resources and actions are specialized for the TDAQ
components which are integrated with AM service. The helpers for assembling a request
(RequestProcessor) and decoding a response (ResponseProcessor) use the basic
XACML implementation from Sun’s XACML package (com.sun.xacml). This package is
used also by the Policy Administration Point in its task of policies preparation and storage
into files.

 am.client: offers the classes for preparation of requestor information and the
authorization request; it contains also the algorithm for communication with the server
over network and the retry mechanism (see Figure 58)

The C++ client API follows the same structure (see component diagram in Figure 65) as Java
client API, but with a difference: the classes in am.xacml package (except am.xacml.impl which are
AM specific) implement the low level details of XACML standard for the request encoding and
response decoding; they correspond to the com.sun.xacml package in the Java client API.

Access control at the TDAQ Online Software level

107

Figure 64 Component diagram of AM Java client API

Figure 65 Component diagram of AM C++ client API

Access control at the TDAQ Online Software level

108

6.4 Tests

The TDAQ AM service has undergone a series of tests focused on functionality and
performance before its deployment in the ATLAS Online cluster together with the TDAQ software.
The following chapters detail the testing strategies and the results obtained.

6.4.1 Functional Tests

The functional tests have been run in two modes: in isolation and integrated in the TDAQ
software. Their goal was to validate the correct functioning of AM service for the use cases described
in the requirements chapter 6.1.

The functional test executed in isolation used the following test setup:

 one PAP instance which prepared the XACML policies based on input file (AMRules.txt)
listed in appendix 8.7.1

 one AM server configured with the XACML policies generated in the previous step and
listed in appendix 8.7

 one LDAP server (OpenLDAP) ready to accommodate RBAC data (configuration done
according to instructions from 4.2.1):

o roles hierarchy defined in LDAP is the same as in appendix 8.7
o user defined in LDAP to be used as the subject asking for authorization in the

tests

 one Java application developed on top of JUnit 4 framework [59] which uses the Java
client API to issue authorization requests to the server

The tests run with this setup consisted in preparing automatically a set of authorization
requests corresponding to the rules defined in the AMRules.txt and asking the server to process
them. The results were compared with the expected outcome according to the roles enabled for the
user used in the tests.

The integration of AM service in the TDAQ software implied also the inclusion of TDAQ AM
service in the large scale tests executed on TDAQ software releases in the test lab cluster. This test
phase validated that integration process was successful and that the service provided the expected
functionality.

6.4.2 Performance and stress tests

The performance tests were run to assess the AM service processing speed and find out the
best configuration parameters to be used in the production installation.

The hardware configurations of the nodes from the test lab used in the performance tests
are the following:

 AM server nodes:
o Processor: Intel(R) Xeon(TM) CPU 3.06GHz
o RAM : 2 GB
o Operating System: Scientific Linux Cern 4 – x86
o Java Runtime Environment 5

 Client nodes:
o Processor: Intel(R) XEON(TM) CPU 2.00GHz
o RAM: 512 MB
o Operating System: Scientific Linux Cern 4 – x86
o Java Runtime Environment 5

Access control at the TDAQ Online Software level

109

In order to simulate a high number of authorization requests sent to the AM server, we
developed a set of tools composed of:

 C++ application which uses the C++ client API to issue authorization requests to the
target AM server. This test client application allows to:

o Repeatedly send an authorization request to the server; number of iterations is
configurable

o Insert delays between consecutive authorization requests
o Count the time spent to send all the requests and computes the average

The helper bash script amServerInterrogatorCTest calls the test client application
with following options:

amServerInterrogatorCTest, version $Revision: 1.13 $

Run the AM's Server Interrogator implementation using the C++ API

'AccessManagerServerInterrogatorTest':

Access Manager Server Interrogator test application for C++ API.

Version: $Revision: 53652 $ built on Jul 16 2012 22:22:36

Client test implementation version: $Revision: 85994 $

Usage: amServerInterrogatorCTest [-a <on|off>] [-s server_host] [-p server_port] [-

l log_level] [-n number_iterations] [-t delay_iterations] [-S] [-r resource_type]

[-1|2|3|4 resource_attr] [-A action] [-u access_subject_username] [-o

access_subject_hostname] [-h]

 -a enable or disabled the Access Manager authorization in C++ API. Valid values

are 'on' and 'off'

 Default is [on]

 -s the hostname where Access Manager server is running

 Default is [lnxatdmon]

 -p the port number on which the Access Manager server is listening

 Default is [20000]

 -l the ERS debug level. Should be a positive number

 Default is [0]

 -n specify the number of test iterations

 Default is [1]

 -t delay between the test interations in ms

 Default is [0]

 -S use secondary AM servers if provided

 Default is [false]

 -r the resource type to be accessed.

 -1 the resource type attribute #1.

 -2 the resource type attribute #2.

 -3 the resource type attribute #3.

 -4 the resource type attribute #4.

 -A the action name

 -u the access subject's username

 Default is []

 -o the access subject's hostname

 Default is []

 -h this info

 Test suite configuration which is defined as a list of test client application to be run in
parallel on node. The following listing shows a sample test suite configuration:

AM test suite configuration file that will be included by the amTestSuite script.

Version

16/02/2007 [mleahu]: Initial version

the test suite description to be used in the log files

ts_description="PMG test - 8 am clients per node, 501 requests per am client:"

the estimated execution time in minutes

ts_estimated_execution_time=6

the test suite commands to execute in parallel on each node

ts_commands=(

Access control at the TDAQ Online Software level

110

 "amServerInterrogatorCTest -u mleahu -l 0 -s ${ts_am_server_host} -p

${ts_am_server_port} -n 501 -t ${ts_time_interval} -r pmg -1 start"

 "amServerInterrogatorCTest -u mleahu -l 0 -s ${ts_am_server_host} -p

${ts_am_server_port} -n 501 -t ${ts_time_interval} -r pmg -1 terminate"

 "amServerInterrogatorCTest -u mleahu -l 0 -s ${ts_am_server_host} -p

${ts_am_server_port} -n 501 -t ${ts_time_interval} -r rc -1 publish"

 "amServerInterrogatorCTest -u mleahu -l 0 -s ${ts_am_server_host} -p

${ts_am_server_port} -n 501 -t ${ts_time_interval} -r rc -1 publish_statistics"

 "amServerInterrogatorCTest -u mleahu -l 0 -s ${ts_am_server_host} -p

${ts_am_server_port} -n 501 -t ${ts_time_interval} -r rc -1 CMD -2 PART"

 "amServerInterrogatorCTest -u mleahu -l 0 -s ${ts_am_server_host} -p

${ts_am_server_port} -n 501 -t ${ts_time_interval} -r igui -1 display"

 "amServerInterrogatorCTest -u mleahu -l 0 -s ${ts_am_server_host} -p

${ts_am_server_port} -n 501 -t ${ts_time_interval} -r igui -1 control"

 "amServerInterrogatorCTest -u mleahu -l 0 -s ${ts_am_server_host} -p

${ts_am_server_port} -n 501 -t ${ts_time_interval} -r igui -1 expert"

)

The keywords ts_am_server_host, ts_am_server_port, ts_time_interval are
replaced at test suite execution time by the configured values.

 Shell script amTestSuite to schedule the execution of test suites on a set of nodes from
the test lab cluster:

$./amTestSuite -h

amTestSuite, version 0.4

Runs the AM test suite

Usage: amTestSuite [-i identification_string] [-s server_host] [-p server_port] [-t

time_interval] [-l nodes_file] [-n max_nodes] [-d start_delay] [-c ts_cfg_dir] [-r

daq_releas] [-L] [-X] [-h]

 -i the identification of this test run

 -s the hostname where Access Manager server is running

 Default is [lnxatdmon]

 -p the port number on which the Access Manager server is listening

 Default is [20000]

 -t time intervals in miliseconds between authorization requests sent to server by

a client process

 Default is [0]

 -l the file with list of machines in the directory /home/mleahu/amtests/nodes-

lists on which the tests will run

 Default is [point1-cluster.lst]

 -n the maximum number of nodes from the nodes_file to use for tests

 Default is [100]

 -d the number of minutes after which the tests are scheduled to run with crontab

 Default is [5]

 -c the directory where the test suite configuration files are stored (extension

'tscfg')

 Default is [/home/mleahu/amtests]

 -r the TDAQ release directory to use

 Default is []

 -L list the crontabs on all the nodes in the nodes_file

 Default is [0]

 -X clean the crontabs on all the nodes in the nodes_file

 Default is [0]

 -h this info

The identification_string represents the name of the file with test suite
configuration stored in ts_cfg_dir and the list of nodes where to schedule the
execution is defined in nodes_file (one hostname per line).

 Reports aggregation tool which collects the test reports from the cluster nodes to
consolidate them for later analysis:

$./amTestSuiteReports -h

amTestSuiteReports, version 0.2

Process the AM test suite reports

Usage: amTestSuiteReports [-c ts_cfg_dir] [-x] [-h]

 -c the directory where the test suite configuration files are stored (extension

'tscfg')

Access control at the TDAQ Online Software level

111

 Default is [/home/mleahu/amtests]

 -x clean all the summary files in the reports directory reports/*.sum

 -h this info

The test strategy consists in running in parallel on multiple cluster nodes a set of
authorization requests to increase gradually the load on the AM server. The user used in test had all
roles assigned and enabled to maximize the processing effort on the server. The policies were the
same as in the functional tests configuration.

First set of performance tests were run on the initial implementation of AM server, the one
based on threads dedicated to each client connection which was handled with blocking server
sockets from java.net package. There were two runs:

 first run had the goal of assessing the server performance and identify points to be
improved. At the same time, we ran profiling tests on the server to pinpoint the
performance issues during the workflow of authorization request processing.

 second one with server improvements. The improvements consisted mainly in:
o decrease the IO operations (e.g. reduced logging or changed log levels for some

messages)
o reduce synchronization between threads (use of ThreadLocal variables)
o use of StringBuilder for faster strings assembling
o loops reorganization
o set TCP_NODELAY option on the sockets (both on server and client sides)
o adjustments of server configuration: use 2 threads instead of 5, increased the

initial JVM heap size from 128MB to 256MB and maximum size to 320MB

 The server and client configurations used in second run are listed in Table 16,
respectively Table 17.

Table 16 AM server configuration on the first set of performance tests (2
nd

 run)

Server configuration parameter Value

Processing threads 2

Request queue size 100

Timeout - LDAP socket connection 3 seconds

Timeout - LDAP operation time limit 3 seconds

Timeout - Message receive from the client 6 seconds

Cache timeout - PIP Evaluation Context 5 seconds

Cache timeout - RBAC users 60 seconds

Cache timeout – Policies 300 seconds

JVM initial heap size 256 MB

JVM max heap size 320 MB

Access control at the TDAQ Online Software level

112

Table 17 Client configuration on the first set of performance tests (2
nd

 run)

Client configuration parameter Value

Timeout - Socket connection to the server 2 seconds

Timeout - Message receive from the server 6 seconds

The test results from both runs are show in Table 18. The improvements implemented
between two runs are significant and reflected by the following metrics:

 top processing rate increased with 76.44%: from 208 to 367

 there are no failed interrogations reported by the client at top server processing rate on
the second run

 only 0.2% of clients interrogations took more than one second on the second run
compared with 1.3 % from first run; both results obtained at the server top throughput

 the second run can handle more parallel clients at server top speed (96 parallel clients)
compared with the first run (56)

It is worth to notice that in each run the server performs worst once its maximum
throughput is reached: increasing the load makes the server inefficient and its processing rate drops
while the clients experience delays or even failed interrogations due to timeouts.

Table 18 First performance test results (comparison between runs)

8 parallel client
interrogations from

#nodes

Server average requests
processing rate/s

Interrogation
duration > 1s (%)

Failed
interrogations (%)

 1st run 2nd run 1st run 2nd run 1st run 2nd run

4 nodes (32 p.c.) 195 NT 0.6 NT 0.3 NT

5 nodes (40p.c.) 204 NT 1 NT 0.2 NT

6 nodes (48 p.c.) 205 NT 0.8 NT <0.1 NT

7 nodes (56 p.c.) 208 364 1.3 0 <0.1 0

8 nodes (64 p.c.) 201 341 3.4 0.2 0.1 < 0.1

9 nodes (72 p.c.) 170 360 6.2 0.2 1.3 0

10 nodes (80 p.c.) 152 364 12.1 0 4.1 0

11 nodes (88 p.c.) NT 364 NT 0 NT 0

12 nodes (96 p.c.) NT 367 NT 0.2 NT 0

13 nodes(104 p.c.) NT 360 NT 0 NT 3.8

Access control at the TDAQ Online Software level

113

The histogram of server interrogation duration experienced by the clients in the 2nd run is
drawn in Figure 66.

Figure 66 Histogram of first performance tests (2
nd

 run)

Despite the major improvements reported by the second run, the AM server performance
was found not satisfactory for the production environment where a more complex distribution of
requests types is expected with high number of users and possible more complex policies.

Table 19 AM server configuration on the second set of performance test

Server configuration parameter Value

Processing threads 2

Timeout - LDAP socket connection 3 seconds

Timeout - LDAP operation time limit 3 seconds

Timeout - Message receive from the client 6 seconds

Cache timeout - PIP Evaluation Context 5 seconds

Cache timeout - RBAC users 60 seconds

Cache timeout – Policies 300 seconds

JVM initial heap size 384 MB

JVM max heap size 512 MB

0

5

10

15

20

25

30

35

40

45
5

4
0

7
5

1
1

0

1
4

5

1
8

0

2
1

5

2
5

0

2
8

5

3
2

0

3
5

5

3
9

0

4
2

5

4
6

0

4
9

5

5
3

0

5
6

5

6
0

0

6
3

5

6
7

0

7
0

5

7
4

0

7
7

5

8
1

0

8
4

5

8
8

0

9
1

5

9
5

0

9
8

5

Te
st

 in
te

rr
o

ga
ti

o
n

s
(%

)

Interrogation duration (ms)

8 clients per node X 7 nodes 8cpn X 8n 8cpn X 9n

8cpn X 10n 8cpn X 11n 8cpn X 12n

8cpn X 13n

Access control at the TDAQ Online Software level

114

We started a more thorough analysis of server’s low level design and the solution based on
reactor pattern with java.nio usage was found suitable for our needs. The details of this
implementation are provided in chapter 6.3.2.

The second set of performance tests were run with the server configuration listed in Table
19. The test results listed in Table 20 show an impressive improvement:

 server top throughput (514) is 147% better than very first test (208) and 40% better
compared with the previous version (367)

 zero failed interrogations at top speed

 112 parallel clients handled by the server at top speed compared with 96 in the previous
version

Table 20 Second performance test results

parallel client
interrogations

Server average requests
processing rate/s

Interrogation
duration > 1s (%)

Failed interrogations
(%)

80 453 0.5 0

112 514 1 0

144 485 3.5 < 0.01

176 488 4.5 0.02

208 460 5.3 0.02

240 442 6.12 0.12

264 439 6.73 0.21

288 432 6.9 0.52

Figure 67 Histogram of second performance tests

0

2

4

6

8

10

12

14

16

18

5

4
0

7
5

1
1

0

1
4

5

1
8

0

2
1

5

2
5

0

2
8

5

3
2

0

3
5

5

3
9

0

4
2

5

4
6

0

4
9

5

5
3

0

5
6

5

6
0

0

6
3

5

6
7

0

7
0

5

7
4

0

7
7

5

8
1

0

8
4

5

8
8

0

9
1

5

9
5

0

9
8

5

Te
st

 in
te

rr
o

ga
ti

o
n

s
(%

)

Interrogation duration (ms)

80 clients 112 144 176 208 240 264 288

Access control at the TDAQ Online Software level

115

The histogram of interrogation duration for the second set of performance tests is shown in
Figure 67.

After this last round of performance tests, the following observations can be made:

 In case of 80 parallel clients:
o Server top throughput: 453 requests /second
o 91% interrogations took under 200 ms

 In case of 112 parallel clients:
o Server top throughput: 514 requests /second
o 95% interrogations took under 250 ms

 Above this limit, the server becomes overloaded and its performance decreases with
increased latency on client side

We conclude that the server’s optimal usage is at about 100 parallel clients with its top
throughput between 450 and 500. This threshold can be set in the server configuration for the
overload protection so that the server can run in optimal conditions. If there are foreseen more
clients to run in parallel, then another server instance can be deployed in the AM server cluster.

The stress tests consisted in preparing a cluster of 2 AM servers and fully load them with
requests generated by the test tools running on multiple nodes on the test lab cluster for more than
24 hours. We monitored the AM server cluster behavior with the help of server’s statistics collectors.
We verified the load balancing between the nodes, the behavior in case of a server simulated crash
in the AM servers cluster and that the server’s throughout was constant during stress test period.
The tests completed successfully, the minor issues found being fixed before the installation into
ATLAS Online cluster environment.

6.5 Production Setup

The deployment diagram for the AM service in the ATLAS Online cluster is depicted in Figure
68. The AM servers are organized in two clusters:

 Primary AM servers cluster sits behind the hostname pc-tdq-onl-ams configured in
CERNT IT DNS service with round robin policy. This makes the addition of a new node to
the cluster transparent for the AM clients.

 Secondary or backup AM servers cluster is defined on the hostname pc-tdq-onl-ams-
bak configured also with round robin policy in DNS.

The AM clients (TDAQ Components integrated with C++ or Java client API, the Application
Gateway and Control Room Desktop using the AM command line tool) are configured to access
following AM servers: pc-tdq-onl-ams, pc-tdq-onl-ams-bak. This means authorization requests
failed with any of the servers from the primary cluster are retried with another server from the
backup cluster.

The following chapters describe the details of an AM server node installation with
configuration in LDAP and the integration of the AM servers with monitoring system and LDAP
servers for change notifications. The environment variables necessary for TDAQ components
integrated with AM service are listed at the end.

Access control at the TDAQ Online Software level

116

Figure 68 Production setup for TDAQ AM Service

6.5.1 AM server installation

The data used by the AM server is stored on the local disk in the /data/AccessManager
directory in the following structure:

 /data/AccessManager/logs - location of the server logs

 /data/AccessManager/policies - location of the XACML policies used by the server

 /data/AccessManager/service - contains the amServerService script to be used to
start/stop the AM server on the current machine. The directory contains a soft link to the
script available in the TDAQ release installation on central file server. For example:

$ ls -l /data/AccessManager/service/

total 4

lrwxrwxrwx 1 mleahu zp 64 Oct 17 14:46 amServerService ->

/sw/atlas/tdaq/tdaq-01-08-03/installed/share/bin/amServerService

The service script reads the AM server configuration from LDAP. Figure 69 shows a sample
configuration in LDAP which contains:

 Parameters to be passed by the amServerService script to amServer script which
controls finally the AM server

 AM server configuration (policy set, logs folder etc)

 Server host name & service port number

 The TDAQ software version from where to start the AM server

In order to start or stop the AM server, the service script from /etc/init.d/ (a soft link to
the one in /data/AccessManager/service) can be used like this:

$ service amServerService start

Access control at the TDAQ Online Software level

117

Figure 69 AM server configuration in LDAP

6.5.2 Monitoring

The AM service is integrated with the ATLAS Online cluster monitoring system - Nagios [60]
through the controller interface. Nagios plugin is the AM server remote controller tool
amServerRemoteController from chapter 6.3.2.4. The following AM server parameters are
monitored:

 Server uptime

 Peak rate of requests processed OK

 Peak rate of requests processed with error

 Peak rate of requests received when the server was busy

 Average rate of requests processed OK

 Average rate of requests processed with error

Alarms are triggered and email notifications are sent to the administrators when the above
parameters can’t be checked or their values are out of the safe ranges. pc-tdq-ams-* aliases are
assigned in Nagios to the cluster nodes where AM servers are hosted.

Figure 70 shows a screenshot of Nagios plots representing the history of peak processing
rates for two nodes from primary cluster (pc-tdq-ams-01 and pc-tdq-ams-02) and one node from
backup cluster (pc-tdq-ams-bak). It can be observed that peak processing rates do not go above the

AM Server port number

AM Server’s TDAQ release ver.

AM Server hostname

amServer script parameters

AM server configuration

Access control at the TDAQ Online Software level

118

overload threshold (around 800 in production environment) and, when necessary, the extra load is
taken by the backup server because the primary servers answered with busy status redirecting the
client to the backup cluster.

Figure 70 AM server monitoring

6.5.3 Notifications from LDAP server

The user information and roles stored in LDAP are subject to changes in time and the AM
servers must be notified of these changes to clear their caches. The notification mechanism
described in Figure 71 requires the following configurations and tools:

 The OpenLDAP server is configured to write any modification made to LDAP into a
file using an overlay. The relevant slapd.conf section is:

database bdb

suffix "ou=atlas,o=cern,c=ch"

rootdn "cn=Manager,ou=atlas,o=cern,c=ch"

directory /usr/local/openldap/var/openldap-data

overlay auditlog

auditlog /usr/local/openldap/var/auditlog/slapd-auditlog.log

 dnotify [61] tool to monitor the file /usr/local/openldap/var/auditlog/slapd-
auditlog.log for any change and execute the AM remote controller (chapter
6.3.2.4) tool to send a notification message to all AM servers configured in LDAP

 Helper script amServerLDAPNotifier prepared to control the dnotify tool lifecycle
(start/stop, configuration):

$./amServerLDAPNotifier -h

This shell script takes care of starting and stopping the dnotify daemons to notify

the AM servers about the LDAP update events

Usage: amServerLDAPNotifier {start|stop|restart|status}

The backup server received requests, which
means the primary servers are overloaded!

Access control at the TDAQ Online Software level

119

Figure 71 Notifications from LDAP servers to AM servers

6.5.4 Client configuration

The client API configuration in production setup must contain the environment variables
listed in Table 21. All these variables can be hard coded in the TDAQ software configuration file
/sw/tdaq/AccessManager/cfg/client.cfg. The configuration from this file has priority over the
environment variables from a cluster node ensuring for example that the authorization is always
enabled no matter the TDAQ component individual configuration on a particular node.

Table 21 Environment variables for client API

Environment variable Values
C++ client
API

Java client
API

TDAQ_AM_AUTHORIZATION “on” or “off” required required

TDAQ_AM_SERVER_HOST pc-tdq-onl-ams,pc-tdq-onl-ams-bak required required

TDAQ_AM_SERVER_PORT 20000 required required

TDAQ_AM_CLIENT_USE_
SECONDARY_SERVERS

“true” or “false” required required

TDAQ_ERS_DEBUG_LEVEL 0, 1, 2 or 3 required

TDAQ_AM_LOGS_DIR Full path to the logs directory required

TDAQ_AM_CLIENT_
LOG_LEVEL

NONE - no logs at all
NORMAL - log the errors and warnings
VERBOSE - log the information messages
VERY_VERBOSE - log the configuration
messages
DEBUG - log the debug messages
ALL - log all the messages

 required

LDAP with users
information

LDAP with AM server
configuration

Monitoring
process

AM Servers

 user information

Send “LDAP UPDATED”
notification

Pull server configuration

Conclusions

121

Chapter 7

Conclusions

In this chapter we summarize our work on the access control system for the ATLAS
experiment. We highlight the original aspects of the software solution we envisaged to protect the
ATLAS Online cluster and the TDAQ software running on it. A set of topics recommended as future
work on this area are outlined at the end of the chapter.

7.1 Summary of contributions

The ATLAS experiment at CERN, the largest among the other experiments on the LHC ring,
represents a big step forward in physics research, but comes also with many technical challenges.
The impressive amount of data generated in real time requires complex data acquisition software to
filter it and a large computing cluster to run this software. The number of users foreseen to
participate in the experiment supervision and data analysis is of order of thousands. Since the
experiment network is required to not be completely isolated from the internet, the big computing
power put in place for ATLAS is a great temptation for attackers.

All these conditions called for strengthening the security on the experiment hardware and
software resources. If in previous physics experiments at CERN the actions traceability and
accountability were not an issue (groups of users were using group computing accounts), the
increased number of users in ATLAS made it a top priority. This concern is addressed by the access
control mechanisms of the computing security area.

We performed a complete analysis, design, implementation and deployment of the access
control solution for the protection of ATLAS Online cluster and the TDAQ software running on it.

The analysis phase aimed at identifying the most stringent requirements for the access
control system to be implemented. The access control model suitable for experiment context was
also chosen at this stage: a hierarchical Role Based Access Control model proved to satisfy the high
level needs in terms of flexibility and scalability.

The design phase came with one big challenge: how to unify the OS and applications worlds
under the same RBAC umbrella. The access control policies needed to be defined coherently, from
the remote access to the cluster up to the very little but critical detail in the TDAQ software running
to filter and collect the experiment data. We chose the LDAP directory to be the central point for
definition of users, roles and, most importantly, for the assignment of users to roles. The user-roles
relationships is the most dynamic part of RBAC model and, having it defined in a single place ensures
that all permissions necessary for a user are available immediately once he or she gets the
appropriate roles. The roles hierarchies and permissions assignment to roles have a more static
nature and can be checked carefully from coherence point of view at system setup phase.

We achieved the integration of OS (SLC) with the RBAC access control using existing Linux
tools and services enhanced with shell scripts and special configurations to map the RBAC concepts.
Being a quasi-real-time environment, the performance of TDAQ software is crucial, so we faced the
challenge of designing and implementing the most non-intrusive RBAC solution at application level to
have the minimum performance impact on the TDAQ components subject to access control
protection. To achieve this, the expensive task of taking the authorization decision was externalized

Conclusions

122

from the TDAQ components to a dedicated Access Manager service. This strategy brought the
advantage of instant propagation of any policy change performed centrally on the AM service.

We then focused on providing a high performance AM server implementation with solutions
for high availability and scalability. The high availability and load balancing are necessary to have the
AM service running continually and at the optimal throughput. The scalability is mandatory given the
fact that ATLAS experiment is foreseen to run for a good number of years with TDAQ software
adapting to physics needs and the hardware of ATLAS Online cluster being upgraded periodically.

Other key factors of a security solution are robustness, simplicity and acceptability. We made
sure to address those. In particular, well known Linux tools and services with strong security track
record are part of the solution. The AM client API is customized for each TDAQ component to offer to
the developers exactly what they need in terms of access control: the resource and actions are
tailored for the TDAQ component’s concepts, minimizing in this way the risk of AM service misuse.
Last but not least the tools that allow users to request and/or grant the enabling of roles are simple
to use and fast: this is a key element to ease the user’s acceptability of the new “boundaries”.

Before the deployment of the AM service into the production environment, we assessed
thoroughly the service performance and made significant improvements. The analysis of test results
provided also recommendations for the configuration of AM service in the production environment.

The current production setup consists in a high availability cluster of 6+1 nodes running the
TDAQ Access Manager Service for ~3800 user accounts and ~440 roles. Each node of Access Manager
Service is able to handle ~800 authorization requests per second from TDAQ software running on the
~3000 nodes of the ATLAS Online cluster. It is integrated with the system administration monitoring
system for continued surveillance of service availability and performance. This production setup has
run successfully in the last 4 years and has allowed ATLAS to take data steadily and efficiently,
leading to the first major discovery: the Higgs boson.

7.2 Future work

During this thesis work we have achieved the goal of laying the ground work for a solid
access control solution in the ATLAS Online cluster. The deployment in production confirmed the
solution viability, but there is still place for extensions. The following topics can be considered for
future work on the access control solution:

 The experience with access control solution during data taking might tell if the SSD/DSD
constraints that we decided to omit from the model are necessary. Initial analyses didn’t
show it as mandatory, but the current solution can be extended with SSD/DSD
constraints.

 An important and difficult task of the Administrative Component from RBAC
Administration tool is to check the coherence of the overall access control policies. The
lack of correlation between permission definitions, users to role assignments and
SSD/DSD specifications can hide or lock system resources or actions on resources. An
example of two uncorrelated access rules are the following: allow the role A to start
TDAQ processes, and allow the role A to log in only to the public computers (where the
TDAQ binaries are not accessible). In this case, the TDAQ process resource is hidden for
the role A. Automatic validation of policies coherence would ease the task of
administrators and reduce the risks of errors.

 One problem identified after using this access control solution is roles proliferation due
to lack of experience and capacity of abstraction. The administrator task to keep a
minimum level of consistency and simplicity is hard with the current tools. The
development of a graphical tool on top of RBAC Administration tool to assist the
administrator in his tasks would be welcome. The tool should offer the possibility to view
the current RBAC configuration from many perspectives: to help the administrator for

Conclusions

123

example to identify duplicated roles from permissions point of view (assigned directly or
by inheritance), to spot cycles in roles hierarchy, to simulate roles deletion.

 The XACML policies stored currently in files may be moved to LDAP for a single point of
definition and easier propagation in case of policies update.

 The authorization logger writes now the authorizations into log files spread over the AM
server nodes. Their browsing and searching is tedious, hence the integration of AM
server with the TDAQ Log Server to store the authorization decisions would improve the
access to the audit information.

Appendices

125

Chapter 8

Appendices

8.1 LDAP schema for AM Roles

ATLAS Role Based Access Control schema used by the Access Manager(AM)

##################################

The base OID is : 1.3.6.1.4.1.96.64.11.0

Attributes types are: 1.3.6.1.4.1.96.64.11.0.1

Object classes are : 1.3.6.1.4.1.96.64.11.0.2

the generic role attribute used later in the definition of other attributes

attributetype (1.3.6.1.4.1.96.64.11.0.1.1

 NAME 'amRoleAttribute'

 DESC 'The AM role attribute'

 EQUALITY caseIgnoreIA5Match

 SUBSTR caseIgnoreSubstringsMatch

 SYNTAX 1.3.6.1.4.1.1466.115.121.1.26)

Attribute to specify an AM role

attributetype (1.3.6.1.4.1.96.64.11.0.1.2

 NAME 'amRole'

 DESC 'The AM role assigned to an user'

 SUP amRoleAttribute

 SINGLE-VALUE)

Attributes needed for amRolesSet definition

attributetype (1.3.6.1.4.1.96.64.11.0.1.3

 NAME 'amRolesSet'

 DESC 'The AM roles set assigned to an user'

 SUP amRoleAttribute

 SINGLE-VALUE)

attributetype (1.3.6.1.4.1.96.64.11.0.1.13

 NAME 'amRolesDescription'

 DESC 'Description of roles set'

 SUP description

 SINGLE-VALUE)

Attributes needed for role assignment and state definitions ####

attributetype (1.3.6.1.4.1.96.64.11.0.1.4

 NAME 'amRoleAssignedBy'

 DESC 'The user id of the user who assigned this role to the current user'

 EQUALITY caseIgnoreIA5Match

 SUBSTR caseIgnoreSubstringsMatch

 SYNTAX 1.3.6.1.4.1.1466.115.121.1.26

 SINGLE-VALUE)

attributetype (1.3.6.1.4.1.96.64.11.0.1.5

 NAME 'amRoleAssignedWhen'

 DESC 'The date when the role has been assigned to the current user'

 EQUALITY integerMatch

 SYNTAX 1.3.6.1.4.1.1466.115.121.1.27

 SINGLE-VALUE)

Appendices

126

attributetype (1.3.6.1.4.1.96.64.11.0.1.6

 NAME 'amRoleState'

 DESC 'The state of the role: enabled or disabled'

 EQUALITY caseIgnoreIA5Match

 SYNTAX 1.3.6.1.4.1.1466.115.121.1.26

 SINGLE-VALUE)

Attributes needed for the role definition ####

attributetype (1.3.6.1.4.1.96.64.11.0.1.7

 NAME 'amRoleResponsible'

 DESC 'The id of the user who created the role'

 EQUALITY caseIgnoreIA5Match

 SUBSTR caseIgnoreSubstringsMatch

 SYNTAX 1.3.6.1.4.1.1466.115.121.1.26

 SINGLE-VALUE)

attributetype (1.3.6.1.4.1.96.64.11.0.1.8

 NAME 'amRoleJunior'

 DESC 'Role which is junior to the current role'

 SUP amRoleAttribute)

attributetype (1.3.6.1.4.1.96.64.11.0.1.9

 NAME 'amRoleSenior'

 DESC 'Role which is senior to the current role'

 SUP amRoleAttribute)

attributetype (1.3.6.1.4.1.96.64.11.0.1.10

 NAME 'amRoleSSD'

 DESC 'Role which is in an Static Separation of Duty relation with the current role'

 SUP amRoleAttribute)

attributetype (1.3.6.1.4.1.96.64.11.0.1.11

 NAME 'amRoleDSD'

 DESC 'Role which is in an Dynamic Separation of Duty relation with the current role'

 SUP amRoleAttribute)

attributetype (1.3.6.1.4.1.96.64.11.0.1.12

 NAME 'amRoleDescription'

 DESC 'Description of a role'

 SUP description

 SINGLE-VALUE)

the ATLAS roles objects

objectclass (1.3.6.1.4.1.96.64.11.0.2.1

 NAME 'amRoles'

 SUP top

 STRUCTURAL

 DESC 'A set of ATLAS roles'

 MAY (amRolesDescription)

 MUST (amRolesSet))

the ATLAS role reference object

objectclass (1.3.6.1.4.1.96.64.11.0.2.2

 NAME 'amRoleAssigned'

 DESC 'The ATLAS role'

 MUST (amRole $ amRoleAssignedBy $ amRoleAssignedWhen $ amRoleState))

the ATLAS role object

objectclass (1.3.6.1.4.1.96.64.11.0.2.3

 NAME 'amRoleDefinition'

 DESC 'The ATLAS role'

 MAY (amRoleDescription $ amRoleJunior $ amRoleSenior $ amRoleSSD $ amRoleDSD)

 MUST (amRole $ amRoleResponsible))

Appendices

127

8.2 RBAC Administration Tool – User Requirements Document

ATLAS

ATLAS TDAQ System
Administration, Controls and
Coordination

ATLAS RBAC Administration Tool
Requirements

Document Version: 1.0

Document ID: ATLAS-TDAQ-2007-XXX

Document Date: 16 April 2007

Document Status: Draft

Abstract

The document presents the user requirements for the ATLAS RBAC Administration Tool. They

shall be the basis for the evaluation of the commercial products candidates for the ATLAS’ roles and

policies administration. They shall be also the basis for the design and implementation of the tool to be

developed for this purpose.

Institutes and Authors:

CERN: M. Leahu

Politehnica University of Bucharest: M. Leahu

Appendices

128

8.3 Roles Manager shell script

#!/bin/bash

Access Manager script to manage the roles definition and roles hierarchies.

Versions:

15/02/08 - mleahu

Initial version

15/04/08 - mleahu

Added -f flag for force operation

21/05/08 - mleahu

Default user to bind as to LDAP is AccessManagerAdmin

10/06/08 - mleahu

Fixed a bug when deleting the memberNisNetgroup attributes (all attributes were deleted

instead of one of them)

version='$Revision: 52065 $'

TRUE=1

FALSE=0

VERBOSE=$FALSE

CONFIRMATION=${TRUE}

retcode=0

function INFO()

{

 if ["$VERBOSE" = "$TRUE"]; then

 echo "$@"

 fi

}

function MSG()

{

 echo -n ">>> "

 echo $@

}

function MSGN()

{

 echo -n ">>> "

 echo -n $@

}

function init_grep_filter()

{

 local -a ldapattr=($@)

 # generate the grep filter

 grepfilter="${ldapattr[0]}:"

 for((i=1;i<${#ldapattr[@]};i++))

 do

 grepfilter="${grepfilter}|${ldapattr[$i]}:"

 done

}

userBindDN="uid=AccessManagerAdmin,ou=People"

managerDN="cn=Manager"

passwdBind=""

ldapserver=`awk '/^host/ {printf $2}' /etc/ldap.conf`

basedn=`awk '/^base/ {printf $2}' /etc/ldap.conf`

the LDAP specific attributes and values for roles

LDAP_ROLE_OBJECTCLASS="amRole"

LDAP_ROLE_ATTR_ASSIGNABLE="amRoleAssignable"

LDAP_ROLE_ASSIGNABLE="true"

LDAP_ROLE_NOT_ASSIGNABLE="false"

LDAP_ROLE_PROTECTED_ATTR=("cn" "memberNisNetgroup" "nisNetgroupTriple")

LDAP_ROLE_PREFIX_ASSIGNED="RA"

LDAP_ROLE_PREFIX_ENABLED="RE"

LDAP_ROLE_PREFIX="${LDAP_ROLE_PREFIX_ASSIGNED}"

LDAP_ROLE_SEPARATOR="-"

the roles operations

Appendices

129

OP_DUMP_LDIF=0

OP_SHOW=1

OP_CREATE=2

OP_DELETE=3

OP_UPDATE=4

OP_UPDATE_SENIOR_ADD=5

OP_UPDATE_SENIOR_REMOVE=6

OP_UPDATE_JUNIOR_ADD=7

OP_UPDATE_JUNIOR_REMOVE=8

ROLE_OPERATION="${OP_SHOW}"

declare -a role_update_info=()

declare -a roles=();

function set_role_op_value(){

 if ["${ROLE_OPERATION}" != "${OP_SHOW}"]

 then

 echo "Only one operation at the time allowed on the role!"

 exit 1

 fi

 ROLE_OPERATION="$1"

}

while getopts "cCdu:s:S:j:J:Lr:m:Mp:l:b:fvh" option

do

 case $option in

 h) echo "`basename $0`, version $version";

 echo "Access Manager utility to administrate roles and roles hierarchies.";

 echo ""

 echo "Usage: `basename $0` [-c|-C|-d|-u \"(attribute=value)\"|[-s|-S senior]|[-j|-J

junior]|-L] <-r ROLE> [-m userBindDN] [-M] [-p password] [-l ldapserver] [-b basedn] [-v] [-f]

[-h]";

 echo "No arguments will make the script display all the roles found in LDAP."

 echo " -c create the role ROLE not assignable to users"

 echo " -C create the role ROLE assignable to users"

 echo " -d delete the role ROLE"

 echo " -u update the ROLE attribute with a new value. The format must be

'(attribute1=value1)(attribute2=value2)'"

 echo " -s add a senior role for the ROLE"

 echo " -S remove a senior role from the ROLE"

 echo " -j add a junior role for the ROLE"

 echo " -J remove a junior role from the ROLE"

 echo " -L dump the LDIF for role"

 echo " -r the ROLE name; if no other script argument provided, the ROLE details are

displayed."

 echo " -m authenticate as <userBindDN> to the LDAP server; default is

AccessManagerAdmin"

 echo " -M authenticate as [${managerDN}] to the LDAP server"

 echo " -p password to bind to the LDAP server"

 echo " -l use this ldapserver; default is [${ldapserver}]"

 echo " -b use this basedn; default is [${basedn}]"

 echo " -f force mode; no confirmation asked for change operations"

 echo " -v verbose mode"

 echo " -h this info"

 echo ""

 echo "Author: mleahu@CERN"

 exit 0;;

 c) set_role_op_value ${OP_CREATE};role_update_info=(${LDAP_ROLE_NOT_ASSIGNABLE});;

 C) set_role_op_value ${OP_CREATE};role_update_info=(${LDAP_ROLE_ASSIGNABLE});;

 d) set_role_op_value ${OP_DELETE};;

 u) set_role_op_value ${OP_UPDATE};role_update_info=($OPTARG);;

 s) set_role_op_value ${OP_UPDATE_SENIOR_ADD};role_update_info=($OPTARG);;

 S) set_role_op_value ${OP_UPDATE_SENIOR_REMOVE};role_update_info=($OPTARG);;

 j) set_role_op_value ${OP_UPDATE_JUNIOR_ADD};role_update_info=($OPTARG);;

 J) set_role_op_value ${OP_UPDATE_JUNIOR_REMOVE};role_update_info=($OPTARG);;

 L) set_role_op_value ${OP_DUMP_LDIF};;

 r) roles=($OPTARG);;

 m) userBindDN="uid=$OPTARG,ou=People";;

 M) userBindDN=${managerDN};;

 p) passwdBind=$OPTARG;;

 l) ldapserver=$OPTARG;;

 b) basedn=$OPTARG;;

 f) CONFIRMATION=$FALSE;;

 v) VERBOSE=$TRUE;;

 *) echo "unknown option '$option'";;

 esac

done

Appendices

130

shift $(($OPTIND - 1))

userBindDN="${userBindDN},$basedn"

rolesBaseDN="ou=netgroup,$basedn"

if (! which ldapsearch > /dev/null 2>&1)

then

 echo "ldapsearch tool not found!"

 exit 2

fi

ldapoptions="-h ${ldapserver} -b ${rolesBaseDN} -x"

sort the output based on cn

ldapoptions="${ldapoptions} -S cn -LLL"

ldapfilter="(objectClass=${LDAP_ROLE_OBJECTCLASS})"

ldapwriteoptions=" -W "

if ["${ROLE_OPERATION}" -gt "${OP_SHOW}"]; then

 if ["${#roles[@]}" -eq "0"]; then

 echo "No role specified! Abort!"

 exit 1

 fi

 # get the password to bind without

 if [-z "${passwdBind}"]

 then

 echo -e "Password for ${userBindDN}:"

 read -s passwdBind

 if [-z "${passwdBind}"];

 then

 echo "Empty password for ${userBindDN} account!"

 exit 1

 fi

 fi

 ldapwriteoptions=" -w ${passwdBind} "

fi

if ["${VERBOSE}" = "${TRUE}"]; then

 ldapwriteoptions="${ldapwriteoptions} -v"

fi

function if_role_exists()

{

 local _role=$1

 local _options="${ldapoptions}"

 local _filter="(&${ldapfilter}(cn=${LDAP_ROLE_PREFIX}${LDAP_ROLE_SEPARATOR}${_role}))"

 local -a _attr=("cn")

 ldapsearch ${_options} "${_filter}" ${_attr[@]} | grep -q ${_role}

}

#fill in the role_seniors array

function get_role_seniors() {

 local _role=$1

 local _options="${ldapoptions}"

 local _filter="(&${ldapfilter}(cn=${LDAP_ROLE_PREFIX}${LDAP_ROLE_SEPARATOR}${_role}))"

 local -a _attr=("memberNisNetgroup")

 init_grep_filter ${_attr[@]}

 role_seniors=(`ldapsearch ${_options} "${_filter}" ${_attr[@]} | grep -P ${grepfilter} |

cut -d '-' -f 2- | sort | uniq`)

}

#fill in the role_juniors array

function get_role_juniors()

{

 local _role=$1

 local _options="${ldapoptions}"

 local

_filter="(&${ldapfilter}(memberNisNetgroup=${LDAP_ROLE_PREFIX}${LDAP_ROLE_SEPARATOR}${_role}))

"

 local -a _attr=("cn")

 init_grep_filter ${_attr[@]}

 role_juniors=(`ldapsearch ${_options} "${_filter}" ${_attr[@]} | grep -P ${grepfilter} |

cut -d '-' -f 2- | sort | uniq`)

}

if ["${ROLE_OPERATION}" = "${OP_DUMP_LDIF}"]; then

Appendices

131

 ###################################

 #INFO "DUMP LDIF"

 ###################################

 filter=""

 for role in ${roles[@]}

 do

 if [-z "${filter}"]; then

 filter="(cn=*${LDAP_ROLE_SEPARATOR}${role})"

 else

 filter="(|(cn=*${LDAP_ROLE_SEPARATOR}${role})$filter)"

 fi

 done

 if [-z "${filter}"]; then

 filter="${ldapfilter}"

 else

 filter="(&${ldapfilter}$filter)"

 fi

 ldapsearch ${ldapoptions} "${filter}"

elif ["${ROLE_OPERATION}" = "${OP_SHOW}"]; then

 ###################################

 INFO "DISPLAY THE ROLE INFORMATION"

 ###################################

 function show_role(){

 local _role=$1

 local _options="${ldapoptions}"

 local _filter="(&${ldapfilter}(cn=${LDAP_ROLE_PREFIX}${LDAP_ROLE_SEPARATOR}${_role}))"

 local -a _attr=("cn")

 #display role properties

 init_grep_filter ${_attr[@]}

 local -a result=(`ldapsearch ${_options} "${_filter}" ${_attr[@]} | grep -P

${grepfilter} | sort | cut -d '-' -f2-`)

 if ["${#result[@]}" -gt "1"]; then

 echo "### Found more roles with name [$role]: ${#result[@]} roles #######"

 fi

 _attr=("amRoleAssignable")

 init_grep_filter ${_attr[@]}

 for _role_in_result in ${result[@]}

 do

 echo "###### ROLE [${_role_in_result}] #######"

_filter="(&${ldapfilter}(cn=${LDAP_ROLE_PREFIX}${LDAP_ROLE_SEPARATOR}${_role_in_result}))"

 init_grep_filter ${_attr[@]}

 ldapsearch ${_options} "${_filter}" ${_attr[@]} | grep -P ${grepfilter} | sort

 # display role juniors:

 get_role_juniors ${_role_in_result}

 echo "JUNIORS(${#role_juniors[@]}) ${role_juniors[@]}"

 # display role seniors:

 get_role_seniors ${_role_in_result}

 echo "SENIORS(${#role_seniors[@]}) ${role_seniors[@]}"

 echo

 done

 }

 if [-z "${roles}"]; then

 #get all the roles

 filter="(&${ldapfilter}(cn=${LDAP_ROLE_PREFIX}${LDAP_ROLE_SEPARATOR}*))"

 attr=(cn)

 init_grep_filter ${attr[@]}

 all_roles=(`ldapsearch ${ldapoptions} "${filter}" ${attr[@]} | grep -P ${grepfilter}

| cut -d '-' -f 2- | uniq`)

 if ["${VERBOSE}" = "${TRUE}"]; then

 echo "### ${#all_roles[@]} ROLES IN LDAP [${all_roles[@]}]"

 echo "#------ DETAILS ------#"

 # display the details of all the roles

 for role in ${all_roles[@]}

Appendices

132

 do

 show_role ${role}

 done

 else

 #display all the roles

 echo ${all_roles[@]} | tr ' ' '\n' | sort

 fi

 else

 for role in ${roles[@]}

 do

 show_role ${role}

 done

 fi

elif ["${ROLE_OPERATION}" = "${OP_CREATE}"]; then

 ###################################

 INFO "CREATE ROLE"

 ###################################

 for role in ${roles[@]}

 do

 ldap_amRoleAssignable="${role_update_info[@]}"

 msg_roleAssignable="ASSIGNABLE"

 if ["${ldap_amRoleAssignable}" = "${LDAP_ROLE_NOT_ASSIGNABLE}"]; then

 msg_roleAssignable="NOT ASSIGNABLE"

 fi

 MSGN "Create ${msg_roleAssignable} role [$role]..."

 if (! if_role_exists ${role}) ; then

 ldap_cn="${LDAP_ROLE_PREFIX_ASSIGNED}${LDAP_ROLE_SEPARATOR}${role}"

 ldap_dn="cn=${ldap_cn},${rolesBaseDN}"

 # create the role

 ldap_ldif="dn: ${ldap_dn}

objectClass: top

objectClass: nisNetgroup

objectClass: ${LDAP_ROLE_OBJECTCLASS}

cn: ${ldap_cn}

amRoleAssignable: ${ldap_amRoleAssignable}

description: The ATLAS role [$role] ${msg_roleAssignable} to users!"

 # create the role enabled netgroup as well

 ldap_cn="${LDAP_ROLE_PREFIX_ENABLED}${LDAP_ROLE_SEPARATOR}${role}"

 ldap_dn="cn=${ldap_cn},${rolesBaseDN}"

 ldap_ldif="${ldap_ldif}

dn: ${ldap_dn}

objectClass: top

objectClass: nisNetgroup

objectClass: ${LDAP_ROLE_OBJECTCLASS}

cn: ${ldap_cn}

amRoleAssignable: ${ldap_amRoleAssignable}

description: The ATLAS role [$role] ${msg_roleAssignable} to users in ENABLED state!"

 echo "${ldap_ldif}" | ldapadd -x ${ldapwriteoptions} -D "${userBindDN}" -h

${ldapserver} > /dev/null

 if ["${PIPESTATUS[1]}" != "0"]; then

 MSG "OPERATION FAILED! Role NOT created!"

 INFO "LDIF: ${ldap_ldif}"

 else

 MSG "DONE!"

 fi

 else

 echo "SKIPPED! Already exists!"

 fi

 done

 exit 0

elif ["${ROLE_OPERATION}" = "${OP_DELETE}"]; then

 ###################################

 INFO "DELETE ROLES"

 ###################################

 if ["${CONFIRMATION}" = "${TRUE}"]; then

 echo "WARNING: FOLLOWING ${#roles[@]} ATLAS ROLES WILL BE PERMANENTLY DELETED FROM

LDAP:"

Appendices

133

 echo "${roles[@]}"

 read -p "ARE YOU SURE (y/n)?" -n 1 answer

 echo

 if ["${answer}" != "y"]; then

 echo "Operation aborted!"

 exit 2

 fi

 fi

 for role in ${roles[@]}

 do

 MSGN "Delete role [$role]..."

 _options="${ldapoptions}"

_filter="(&${ldapfilter}(|(cn=${LDAP_ROLE_PREFIX_ASSIGNED}${LDAP_ROLE_SEPARATOR}${role})(cn=${

LDAP_ROLE_PREFIX_ENABLED}${LDAP_ROLE_SEPARATOR}${role})))"

 _attr=("cn")

 role_dns="`ldapsearch ${_options} "${_filter}" ${_attr[@]} | grep '^dn:' | cut -d ':'

-f2-`"

 if [-n "${role_dns}"] ; then

 echo "${role_dns}" | ldapdelete -x ${ldapwriteoptions} -D "${userBindDN}" -h

${ldapserver}

 if ["${PIPESTATUS[1]}" != "0"]; then

 MSG "OPERATION FAILED! Role NOT deleted!"

 else

 MSG "DONE!"

 fi

 MSG "Delete junior-senior relations..."

_filter="(&${ldapfilter}(|(memberNisNetgroup=${LDAP_ROLE_PREFIX_ASSIGNED}${LDAP_ROLE_SEPARATOR

}${role})(memberNisNetgroup=${LDAP_ROLE_PREFIX_ENABLED}${LDAP_ROLE_SEPARATOR}${role})))"

 _attr=("memberNisNetgroup")

_grep_filter="^dn|${LDAP_ROLE_PREFIX_ASSIGNED}${LDAP_ROLE_SEPARATOR}${role}|${LDAP_ROLE_PREFIX

_ENABLED}${LDAP_ROLE_SEPARATOR}${role}|^$"

 _ldap_ldif=`ldapsearch ${_options} "${_filter}" ${_attr[@]} | grep -E

"${_grep_filter}" | while read line ; do echo $line;(echo ${line} | grep -q '^dn:') && (echo

"delete: ${_attr[0]}");done`

 echo "${_ldap_ldif}" | ldapmodify -x ${ldapwriteoptions} -D "${userBindDN}" -h

${ldapserver}

 if ["${PIPESTATUS[1]}" != "0"]; then

 MSG "OPERATION FAILED! Relationships NOT deleted!"

 INFO "LDIF: ${_ldap_ldif}"

 else

 MSG "DONE!"

 fi

 else

 echo "SKIPPED! Not found!"

 fi

 done

elif ["${ROLE_OPERATION}" = "${OP_UPDATE}"]; then

 ###################################

 INFO "UPDATE THE ROLE INFORMATION"

 ###################################

 if ["${#role_update_info[@]}" -eq 0]; then

 echo "No role information provided!"

 exit 3

 fi

 for role in ${roles[@]}

 do

 MSGN "Update information for role [${role}]..."

 if (! if_role_exists ${role}) ; then

 echo "SKIPPED! Role not found!"

 continue

 fi

 echo

 ldap_ldif=""

 for info in `echo "${role_update_info[@]}" | tr -d '(' | tr ')' '\n'`

 do

 MSGN "...[${info}]..."

 attr_name="${info%*=*}"

 attr_value="${info#*=*}"

 change_allowed="${TRUE}"

Appendices

134

 for attr_prot in ${LDAP_ROLE_PROTECTED_ATTR[@]}

 do

 if ["${attr_prot}" = "${attr_name}"]; then

 change_allowed="${FALSE}"

 break;

 fi

 done

 if ["${change_allowed}" = "${FALSE}"]; then

 echo "PROTECTED ATTRIBUTE!"

 continue;

 fi

 echo

 ldap_ldif="${ldap_ldif}dn:

cn=${LDAP_ROLE_PREFIX_ASSIGNED}${LDAP_ROLE_SEPARATOR}${role},${rolesBaseDN}

replace: ${attr_name}

${attr_name}: ${attr_value}

dn: cn=${LDAP_ROLE_PREFIX_ENABLED}${LDAP_ROLE_SEPARATOR}${role},${rolesBaseDN}

replace: ${attr_name}

${attr_name}: ${attr_value}

"

 done

 echo "${ldap_ldif}" | ldapmodify -x ${ldapwriteoptions} -D "${userBindDN}" -h

${ldapserver}

 if ["${PIPESTATUS[1]}" != "0"]; then

 MSG "FAILED! Information not updated for ${role}!"

 INFO "LDIF: ${ldap_ldif}"

 else

 MSG "DONE!"

 fi

 done

elif ["${ROLE_OPERATION}" = "${OP_UPDATE_JUNIOR_ADD}" -o "${ROLE_OPERATION}" =

"${OP_UPDATE_SENIOR_ADD}" -o "${ROLE_OPERATION}" = "${OP_UPDATE_JUNIOR_REMOVE}" -o

"${ROLE_OPERATION}" = "${OP_UPDATE_SENIOR_REMOVE}"]; then

 ###################################

 INFO "PROCESS JUNIOR-SENIOR ROLES RELATIONSHIPS"

 ###################################

 if ["${ROLE_OPERATION}" = "${OP_UPDATE_JUNIOR_ADD}" -o "${ROLE_OPERATION}" =

"${OP_UPDATE_JUNIOR_REMOVE}"]; then

 relation_type="junior"

 else

 relation_type="senior"

 fi

 if ["${ROLE_OPERATION}" = "${OP_UPDATE_JUNIOR_ADD}" -o "${ROLE_OPERATION}" =

"${OP_UPDATE_SENIOR_ADD}"]; then

 relation_op="add"

 else

 relation_op="delete"

 fi

 if ["${#role_update_info[@]}" -eq 0]; then

 echo "No ${relation_type} roles provided!"

 exit 3

 fi

 for role in ${roles[@]}

 do

 MSGN "${relation_op} ${relation_type}s for role [${role}]..."

 if (! if_role_exists ${role}) ; then

 echo "SKIPPED! Role not found!"

 continue

 fi

 echo

 ldap_ldif=""

 for xnior in ${role_update_info[@]}

 do

 echo -n "...${relation_type} [${xnior}]:"

 if (! if_role_exists ${xnior}) ; then

 echo "SKIPPED! Role not found!"

 continue

 else

 echo "OK"

 fi

Appendices

135

 if ["${relation_type}" = "junior"]; then

 # the junior of a role contains a memberNisNetgroup attribute with the role

value

 ldap_ldif="${ldap_ldif}dn:

cn=${LDAP_ROLE_PREFIX_ASSIGNED}${LDAP_ROLE_SEPARATOR}${xnior},${rolesBaseDN}

${relation_op}: memberNisNetgroup

memberNisNetgroup: ${LDAP_ROLE_PREFIX_ASSIGNED}${LDAP_ROLE_SEPARATOR}${role}

dn: cn=${LDAP_ROLE_PREFIX_ENABLED}${LDAP_ROLE_SEPARATOR}${xnior},${rolesBaseDN}

${relation_op}: memberNisNetgroup

memberNisNetgroup: ${LDAP_ROLE_PREFIX_ENABLED}${LDAP_ROLE_SEPARATOR}${role}

"

 else

 # the senior of a role is a memberNisNetgroup value in the role netgroup

definition

 ldap_ldif="${ldap_ldif}dn:

cn=${LDAP_ROLE_PREFIX_ASSIGNED}${LDAP_ROLE_SEPARATOR}${role},${rolesBaseDN}

${relation_op}: memberNisNetgroup

memberNisNetgroup: ${LDAP_ROLE_PREFIX_ASSIGNED}${LDAP_ROLE_SEPARATOR}${xnior}

dn: cn=${LDAP_ROLE_PREFIX_ENABLED}${LDAP_ROLE_SEPARATOR}${role},${rolesBaseDN}

${relation_op}: memberNisNetgroup

memberNisNetgroup: ${LDAP_ROLE_PREFIX_ENABLED}${LDAP_ROLE_SEPARATOR}${xnior}

"

 fi

 done

 echo "${ldap_ldif}" | ldapmodify -x ${ldapwriteoptions} -D "${userBindDN}" -h

${ldapserver}

 if ["${PIPESTATUS[1]}" != "0"]; then

 MSG "FAILED! Relationships not changed for ${role}!"

 INFO "LDIF: ${ldap_ldif}"

 else

 MSG "DONE!"

 fi

 done

else

 echo "Internal error: unknown role operation code ${ROLE_OPERATION}";

fi

8.4 Roles Display PHP script

LDAP_roles.php: helper script that retrieves the roles from LDAP.

<?php

/**

 * ATLAS Point 1 roles retrieved from LDAP.

 *

 * @author Marius Leahu

**/

if (version_compare(phpversion(), '5.0.0', '<'))

{

 die('You need at least PHP version 5.0.0!');

}

class LDAP_roles

{

 // keys for the roles array

 const ROLE_ASSIGNABLE = 'assignable';

 const NODE_ID = 'nodeid';

 const PARENT_NODE_IDS_ARRAY = 'parentnodeids';

 const SENIORS_ARRAY = 'seniors';

 const JUNIORS_ARRAY = 'juniors';

 const MEMBERS_ASSIGNED_ARRAY = 'membersassigned';

 const MEMBERS_ENABLED_ARRAY = 'membersenabled';

 const LDAP_ROLE_PREFIX_ASSIGNED = 'RA-';

 const LDAP_ROLE_PREFIX_ENABLED = 'RE-';

 const LDAP_OBJ_ROLE = 'amRole';

 const LDAP_ATTR_ROLE_NAME = 'cn';

Appendices

136

 const LDAP_ATTR_ROLE_ASSIGNABLE = 'amroleassignable';

 const LDAP_ATTR_MEMBERS = 'nisnetgrouptriple';

 const LDAP_ATTR_SENIORS = 'membernisnetgroup';

 private $ldap_host;

 private $ldap_basedn;

 private $roles = array();

 private $verboseMode;

 public function __construct($ldap_host, $ldap_basedn) {

 $this->ldap_host = $ldap_host;

 $this->ldap_basedn = $ldap_basedn;

 $this->verboseMode = false;

 }

 public function setVerboseMode($verboseMode){

 $this->verboseMode = $verboseMode;

 }

 private function print_msg($msg) {

 if ($this->verboseMode) echo $msg;

 }

 private function print_r_msg($array) {

 if ($this->verboseMode) print_r($array);

 }

 /**

 * retrieves the roles from LDAP

 * @param string $ldap_search_filter

 * @return array with search results as returned by the ldap search function

 */

 private function searchLDAPforRoles($ldap_search_filter) {

 $con=ldap_connect($this->ldap_host);

 if ($con) {

 ldap_set_option($con, LDAP_OPT_PROTOCOL_VERSION, 3);

 $ldapb=ldap_bind($con); // this is an "anonymous" bind, typically read-only access

 if ($ldapb){

 $sr=ldap_search($con, $this->ldap_basedn, $ldap_search_filter);

 ldap_sort($con, $sr, self::LDAP_ATTR_ROLE_NAME);

 $info = ldap_get_entries($con, $sr);

 return $info;

 } else {

 echo "<h4>Unable to bind to LDAP server ". $this->ldap_host ." </h4>";

 }

 ldap_close($con);

 } else {

 echo "<h4>Unable to connect to LDAP server</h4>";

 }

 }

 /**

 * get the roles in an array

 * @param int $role_prefix optionally parameter to get only the role with a given prefix

 * @return array with the following structure: for each rolename, there are:

 * the boolean attribute $roles[rolename][assignable]

 * the node id $roles[rolename][nodeid]

 * the parent node id $roles[rolename][parentnodeid]

 * the users member of this role $roles[rolename][users]

 * the roles seniors and juniors: $roles[rolename][seniors],

$roles[rolename][juniors]

 */

 public function getRoles($role_prefix="") {

 $pos = strpos($role_prefix, "!");

 if ($pos !== false && $pos == 0) {

 $role_prefix = substr($role_prefix, 1);

 }

 $role_name_filter = "(|".

 "(". self::LDAP_ATTR_ROLE_NAME ."=". self::LDAP_ROLE_PREFIX_ASSIGNED .

$role_prefix ."*)".

 "(". self::LDAP_ATTR_ROLE_NAME ."=". self::LDAP_ROLE_PREFIX_ENABLED .

$role_prefix ."*)".

 ")";

 if ($pos !== false && $pos == 0) {

 $role_name_filter = "(&".

 "(!". $role_name_filter .")".

Appendices

137

 "(|" .

 "(" . self::LDAP_ATTR_ROLE_NAME ."=". self::LDAP_ROLE_PREFIX_ASSIGNED

."*)".

 "(" . self::LDAP_ATTR_ROLE_NAME ."=". self::LDAP_ROLE_PREFIX_ENABLED

."*)".

 ")".

 ")";

 }

 $ldap_search_filter = "(&". $role_name_filter . "(objectClass=". self::LDAP_OBJ_ROLE .

"))";

 $this->print_msg("LDAP search filter [".$ldap_search_filter ."]");

 $ldap_search_result=$this->searchLDAPforRoles($ldap_search_filter);

 $this->print_r_msg($ldap_search_result);

 $this->roles = array();

 // iterate first time to extract the role names from the search result

 for($i=0; $i<$ldap_search_result['count']; $i++) {

 // get the role name from LDAP search result

 $role_name = $ldap_search_result[$i][self::LDAP_ATTR_ROLE_NAME][0];

 $pos = strpos($role_name, self::LDAP_ROLE_PREFIX_ASSIGNED);

 // check if the role name has the ASSIGNED prefix at position 0

 if ($pos === false || $pos != 0) continue;

 //cut both RA and RE prefixes

 $role_name = substr($role_name, strlen(self::LDAP_ROLE_PREFIX_ASSIGNED));

 // initialize the attributes

 $this->roles[$role_name][self::ROLE_ASSIGNABLE] = "";

 $this->roles[$role_name][self::NODE_ID] = $i + 1;

 $this->roles[$role_name][self::PARENT_NODE_IDS_ARRAY] = array();

 $this->roles[$role_name][self::MEMBERS_ASSIGNED_ARRAY] = array();

 $this->roles[$role_name][self::MEMBERS_ENABLED_ARRAY] = array();

 $this->roles[$role_name][self::SENIORS_ARRAY] = array();

 $this->roles[$role_name][self::JUNIORS_ARRAY] = array();

 }

 $current_node_id = $ldap_search_result['count'] + 1;

 // set the value of the attributes

 for($i=0; $i<$ldap_search_result['count']; $i++) {

 $ldap_role = $ldap_search_result[$i];

 // get the role name from LDAP search result

 $role_name = $ldap_role[self::LDAP_ATTR_ROLE_NAME][0];

 $role_type_prefix = self::LDAP_ROLE_PREFIX_ASSIGNED;

 $pos = strpos($role_name, self::LDAP_ROLE_PREFIX_ENABLED);

 // check if the role name has the ENABLED prefix at position 0

 if ($pos !== false && $pos == 0) {

 $role_type_prefix = self::LDAP_ROLE_PREFIX_ENABLED;

 }

 // cut the prefix

 $role_name = substr($role_name, strlen($role_type_prefix));

 // set the assignable attribute

 $this->roles[$role_name][self::ROLE_ASSIGNABLE] = false;

 if (array_key_exists(self::LDAP_ATTR_ROLE_ASSIGNABLE, $ldap_role)) {

 $this->roles[$role_name][self::ROLE_ASSIGNABLE] =

$ldap_role[self::LDAP_ATTR_ROLE_ASSIGNABLE][0];

 } else {

 echo "ERROR: Attribute [". self::LDAP_ATTR_ROLE_ASSIGNABLE ."] not found for role

[". $role_name ."]";

 }

 //add the users

 if (array_key_exists(self::LDAP_ATTR_MEMBERS, $ldap_role)) {

 for($j=0; $j<$ldap_role[self::LDAP_ATTR_MEMBERS]['count']; $j++) {

 if ($role_type_prefix == self::LDAP_ROLE_PREFIX_ASSIGNED)

 $this->roles[$role_name][self::MEMBERS_ASSIGNED_ARRAY][$j] =

str_replace(array("(", ",", ")"), "", $ldap_role[self::LDAP_ATTR_MEMBERS][$j]);

 if ($role_type_prefix == self::LDAP_ROLE_PREFIX_ENABLED)

 $this->roles[$role_name][self::MEMBERS_ENABLED_ARRAY][$j] =

str_replace(array("(", ",", ")"), "", $ldap_role[self::LDAP_ATTR_MEMBERS][$j]);

 }

 }

Appendices

138

 // process the seniors and juniors only for the roles assigned

 if ($role_type_prefix == self::LDAP_ROLE_PREFIX_ENABLED) continue;

 //add the senior roles of this role, them this role as junior of the senior

 if (array_key_exists(self::LDAP_ATTR_SENIORS, $ldap_role)) {

 for($j=0; $j<$ldap_role[self::LDAP_ATTR_SENIORS]['count']; $j++) {

 // get the senior name

 $senior_name = $ldap_role[self::LDAP_ATTR_SENIORS][$j];

 $senior_name = substr($senior_name, strlen($role_type_prefix));

 // check if the senior is still part of the roles in the search result; if

not, then skip

 if (! array_key_exists($senior_name, $this->roles)) continue;

 // add it to the list of seniors

 $this->roles[$role_name][self::SENIORS_ARRAY][$j] = $senior_name;

 // add the junior relation

 $this->roles[$senior_name][self::JUNIORS_ARRAY][] = $role_name;

 }

 }

 }

 return $this->roles;

 }

}

?>

roles_img.php: the script that takes the data from LDAP_roles.php and feeds it to the
GDRenderer.php [43] script.

<?php

/**

 * ATLAS Point 1 roles retrieved from LDAP.

 * Uses: phpTreeGraph

 *

 * @author Marius Leahu

**/

// get the parameters

$ldap_host = "localhost";

$ldap_role_prefix = "";

$top_role_filter = "LAR";

$test_mode = "";

if ($test_mode == "") {

 $ldap_host = $_GET['ldap_host'];

 $ldap_role_prefix = $_GET['ldap_role_prefix'];

 $top_role_filter = $_GET['top_role_filter'];

}

if ($ldap_host == ""){

 $ldap_host = "localhost";

}

function print_test($msg){

 if ($test_mode != "") echo $msg;

}

//include GD rendering class

require_once('./classes/GDRenderer.php');

//create new GD renderer, optinal parameters: LevelSeparation, SiblingSeparation,

SubtreeSeparation, defaultNodeWidth, defaultNodeHeight

$objTree = new GDRenderer(35, 10, 120);

//include LDAP roles class

require_once('./LDAP_roles.php');

$roles_obj = new LDAP_roles($ldap_host, "ou=atlas,o=cern,c=ch");

Appendices

139

$roles = $roles_obj->getRoles($ldap_role_prefix);

//add nodes to the tree, parameters: id, parentid optional text, width, height, image(path)

$current_roles_count=count($roles);

$previous_roles_count=$current_roles_count + 1;

$current_node_id = 0;

while ($current_roles_count < $previous_roles_count){

 $previous_roles_count=$current_roles_count;

 foreach($roles as $role_name => $role){

 // skip the node if it has some seniors because its seniors must be processed first

 if (count($role[LDAP_roles::SENIORS_ARRAY]) > 0) continue;

 if (count($role[LDAP_roles::PARENT_NODE_IDS_ARRAY]) == 0) {

 $role[LDAP_roles::PARENT_NODE_IDS_ARRAY][] = 0;

 // this is a top level role, so let's see if it matches the filter

 if ($top_role_filter != "" && ! preg_match("/" . $top_role_filter . "/",

$role_name)) {

 // this role doesn't match the filter, so let's remove it and then delete it

from children's seniors list

 unset($roles[$role_name]);

 foreach($role[LDAP_roles::JUNIORS_ARRAY] as $junior) {

 // remove the current role from the its junior's seniors array

 foreach($roles[$junior][LDAP_roles::SENIORS_ARRAY] as $j => $jsenior_name){

 if ($jsenior_name == $role_name) {

 unset($roles[$junior][LDAP_roles::SENIORS_ARRAY][$j]);

 }

 }

 }

 // continue with the next role

 continue;

 }

 }

 // now, for each parent node id, create a node object with new id and add each of this

ids to the juniors' parent node ids array

 foreach($role[LDAP_roles::PARENT_NODE_IDS_ARRAY] as $parent_node_id) {

 // create the node object

 $current_node_id++;

 $img_name = "roles_na.png";

 $node_text = $role_name;

 if ($role[LDAP_roles::ROLE_ASSIGNABLE] == 'true'){

 $img_name = "roles_a.png";

 $node_text = $node_text . " " .

 "(".

 count($role[LDAP_roles::MEMBERS_ENABLED_ARRAY]). "/" .

 count($role[LDAP_roles::MEMBERS_ASSIGNED_ARRAY]).

 ")";

 }

 $node_width = strlen($node_text) * 8 + 4;

 $node_width = max($node_width, 100);

 $objTree->add($current_node_id, $parent_node_id, $node_text, $node_width, 20,

$img_name);

 foreach($role[LDAP_roles::JUNIORS_ARRAY] as $junior) {

 $roles[$junior][LDAP_roles::PARENT_NODE_IDS_ARRAY][] = $current_node_id;

 // remove the current role from the its junior's seniors array

 foreach($roles[$junior][LDAP_roles::SENIORS_ARRAY] as $j => $jsenior_name){

 if ($jsenior_name == $role_name)

 unset($roles[$junior][LDAP_roles::SENIORS_ARRAY][$j]);

 }

 }

 }

 unset($roles[$role_name]);

 }

 $current_roles_count=count($roles);

}

if ($current_roles_count > 0) {

 echo "ERROR: Cycle found!";

 print_r($roles);

 return 1;

}

$objTree->setBGColor(array(255, 255, 255));

Appendices

140

$objTree->setNodeColor(array(0, 128, 255));

$objTree->setLinkColor(array(0, 64, 128));

$objTree->setNodeBorder(array(0, 0, 0), 2);

$objTree->setFTFont('/usr/share/fonts/bitstream-vera/Vera.ttf', 10, 0, GDRenderer::CENTER |

GDRenderer::TOP);

if ($test_mode == "") {

 $objTree->stream();

}

?>

8.5 User’s roles management shell script

#!/bin/bash

Access Manager script to manage the users-roles. relationship.

Versions:

18/02/08 - mleahu

Initial version

22/05/08 - mleahu

Default user to bind as to LDAP is AccessManagerAdmin

07/08/08 - mleahu

Fixed a bug in the MSG(N) functions

04/09/08 - mleahu

Added -G flag to specify a role category to prefix the roles to be processed

Allow to process more users in the same time provided either in the command line or in a

input text file

05/09/08 - mleahu

Added -L flag to display the roles defined in LDAP

08/09/08 - mleahu

Convert usernames to lower case

10/10/12 - mleahu

Added -D option to show the roles assigned and disabled

Added -Q option to show the users with a role assigned and disabled

version='$Revision: 52762 $'

TRUE=1

FALSE=0

VERBOSE=$FALSE

retcode=0

function INFO()

{

 if ["$VERBOSE" = "$TRUE"]; then

 echo "$@"

 fi

}

function MSG()

{

 echo -n ">>> "

 echo "$@"

}

function MSGN()

{

 echo -n ">>> "

 echo -n "$@"

}

function init_grep_filter()

{

 local -a ldapattr=($@)

 # generate the grep filter

 grepfilter="${ldapattr[0]}:"

 for((i=1;i<${#ldapattr[@]};i++))

 do

 grepfilter="${grepfilter}|${ldapattr[$i]}:"

Appendices

141

 done

}

user_default=`whoami`

managerDN="cn=Manager"

#userBindDN="uid=AccessManagerAdmin,ou=People"

userBindDN=${managerDN}

passwdBind="marius"

ldapserver=`awk '/^host/ {printf $2}' /etc/ldap.conf`

basedn=`awk '/^base/ {printf $2}' /etc/ldap.conf`

the LDAP specific attributes and values for roles

LDAP_ROLE_OBJECTCLASS="amRole"

LDAP_ROLE_ATTR_ASSIGNABLE="amRoleAssignable"

LDAP_ROLE_ASSIGNABLE="true"

LDAP_ROLE_NOT_ASSIGNABLE="false"

LDAP_ROLE_PREFIX_ASSIGNED="RA"

LDAP_ROLE_PREFIX_ENABLED="RE"

LDAP_ROLE_PREFIX="${LDAP_ROLE_PREFIX_ASSIGNED}"

LDAP_ROLE_SEPARATOR="-"

LDAP_USER_ROLE_ATTR="nisNetgroupTriple"

function format_user_for_ldap_filter()

{

 local _user=$1

 echo "\\(,${user},\\)"

}

function format_user_for_role()

{

 local _user=$1

 echo "(,${user},)"

}

the roles operations

OP_HELP=0

OP_SHOW_USER_ROLES=1

OP_SHOW_ROLES=2

OP_SHOW_ROLES_CONTENT=3

OP_ASSIGN=4

OP_ASSIGN_ENABLE=5

OP_REVOKE=6

OP_ENABLE=7

OP_DISABLE=8

ROLE_STATE_ASSIGNED="assigned"

ROLE_STATE_ENABLED="enabled"

ROLE_STATE_DISABLED="disabled"

role_state="";

output_for_file="${FALSE}"

input_file=""

role_category=""

OP_SHOWS=${OP_SHOW_ROLES_CONTENT}

OPERATION="${OP_HELP}"

declare -a roles=();

declare -a users=();

function set_op_value(){

 if ["${OPERATION}" -gt "${OP_HELP}"]

 then

 echo "Only one operation at the time is allowed!"

 exit 1

 fi

 OPERATION="$1"

}

while getopts "hG:La:A:r:e:d:c:C:Q:sSDfu:F:m:Mp:l:b:v" option

do

 case $option in

 h) echo "`basename $0`, version $version";

 echo "Access Manager script to manage the users-roles RBAC relationship.";

 echo ""

 echo -n "Usage: `basename $0` [-h] [-G role_category] [-L] [-a|-A|-r|-e|-d|-c|-C|-Q

roles] [-s|-S|-D] [-f] [-u usernames] [-F input_file]";

 if [-z "${role_category}"]; then

Appendices

142

 # the user is not restricted to a category,

 echo -n " [-m userBindDN] [-M] [-p password] [-l ldapserver] [-b basedn] [-v]";

 fi

 echo ""

 echo " -h this info"

 echo ""

 echo " -G <role_category> to be used as prefix for the <roles>;"

 if [-n "${role_category}"]; then

 echo " EXAMPLE: the role_category ${role_category} and the roles 'shifter

DAQ:expert' "

 echo " will produce the roles '${role_category}:shifter

${role_category}:DAQ:expert' "

 echo " which will be processed according to the other flags"

 fi

 echo ""

 echo " Roles operations (only ONE operation from the list below can be called):"

 echo " -L list the roles defined in LDAP in the role_category (if specified)"

 echo " -a assign the <roles> to the <username>"

 echo " -A assign and enable the <roles> to the <username>"

 echo " -r revoke the <roles> for the <username>"

 echo " -e enable the <roles> for the <username>"

 echo " -d disable the <roles> for the <username>"

 echo " -c display the users with the <roles> assigned"

 echo " -C display the users with the <roles> assigned and enabled"

 echo " -Q display the users with the <roles> assigned and disabled"

 echo " -s show the roles assigned to the user"

 echo " -S show the roles assigned and enabled to the user"

 echo " -D show the roles assigned and disabled for the user"

 echo ""

 echo " -f display the roles in a format to be stored in files"

 echo " -u user names; default user is [${user_default}]"

 echo " -F input text file with usernames one per line at the beginning; comments

start with #"

 if [-z "${role_category}"]; then

 echo " -m authenticate as <userBindDN> to the LDAP server; default is

AccessManagerAdmin"

 echo " -M authenticate as [${managerDN}] to the LDAP server"

 echo " -p password to bind to the LDAP server"

 echo " -l use this ldapserver; default is [${ldapserver}]"

 echo " -b use this basedn; default is [${basedn}]"

 echo " -v verbose mode"

 fi

 echo ""

 echo "Author: mleahu@CERN"

 exit 0;;

 G) role_category=$OPTARG; user_default="";;

 L) set_op_value ${OP_SHOW_ROLES};;

 v) VERBOSE=$TRUE;;

 a) set_op_value ${OP_ASSIGN}; roles=($OPTARG);;

 A) set_op_value ${OP_ASSIGN_ENABLE}; roles=($OPTARG);;

 r) set_op_value ${OP_REVOKE}; roles=($OPTARG);;

 e) set_op_value ${OP_ENABLE}; roles=($OPTARG);;

 d) set_op_value ${OP_DISABLE}; roles=($OPTARG);;

 c) set_op_value ${OP_SHOW_ROLES_CONTENT}; roles=($OPTARG

);role_state="${ROLE_STATE_ASSIGNED}";;

 C) set_op_value ${OP_SHOW_ROLES_CONTENT}; roles=($OPTARG

);role_state="${ROLE_STATE_ENABLED}";;

 Q) set_op_value ${OP_SHOW_ROLES_CONTENT}; roles=($OPTARG

);role_state="${ROLE_STATE_DISABLED}";;

 s) set_op_value ${OP_SHOW_USER_ROLES};role_state="${ROLE_STATE_ASSIGNED}";;

 S) set_op_value ${OP_SHOW_USER_ROLES};role_state="${ROLE_STATE_ENABLED}";;

 D) set_op_value ${OP_SHOW_USER_ROLES};role_state="${ROLE_STATE_DISABLED}";;

 f) output_for_file="${TRUE}";;

 u) users=($OPTARG);;

 F) input_file=$OPTARG;;

 m) userBindDN="uid=$OPTARG,ou=People";;

 M) userBindDN=${managerDN};;

 p) passwdBind=$OPTARG;;

 l) ldapserver=$OPTARG;;

 b) basedn=$OPTARG;;

 esac

done

shift $(($OPTIND - 1))

if ["${OPERATION}" = "${OP_HELP}"]; then

 $0 -G "${role_category}" -h

 exit 0

Appendices

143

fi

userBindDN="${userBindDN},$basedn"

rolesBaseDN="ou=netgroup,$basedn"

if (! which ldapsearch > /dev/null 2>&1)

then

 echo "ldapsearch tool not found!"

 exit 2

fi

ldapoptions="-h ${ldapserver} -b ${rolesBaseDN} -x"

sort the output based on cn

ldapoptions="${ldapoptions} -S cn -LLL"

ldapfilter="(objectClass=${LDAP_ROLE_OBJECTCLASS})"

ldapwriteoptions=" -W "

display the roles available in LDAP

if ["${OPERATION}" = "${OP_SHOW_ROLES}"]; then

ldapfilter="(&${ldapfilter}(cn=${LDAP_ROLE_PREFIX}${LDAP_ROLE_SEPARATOR}${role_category}*))"

 ldapattrs="cn"

 ldapscope="SUB"

 MSG "ROLES AVAILABLE IN LDAP

[ldap://${ldapserver}/${rolesBaseDN}?${ldapattrs}?${ldapscope}?${ldapfilter}]"

 if [-n "${role_category}"]; then

 MSG "ROLES FROM CATEGORY [${role_category}]"

 fi

 ldapsearch ${ldapoptions} "${ldapfilter}" ${ldapattrs} | awk "/^${ldapattrs}:/ { print

substr(\$2,4) }"

 exit 0

fi

read the users from file

if [-n "${input_file}"]; then

 if [! -r "${input_file}"]; then

 echo "ERROR: Can't read the users from input file [${input_file}]"

 else

 users_from_file=(`grep -v "^#" ${input_file} | awk '{print $1}'`)

 INFO "${#users[@]} users from command line arguments"

 INFO "${#users_from_file[@]} users found in input file"

 users=(${users[@]} ${users_from_file[@]})

 fi

fi

#transform user names from upper case to lower case

for((i=0;i<${#users[@]};i++))

do

 users[$i]=`echo ${users[$i]} | tr '[:upper:]' '[:lower:]'`

done

update the role names in the list with the category prefix

if [-n "${role_category}" -a "${#roles[@]}" -gt "0"]; then

 for ((i=0;i<${#roles[@]}; i++)); do

 roles[$i]="${role_category}:${roles[$i]}"

 done

 echo "### ROLES TO PROCESS: [${roles[@]}]"

fi

if ["${OPERATION}" != "${OP_SHOW_ROLES_CONTENT}"]; then

 if ["${#users[@]}" -eq 0]; then

 users=("${user_default}")

 fi

 if ["${#users[@]}" -eq 0]; then

 echo "ERROR: User names must be provided!"

 exit 2

 else

 INFO "Check user names against LDAP..."

 #check if users are valid

 valid_users=()

 for user in ${users[@]}

 do

 if (! ldapsearch -x -b "uid=$user,ou=People,$basedn" -h "${ldapserver}"

"uid=$user" uid >/dev/null); then

 MSG "WARNING: Skip user [$user] because was not found in LDAP! " 1>&2

Appendices

144

 else

 valid_users=(${valid_users[@]} $user)

 fi

 done

 if ["${#valid_users[@]}" -gt 0]; then

 users=(${valid_users[@]})

 if ["${#users[@]}" -gt 1]; then

 MSG "TOTAL: ${#users[@]} users to process: [${users[@]}]"

 if ["${OPERATION}" -gt "${OP_SHOWS}"];

 then

 read -p "ARE YOU SURE YOU WANT TO PROCESS THEM (y/n)?" -n 1 answer

 echo

 if ["${answer}" != "y"]; then

 echo "Operation aborted!"

 exit 2

 fi

 fi

 fi

 else

 MSG "No users to process!"

 exit 0

 fi

 fi

fi

if ["${OPERATION}" -gt "${OP_SHOWS}"]; then

 # get the password to bind without

 if [-z "${passwdBind}"]

 then

 echo -e "Password for ${userBindDN}:"

 read -s passwdBind

 if [-z "${passwdBind}"];

 then

 echo "Empty password for ${userBindDN} account!"

 exit 1

 fi

 fi

 ldapwriteoptions=" -w ${passwdBind} "

fi

if ["${VERBOSE}" = "${TRUE}"]; then

 ldapwriteoptions="${ldapwriteoptions} -v"

fi

function if_role_exists_assignable()

{

 local _role=$1

 local _options="${ldapoptions}"

 local

_filter="(&${ldapfilter}(&(cn=${LDAP_ROLE_PREFIX}${LDAP_ROLE_SEPARATOR}${_role})(${LDAP_ROLE_A

TTR_ASSIGNABLE}=${LDAP_ROLE_ASSIGNABLE})))"

 local -a _attr=("cn")

 ldapsearch ${_options} "${_filter}" ${_attr[@]} | grep -q ${_role}

}

function is_user_netgroup_member()

{

 local _user=$1

 local _netgroup=$2

 local _options="${ldapoptions}"

 local _filter="(&${ldapfilter}(&(${LDAP_USER_ROLE_ATTR}=`format_user_for_ldap_filter

${_user}`)(cn=${_netgroup})))"

 local -a _attr=("${LDAP_USER_ROLE_ATTR}")

 ldapsearch ${_options} "${_filter}" ${_attr[@]} | grep -q ${_user}

}

should be called like this: add_remove_user_to_netgroup <"add"|"delete"> ${user} ${role}

function add_remove_user_to_netgroup()

{

 local _operation=$1

 local _user=$2

 local _netgroup=$3

 if ["${_operation}" = "add"]; then

Appendices

145

 if (is_user_netgroup_member ${_user} ${_netgroup}); then

 # already added

 MSGN "ALREADY DONE!"

 return 0

 fi

 elif ["${_operation}" = "delete"]; then

 if (! is_user_netgroup_member ${_user} ${_netgroup}); then

 # already deleted

 MSGN "ALREADY DONE!"

 return 0

 fi

 else

 echo "WRONG OPERATION: ${_operation}"

 return 1

 fi

 local _ldif="dn: cn=${_netgroup},${rolesBaseDN}

${_operation}: ${LDAP_USER_ROLE_ATTR}

${LDAP_USER_ROLE_ATTR}: `format_user_for_role ${_user}`"

 echo "${_ldif}" | ldapmodify -x ${ldapwriteoptions} -D "${userBindDN}" -h ${ldapserver} >

/dev/null

 if ["${PIPESTATUS[1]}" != "0"]; then

 MSG "FAILED!"

 INFO "LDIF: ${ldap_ldif}"

 else

 MSGN "OK!"

 fi

}

if ["${OPERATION}" = "${OP_SHOW_USER_ROLES}"]; then

 for user in ${users[@]}

 do

 if ["${#users[@]}" -gt 1 -a "${output_for_file}" = "${FALSE}"]; then echo "###

${user}"; fi

 #############################

 INFO "### DISPLAY USER[${user}]'S ROLES IN STATE [`echo ${role_state}| tr a-z A-Z`]

###"

 #############################

 if ["${role_state}" = "${ROLE_STATE_DISABLED}"]; then

filter="(&${ldapfilter}(&(|(cn=${LDAP_ROLE_PREFIX_ASSIGNED}${LDAP_ROLE_SEPARATOR}*)(cn=${LDAP_

ROLE_PREFIX_ENABLED}${LDAP_ROLE_SEPARATOR}*))(${LDAP_USER_ROLE_ATTR}=`format_user_for_ldap_fil

ter $user`)))"

 attr=("cn")

 init_grep_filter ${attr[@]}

 if ["${output_for_file}" = "${TRUE}"]; then

 echo -n "$user: "

 ldapsearch ${ldapoptions} "${filter}" ${attr[@]} | grep -P ${grepfilter} | cut

-d "${LDAP_ROLE_SEPARATOR}" -f 2- | sort | uniq -u |tr '\n' '\t'

 echo

 else

 ldapsearch ${ldapoptions} "${filter}" ${attr[@]} | grep -P ${grepfilter} | cut

-d "${LDAP_ROLE_SEPARATOR}" -f 2- | sort | uniq -u

 fi

 else

 prefix="${LDAP_ROLE_PREFIX_ASSIGNED}"

 if ["${role_state}" = "${ROLE_STATE_ENABLED}"]; then

 prefix="${LDAP_ROLE_PREFIX_ENABLED}"

 fi

filter="(&${ldapfilter}(&(cn=${prefix}${LDAP_ROLE_SEPARATOR}*)(${LDAP_USER_ROLE_ATTR}=`format_

user_for_ldap_filter $user`)))"

 attr=("cn")

 init_grep_filter ${attr[@]}

 if ["${output_for_file}" = "${TRUE}"]; then

 echo -n "$user: "

 ldapsearch ${ldapoptions} "${filter}" ${attr[@]} | grep -P ${grepfilter} | cut

-d "${LDAP_ROLE_SEPARATOR}" -f 2- | sort | tr '\n' '\t'

 echo

 else

 ldapsearch ${ldapoptions} "${filter}" ${attr[@]} | grep -P ${grepfilter} | cut

-d "${LDAP_ROLE_SEPARATOR}" -f 2- | sort

 fi

 fi

 done

Appendices

146

elif ["${OPERATION}" = "${OP_SHOW_ROLES_CONTENT}"]; then

 #############################

 INFO "DISPLAY THE CONTENT OF ROLES [${roles[@]}] IN STATE [`echo ${role_state}| tr a-z A-

Z`]"

 #############################

 prefix="${LDAP_ROLE_PREFIX_ASSIGNED}"

 if ["${role_state}" = "${ROLE_STATE_ENABLED}"]; then

 prefix="${LDAP_ROLE_PREFIX_ENABLED}"

 fi

 attr=("${LDAP_USER_ROLE_ATTR}")

 init_grep_filter ${attr[@]}

 for role in ${roles[@]}

 do

 if ["${#roles[@]}" -gt "1"]; then

 echo "### ROLE [$role]"

 fi

 filter="(&${ldapfilter}(cn=${prefix}${LDAP_ROLE_SEPARATOR}${role}))"

 # check first if the role exists

 if (! ldapsearch ${ldapoptions} "${filter}" cn | grep -q "${role}"); then

 MSG "ROLE [$role] NOT DEFINED!"

 continue;

 fi

 if ["${role_state}" = "${ROLE_STATE_DISABLED}"]; then

filter="(&${ldapfilter}(|(cn=${LDAP_ROLE_PREFIX_ASSIGNED}${LDAP_ROLE_SEPARATOR}${role})(cn=${L

DAP_ROLE_PREFIX_ENABLED}${LDAP_ROLE_SEPARATOR}${role})))"

 if ["${output_for_file}" = "${TRUE}"]; then

 ldapsearch ${ldapoptions} "${filter}" ${attr[@]} | grep -P ${grepfilter} |

sort | cut -d ',' -f2 | tr -d ")" | uniq -u | while read line

 do

 echo "$line: ${role}"

 done

 else

 ldapsearch ${ldapoptions} "${filter}" ${attr[@]} | grep -P ${grepfilter} |

sort | cut -d ',' -f2 | tr -d ')' | uniq -u

 if ["${PIPESTATUS[0]}" -ne 0]; then

 MSG "ROLE NOT FOUND!"

 fi

 fi

 else

 if ["${output_for_file}" = "${TRUE}"]; then

 ldapsearch ${ldapoptions} "${filter}" ${attr[@]} | grep -P ${grepfilter} |

sort | cut -d ',' -f2 | tr -d ")" | while read line

 do

 echo "$line: ${role}"

 done

 else

 ldapsearch ${ldapoptions} "${filter}" ${attr[@]} | grep -P ${grepfilter} |

sort | cut -d ',' -f2 | tr -d ')'

 if ["${PIPESTATUS[0]}" -ne 0]; then

 MSG "ROLE NOT FOUND!"

 fi

 fi

 fi

 done

elif ["${OPERATION}" = "${OP_ASSIGN}"]; then

 #############################

 INFO "ASSIGN ROLES "

 #############################

 for user in ${users[@]}

 do

 MSG "Assign roles to user [$user]..."

 for role in ${roles[@]}

 do

 MSGN "...role [$role]..."

 if (! if_role_exists_assignable ${role}); then

 echo "SKIPPED! Role doesn't exist!"

 continue

 fi

 echo -n "assign "

 add_remove_user_to_netgroup "add" "${user}"

"${LDAP_ROLE_PREFIX_ASSIGNED}${LDAP_ROLE_SEPARATOR}${role}"

 echo

 done

Appendices

147

 done

 INFO "DONE"

elif ["${OPERATION}" = "${OP_ASSIGN_ENABLE}"]; then

 #############################

 INFO "ASSIGN AND ENABLE ROLES "

 #############################

 for user in ${users[@]}

 do

 MSG "Assign and enable roles to user [$user]..."

 for role in ${roles[@]}

 do

 MSGN "...role [$role]..."

 if (! if_role_exists_assignable ${role}); then

 echo "SKIPPED! Role doesn't exist!"

 continue

 fi

 echo -n "assign "

 add_remove_user_to_netgroup "add" "${user}"

"${LDAP_ROLE_PREFIX_ASSIGNED}${LDAP_ROLE_SEPARATOR}${role}"

 echo -n " ...enable "

 add_remove_user_to_netgroup "add" "${user}"

"${LDAP_ROLE_PREFIX_ENABLED}${LDAP_ROLE_SEPARATOR}${role}"

 echo

 done

 done

 INFO "DONE"

elif ["${OPERATION}" = "${OP_REVOKE}"]; then

 #############################

 INFO "REVOKE ROLES "

 #############################

 for user in ${users[@]}

 do

 MSG "Revoke roles from user [$user]..."

 for role in ${roles[@]}

 do

 MSGN "...role [$role]..."

 if (! if_role_exists_assignable ${role}); then

 echo "SKIPPED! Role doesn't exist!"

 continue

 fi

 if (! is_user_netgroup_member ${user}

"${LDAP_ROLE_PREFIX_ASSIGNED}${LDAP_ROLE_SEPARATOR}${role}"); then

 echo "SKIPPED! Role not assigned!"

 continue

 fi

 echo -n "disable "

 add_remove_user_to_netgroup "delete" "${user}"

"${LDAP_ROLE_PREFIX_ENABLED}${LDAP_ROLE_SEPARATOR}${role}"

 echo -n " ...revoke "

 add_remove_user_to_netgroup "delete" "${user}"

"${LDAP_ROLE_PREFIX_ASSIGNED}${LDAP_ROLE_SEPARATOR}${role}"

 echo

 done

 done

 INFO "DONE"

elif ["${OPERATION}" = "${OP_ENABLE}"]; then

 #############################

 INFO "ENABLE ROLES "

 #############################

 for user in ${users[@]}

 do

 MSG "Enable roles for user [$user]..."

 for role in ${roles[@]}

 do

 MSGN "...role [$role]..."

 if (! is_user_netgroup_member ${user}

"${LDAP_ROLE_PREFIX_ASSIGNED}${LDAP_ROLE_SEPARATOR}${role}"); then

 echo "SKIPPED! Role not assigned!"

 continue

 fi

 echo -n "enable "

 add_remove_user_to_netgroup "add" "${user}"

"${LDAP_ROLE_PREFIX_ENABLED}${LDAP_ROLE_SEPARATOR}${role}"

 echo

 done

 done

 INFO "DONE"

Appendices

148

elif ["${OPERATION}" = "${OP_DISABLE}"]; then

 #############################

 INFO "DISABLE ROLES "

 #############################

 for user in ${users[@]}

 do

 MSG "Disable roles for user [$user]..."

 for role in ${roles[@]}

 do

 MSGN "...role [$role]..."

 if (! is_user_netgroup_member ${user}

"${LDAP_ROLE_PREFIX_ASSIGNED}${LDAP_ROLE_SEPARATOR}${role}"); then

 echo "SKIPPED! Role not assigned!"

 continue

 fi

 if (! is_user_netgroup_member ${user}

"${LDAP_ROLE_PREFIX_ENABLED}${LDAP_ROLE_SEPARATOR}${role}"); then

 echo "SKIPPED! Role not enabled!"

 continue

 fi

 echo -n "disable "

 add_remove_user_to_netgroup "delete" "${user}"

"${LDAP_ROLE_PREFIX_ENABLED}${LDAP_ROLE_SEPARATOR}${role}"

 echo

 done

 done

 INFO "DONE"

fi

exit 0

8.6 Login restriction enforcement shell script

#!/bin/bash

Retrieve the AM rules from LDAP to restrict the login access on cluster nodes based on

roles/netgroups.

Version

03/06/2008 [mleahu]: Initial version

16/06/2008 [mleahu]: Added support for restrictions with POSIX groups

25/06/2008 [mleahu]: Added flag to restart the ssh service

05/09/2008 [mleahu]: Touch the crontab file if not exists

08/09/2008 [mleahu]: Write the output of cronjob to /var/bwm/amLoginRestriction

08/09/2008 [mleahu]: Create the crontab if dir doesn't exist

07/10/2008 [mleahu]: Exits if the ldap search fails

13/10/2008 [mleahu]: restart the crond service after the crontab update

12/05/2009 [lvalsan]: Added support for the uri configuration directive in /etc/ldap.conf

version='$Revision: 1.18 $'

#get the script full path

pushd `dirname $0`>/dev/null

c_dir=`pwd`

popd >/dev/null

TRUE=1

FALSE=0

VERBOSE=$FALSE

OP_SHOW_USERS=$FALSE

OP_ACCESS_CONF_BAK=$FALSE

OP_CRONJOB_REMOVE=$FALSE

OP_CRONJOB=0

OP_RESTART_SERVICES=$FALSE

cron_cmd_flags="-u"

cron_cmd="${c_dir}/`basename $0` ${cron_cmd_flags}"

crontab_file="/var/spool/cron/`whoami`"

crontab_log="/var/bwm/`basename $0`"

function INFO()

{

Appendices

149

 if ["$VERBOSE" = "$TRUE"]; then

 echo "$@"

 fi

}

function MSG()

{

 echo -n ">>> "

 echo $@

}

function MSGN()

{

 echo -n ">>> "

 echo -n $@

}

machine_name=`hostname -s`

ldapserver=`awk '/^host/ {printf $2}' /etc/ldap.conf`

basedn=`awk '/^base/ {printf $2}' /etc/ldap.conf`

ldapuri=`awk '/^uri/ {printf $2}' /etc/ldap.conf`

#ldapurl="ldap://${ldapserver}/${rolesBaseDN}?${ldapattrs}?${ldapscope}?${ldapfilter}"

ldapurl="ldap://${ldapserver}/${basedn}"

LDAP_RULE_OBJ="sudoRole";

LDAP_RULE_NAME_ATTR_PREFIX="LOGIN-";

LDAP_RULE_HOST_ATTR="sudoHost";

LDAP_RULE_USER_ATTR="sudoUser";

logger_cmd="/usr/bin/logger -p local3.info -t `basename $0`"

access_conf_file="/etc/security/access.conf"

access_conf="#

Login access control table.

Generated automatically by the script '$0' run as '`whoami`' on the node '`hostname`' on

`date`.

#"

access_conf_default="

+ | ALL | ALL

"

access_conf_end="

- | ALL EXCEPT root | ALL"

update_access_conf=$FALSE

check the command line arguments

while getopts "n:uBsc:Crl:H:b:vh" option

do

 case $option in

 h) echo "`basename $0` - $version";

 echo "Get the AM specific rules from LDAP to restrict the login on cluster nodes

based on roles/netgroups.";

 echo "Usage: `basename $0` [-n machine_name] [-u] [-B] [-s] [-c minutes] [-C] [-r]

[-l ldapserver] [-H ldapuri] [-b basedn] [-v] [-h]";

 echo " -n specify the machine where the rule applies. Default is the current

machine."

 echo " -u update the file [${access_conf_file}]"

 echo " -B make a backup copy of [${access_conf_file}] before update"

 echo " -s show the users allowed to login to the machine_name as specified in

LDAP rules"

 echo " -c set a cronjob in [${crontab_file}] on the current machine to run the

command [${cron_cmd}] every 'minutes' minutes"

 echo " -C remove the cronjob set with -c if any found. If -c provided in the same

time, then first the current cronjob is removed."

 echo " -r restart the services with PAM support (e.g., sshd)"

 echo " -l use this ldapserver; default is [${ldapserver}]"

 echo " -H use this ldapuri; default is [${ldapuri}]"

 echo " -b use this basedn; default is [${basedn}]"

 echo " -v verbose mode"

 echo " -h this info"

 echo ""

 echo "Author: mleahu@CERN"

 exit 0;;

 n) machine_name=$OPTARG;;

 u) update_access_conf=$TRUE;;

 B) OP_ACCESS_CONF_BAK=$TRUE;;

Appendices

150

 s) OP_SHOW_USERS=$TRUE;;

 c) OP_CRONJOB=$OPTARG;;

 C) OP_CRONJOB_REMOVE=$TRUE;;

 r) OP_RESTART_SERVICES=$TRUE;;

 l) ldapserver=$OPTARG;;

 H) ldapuri=$OPTARG;;

 b) basedn=$OPTARG;;

 v) VERBOSE=$TRUE;;

 *) echo "Unknown option '$option'. Ignored.";;

 esac

done

shift $(($OPTIND - 1))

if [-n "${ldapuri}"]; then

 connString="-H ${ldapuri}"

else

 connString="-h ${ldapserver}"

fi

declare -a machine_name_filters=();

the machine name contains more fields separated by '-' character

function generate_machine_name_filters() {

 local _machine_name="$1"

 local -a _fields=(`echo ${_machine_name} | tr '-' ' '`)

 local _prev_field=""

 local _new_field=""

 machine_name_filters=()

 for _field in ${_fields[@]}; do

 _new_field="${_prev_field}${_field}"

 _prev_field="${_new_field}-"

 if ["${_new_field}" != "${_machine_name}"]; then

 _new_field="${_new_field}-"

 fi

 machine_name_filters=(${machine_name_filters[@]} "${_new_field}")

 done

}

declare ldap_search_result="";

#get the users and netgroups allowed to login to the set of machines specified by the

machine_name_filters

function search_ldap_for_machine_name_filters() {

 local _machine_name_filter="";

 local _ldap_opt="${connString} -b ${basedn} -x -LLL -S cn ";

 local _ldap_filter="";

 local -a _ldap_attr=("${LDAP_RULE_USER_ATTR}" "cn");

 # prepare the ldap filter from the machine_names_filter array

 if ["${#machine_name_filters[@]}" = "0"]; then

 MSG "No machine name filters!";

 return 1;

 fi

 for((li=0; li<${#machine_name_filters[@]}; li++)); do

 _machine_name_filter="${machine_name_filters[$li]}"

 # the last element is the machine name

 if ["$((li+1))" -lt "${#machine_name_filters[@]}"]; then

 _machine_name_filter="${_machine_name_filter}*"

 fi

 if [-z "${_ldap_filter}"]; then

 _ldap_filter="${LDAP_RULE_HOST_ATTR}=${_machine_name_filter}"

 else

 _ldap_filter="|(${LDAP_RULE_HOST_ATTR}=${_machine_name_filter})(${_ldap_filter})"

 fi

 done

_ldap_filter="(&(${_ldap_filter})(&(cn=${LDAP_RULE_NAME_ATTR_PREFIX}*)(objectClass=${LDAP_RULE

_OBJ})))"

 ldapurl="ldap://${connString}/${basedn}?${_ldap_attr[@]}?SUB?${_ldap_filter}"

 if ["$VERBOSE" = "$TRUE"]; then

 INFO "ldapsearch ${_ldap_opt} ${_ldap_filter} ${_ldap_attr[@]} ${LDAP_RULE_HOST_ATTR}"

 ldapsearch ${_ldap_opt} "${_ldap_filter}" ${_ldap_attr[@]} ${LDAP_RULE_HOST_ATTR}

 fi

Appendices

151

 ldap_search_result=`(ldapsearch ${_ldap_opt} "${_ldap_filter}" ${_ldap_attr[@]} || echo

"LDAP_SEARCH_ERROR[\$?]") 2>&1`

}

declare access_conf_generated="";

generate the access_conf content

function generate_access_conf() {

 access_conf_generated="";

 access_conf_generated=`echo "${ldap_search_result}" | awk '

 /dn:/ {

 print "";

 print "# SUDO RULE DN: " $2;

 }

 /sudoUser:/ {

 if ($2 ~ /^\+.*/) print "+ | @" substr($2,2) " | ALL";

 else if ($2 ~ /^\%.*/) print "+ | " substr($2,2) " | ALL";

 else print "+ | " $2 " | ALL";

 }

 '`

}

#show the users members of those netgroups

function show_users_allowed() {

 if [-z "${ldap_search_result}"]; then

 MSG "No login restriction rules found in LDAP!"

 return

 fi

 echo "${ldap_search_result}" | grep "^sudoUser:" | sort | uniq | while read _sudouser

_user

 do

 # check if the sudoUser is in fact a netgroup, or unix group, else is an user

 if (echo "${_user}" | grep -q "^+"); then

 local _netgroup=`echo ${_user} | tr -d '+'`

 MSG "Netgroup [${_netgroup}]:"

 getent netgroup ${_netgroup} | tr '(' '\n' | grep "," | tr -d "[:blank:],)" | sort

 elif (echo "${_user}" | grep -q "^%"); then

 local _ldap_opt="${connString} -b ${basedn} -x -LLL ";

 local _group=`echo ${_user} | tr -d '%'`

 MSG "Group [${_group}] content from LDAP:"

 ldapsearch ${_ldap_opt} "(&(objectClass=posixGroup)(cn=${_group}))" memberUid | awk

'/memberUid/ {print $2}' | sort

 else

 MSG "USER:"

 echo ${_user}

 fi

 done

}

declare crontab_minutes=""

function generate_crontab_minutes() {

 local interval=$1

 #restrict interval to 1...60

 interval=$((interval % 60))

 if ["${interval}" = "0"]; then interval=1; fi

 local random=$RANDOM

 local offset=$((random % interval))

 local max=59

 crontab_minutes="$offset"

 for((i=$((offset+interval)); i<${max}; i+=interval))

 do

 crontab_minutes="${crontab_minutes},$i"

 done

}

MSG " ======= LOGIN RESCTRICTION CONFIGURATION =========="

if ["${OP_CRONJOB_REMOVE}" = "$TRUE"]; then

 MSG "Remove command [${cron_cmd}] from crontab file ..."

 if [-w "${crontab_file}"]; then

 if (grep -q "${cron_cmd}" ${crontab_file}); then

 new_crontab_file="`grep -v ${cron_cmd} ${crontab_file}`"

 if [-z "${new_crontab_file}"]; then

 # remove the cron for this user

 rm -fv ${crontab_file}

 else

Appendices

152

 echo "${new_crontab_file}" > ${crontab_file}

 fi

 touch `dirname ${crontab_file}`

 MSG "CRONTAB [${crontab_file}]: the command has been REMOVED!"

 else

 MSG "CRONTAB [${crontab_file}]: the command has not been found!"

 fi

 else

 MSG "CRONTAB [${crontab_file}]: not found!"

 fi

 if ["${update_access_conf}" = "$FALSE" -a "${OP_CRONJOB}" = "0"]; then

 # don't do anything more, just exit

 exit 0

 fi

fi

#check first if a cronjob has to be set

if ["${OP_CRONJOB}" -gt 0]; then

 MSG "Set a cron job to run every ${OP_CRONJOB} minutes..."

 generate_crontab_minutes ${OP_CRONJOB}

 crontab_log_dir=`dirname ${crontab_log}`

 if [-n "${crontab_log_dir}" -a ! -d "${crontab_log_dir}"];

 then

 mkdir -pv "${crontab_log_dir}"

 fi

 crontab_cmd="${crontab_minutes} * * * * ${cron_cmd} > ${crontab_log}";

 echo "CRONJOB [${crontab_cmd}]"

 if [! -w "${crontab_file}"]; then

 echo "Crontab file not writable. Try to touch it ..."

 touch ${crontab_file}

 fi

 if [-w "${crontab_file}"]; then

 if (grep -q "${cron_cmd}" ${crontab_file} 2>/dev/null); then

 MSG "CRONTAB [${crontab_file}]: already contains the command!"

 else

 echo "${crontab_cmd}" >> ${crontab_file}

 touch `dirname ${crontab_file}`

 /sbin/service crond restart

 MSG "CRONTAB [${crontab_file}]: updated with the command!"

 fi

 else

 MSG "CRONTAB [${crontab_file}]: not writable!"

 fi

 if ["${update_access_conf}" = "$FALSE"]; then

 # don't do anything more, jut exit

 exit 0

 fi

fi

generate_machine_name_filters ${machine_name}

search_ldap_for_machine_name_filters

#check if the ldap search has failed

if (echo "${ldap_search_result}" | grep -q "LDAP_SEARCH_ERROR"); then

 MSG "Update aborted due to ldap search error [${ldapurl}]: [${ldap_search_result}]"

 if ["${update_access_conf}" = "$TRUE"]; then

 ${logger_cmd} "Update aborted due to ldap search error [${ldapurl}]:

[${ldap_search_result}]"

 fi

 exit 1

fi

if ["${OP_SHOW_USERS}" = "$TRUE"]; then

 # display the users allowed to login to the given machine name

 MSG "Users allowed to login to [${machine_name}]:"

 show_users_allowed

 exit 0;

fi

generate_access_conf

Appendices

153

if [-n "${access_conf_generated}"]; then

 MSG "PAM ACCESS configuration generated from LDAP information!"

 access_conf="${access_conf}

${access_conf_generated}

${access_conf_end}"

else

 MSG "PAM ACCESS configuration set to default! (nothing found in LDAP for it)"

 access_conf="${access_conf}

${access_conf_default}"

fi

if ["${update_access_conf}" = "$TRUE"]; then

 MSGN "Check if update is necessary ..."

 if (echo "${access_conf}" | diff --brief -q --ignore-matching-lines="^#.*" -

${access_conf_file} >/dev/null); then

 echo "no!"

 exit 0

 fi

 echo "yes!"

 MSG "Update the file [${access_conf_file}]..."

 if ["`whoami`" != "root"]; then

 MSG "Only root can do it!"

 exit 0

 fi

 if [-r "${access_conf_file}" -a "${OP_ACCESS_CONF_BAK}" = "$TRUE"]; then

 mv -fv ${access_conf_file} ${access_conf_file}.bak-`date +%y%m%d-%H%M`

 fi

 ${logger_cmd} "Generate the file ${access_conf_file} with the new content:"

 echo "${access_conf}" | grep -v "^#" | while read line

 do

 ${logger_cmd} ${line}

 done

 echo "${access_conf}" > ${access_conf_file}

 if ["${OP_RESTART_SERVICES}" = "$TRUE"]; then

 MSG "Restart the PAM aware services that need login restriction"

 MSG "[ssh]"

 /sbin/service sshd restart

 fi

else

 echo "${access_conf}"

fi

Appendices

154

8.7 XACML policies generation by PAP

The preparation of access control policies for the AM server in the XACML format is achieved
by running the amPAP shell script. Assuming that default values of script parameters correspond to
the application setup, then the script can be called without any other parameters.

The application takes as input:

 the AMRules.txt file which contains the AM permissions and permissions assignment to
roles

 the roles definition and hierarchy in the central LDAP server. Sample roles hierarchy
shown in Figure 72.

The output consists in the XML files containing the XACML policies.

The following chapters list the sample input file and the generated policies in XACML format:
pp, ppsrules, rps, ppsroles.

Figure 72 Sample roles hierarchy in LDAP

Appendices

155

8.7.1 Input policies

AMRules.txt

Version: $Revision: 53911 $

The lines starting with # are comments

The rules should be in the following format:

[Rule=_the_rule_name_] [ResourceCategory=] [ResourceId=] [ResourceType=]

[<parameter_specific_to_some_resources] [ActionId=_action_]

NOTE: a [Decision=decision_value] can be specified with valid values: Permit, Deny. Default

is "Permit".

NOTE: regular expression values must have the prefix '{regexp}'

############### Data Base ##############################

[Rule=_the_rule_name_] [ResourceCategory=DataBase] [ResourceId=_resource_id_]

[ResourceTypePath=_path_] [ActionId=_action_]

_resource_id_ can be 'admin', 'directory' or 'file'

#_path_ is the path to the file or directory (not required for admin)

action can be 'admin', 'create_file', 'update_file', 'delete_file', 'create_subdir',

'delete_subdir'

[Rule=DAQ:db:daq_dir] [ResourceCategory=DataBase] [ResourceId=directory]

 [ResourceTypePath={regexp}^daq/.*] [ActionId=create_subdir]

[Rule=DAQ:db:daq_dir] [ResourceCategory=DataBase] [ResourceId=directory]

 [ResourceTypePath={regexp}^daq/.*] [ActionId=delete_subdir]

[Rule=DAQ:db:daq_dir] [ResourceCategory=DataBase] [ResourceId=directory]

 [ResourceTypePath={regexp}^daq/.*] [ActionId=create_file]

[Rule=DAQ:db:daq_dir] [ResourceCategory=DataBase] [ResourceId=directory]

 [ResourceTypePath={regexp}^daq/.*] [ActionId=delete_file]

[Rule=DAQ:db:daq_xml] [ResourceCategory=DataBase] [ResourceId=file]

 [ResourceTypePath={regexp}^daq/.*\.xml] [ActionId=update_file]

[Rule=DAQ:db:daq_partitions_xml][ResourceCategory=DataBase] [ResourceId=file]

 [ResourceTypePath={regexp}^daq/partitions/.*\.xml] [ActionId=update_file]

############### Operating System ##############################

[Rule=_the_rule_name_] [ResourceCategory=os] [ResourceId=_resource_location_]

[ResourceType=_application_] [ResourceTypeArguments=_application_arguments_]

[ActionId=_action_]

[Rule=crd:shell][ResourceCategory=os] [ResourceId=crd][ResourceType=shell][ActionId=open]

[Rule=crd:lockscreen][ResourceCategory=os][ResourceId=crd][ResourceType=lockscreen][ActionId=l

ock]

[Rule=crd:lockscreen][ResourceCategory=os][ResourceId=crd][ResourceType=lockscreen][ActionId=u

nlock]

[Rule=crd:am_tool][ResourceCategory=os][ResourceId=crd][ResourceType=am_tool][ActionId=role_st

ate_change]

[Rule=remoteaccess][ResourceCategory=os][ResourceId=gateway][ResourceType=login][ActionId=remo

te]

############### Process Manager ##############################

[Rule=_the_rule_name_] [ResourceCategory=pmg] [ResourceId=_process_binary_path_]

[ResourceTypeHostname=_process_hostname_] [ResourceTypeArguments=_process_arguments_]

[ResourceTypeOwnedByRequester=true/false] [ActionId=_action_]

The _action_ can be: "start", "terminate"

#[Rule=DAQ:pmg:allow_if_owned] [ResourceCategory=pmg] [ActionId=start]

#[Rule=DAQ:pmg:allow_if_owned] [ResourceCategory=pmg]

[ResourceTypeOwnedByRequester=true] [ActionId=terminate]

[Rule=DAQ:pmg:allow_all] [ResourceCategory=pmg] [ActionId=start]

[Rule=DAQ:pmg:allow_all] [ResourceCategory=pmg] [ActionId=terminate]

############### Resource Manager ##############################

[Rule=_the_rule_name_] [ResourceCategory=ResourceManager]

 [ResourceTypePartition=_partition_name_] [ActionId=_action_]

The _action_ can be: "lock", "free"

[Rule=DAQ:rm:free_except_initial] [ResourceCategory=ResourceManager] [ActionId=free]

[Rule=DAQ:rm:free_except_initial] [ResourceCategory=ResourceManager]

 [ResourceTypePartition=initial] [ActionId=free] [Decision=Deny]

[Rule=DAQ:rm:allow_all] [ResourceCategory=ResourceManager] [ActionId=lock]

Appendices

156

[Rule=DAQ:rm:allow_all] [ResourceCategory=ResourceManager] [ActionId=free]

############### Run Control ##############################

[Rule=_the_rule_name_] [ResourceCategory=RunControl] [ResourceTypeCommand=_command_]

[ResourceTypePartition=_partition_name_] [ActionId=exec_cmd]

[Rule=DAQ:rc:publish] [ResourceCategory=RunControl] [ResourceTypeCommand=publish]

 [ActionId=exec_cmd]

[Rule=DAQ:rc:publish] [ResourceCategory=RunControl] [ResourceTypeCommand=publish_statistics]

 [ActionId=exec_cmd]

[Rule=DAQ:rc:allow_all][ResourceCategory=RunControl] [ActionId=exec_cmd]

############### IGUI ##############################

[Rule=_the_rule_name_] [ResourceCategory=igui] [ResourceId=_view_mode_]

[ResourceType=_application_] [ActionId=view]

The _view_mode can be: "display", "control", "expert"

[Rule=DAQ:igui:display] [ResourceCategory=igui] [ResourceId=display] [ActionId=view]

[Rule=DAQ:igui:control] [ResourceCategory=igui] [ResourceId=control] [ActionId=view]

[Rule=DAQ:igui:expert] [ResourceCategory=igui] [ResourceId=expert] [ActionId=view]

############### BCM Panel ##############################

[Rule=_the_rule_name_] [ResourceCategory=BCM] [ResourceId=bcm]

[ActionId=_action_]

The _action_ can be: "configure", "update"

############## RULES ASSIGNMENTS TO ROLES ################

[Role=_the_role_name_] [IncludeRule=_rule_1] [IncludeRule=_rule_2]

The roles below must be defined in the LDAP roles hierarchy

#---

ROLE = DAQ:shifter

[Role=DAQ:shifter] [IncludeRule=DAQ:pmg:allow_all] [IncludeRule=DAQ:igui:display]

 [IncludeRule=DAQ:igui:control] [IncludeRule=DAQ:igui:expert]

 [IncludeRule=DAQ:rc:publish]

[Role=DAQ:shifter] [IncludeRule=DAQ:rm:free_except_initial]

[Role=DAQ:shifter] [IncludeRule=crd:lockscreen] [IncludeRule=crd:shell]

#---

ROLE = DAQ:expert

[Role=DAQ:expert] [IncludeRule=DAQ:pmg:allow_all] [IncludeRule=DAQ:rc:allow_all]

[IncludeRule=DAQ:rm:allow_all]

[Role=DAQ:expert] [IncludeRule=crd:shell]

#---

ROLE = DCS:shifter

[Role=DCS:shifter] [IncludeRule=crd:shell]

#---

ROLE = TDAQ:expert

[Role=TDAQ:expert] [IncludeRule=DAQ:db:daq_dir] [IncludeRule=DAQ:db:daq_xml]

#---

ROLE = TDAQ:shifter

[Role=TDAQ:shifter] [IncludeRule=DAQ:db:daq_partitions_xml]

#---

ROLE = TDAQ:SYSADMIN:expert

[Role=TDAQ:SYSADMIN:expert] [IncludeRule=crd:shell] [IncludeRule=crd:lockscreen]

#---

ROLE = RemoteAccess

[Role=RemoteAccess] [IncludeRule=remoteaccess]

#---

ROLE = ShiftLeader

[Role=ShiftLeader] [IncludeRule=crd:am_tool]

8.7.2 (PP) Permission Policies for rules

8.7.2.1 crd

pp\crd\am_tool\Rcrd\A.xml

Appendices

157

<Policy PolicyId="pp:crd:am_tool?Rcrd/A"

RuleCombiningAlgId="urn:oasis:names:tc:xacml:1.0:rule-combining-algorithm:deny-overrides">

 <Description>Permission policy for rule crd:am_tool</Description>

 <Target>

 <Resources>

 <Resource>

 <ResourceMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">

 <AttributeValue

DataType="http://www.w3.org/2001/XMLSchema#string">crd</AttributeValue>

 <ResourceAttributeDesignator

AttributeId="urn:oasis:names:tc:xacml:1.0:resource:resource-id"

DataType="http://www.w3.org/2001/XMLSchema#string" MustBePresent="true"/>

 </ResourceMatch>

 </Resource>

 </Resources>

 </Target>

 <Rule RuleId="rule?Ram_tool=Arole_state_change" Effect="Permit">

 <Description>Rule for </Description>

 <Target>

 <Resources>

 <Resource>

 <ResourceMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">

 <AttributeValue

DataType="http://www.w3.org/2001/XMLSchema#string">am_tool</AttributeValue>

 <ResourceAttributeDesignator

AttributeId="urn:oasis:names:tc:xacml:1.0:resource:resource-type:application"

DataType="http://www.w3.org/2001/XMLSchema#string" MustBePresent="true"/>

 </ResourceMatch>

 </Resource>

 </Resources>

 <Actions>

 <Action>

 <ActionMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">

 <AttributeValue

DataType="http://www.w3.org/2001/XMLSchema#string">role_state_change</AttributeValue>

 <ActionAttributeDesignator

AttributeId="urn:oasis:names:tc:xacml:1.0:action:action-id"

DataType="http://www.w3.org/2001/XMLSchema#string" MustBePresent="true"/>

 </ActionMatch>

 </Action>

 </Actions>

 </Target>

 </Rule>

</Policy>

pp\crd\lockscreen\Rcrd\A.xml

<Policy PolicyId="pp:crd:lockscreen?Rcrd/A"

RuleCombiningAlgId="urn:oasis:names:tc:xacml:1.0:rule-combining-algorithm:deny-overrides">

 <Description>Permission policy for rule crd:lockscreen</Description>

 <Target>

 <Resources>

 <Resource>

 <ResourceMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">

 <AttributeValue

DataType="http://www.w3.org/2001/XMLSchema#string">crd</AttributeValue>

 <ResourceAttributeDesignator

AttributeId="urn:oasis:names:tc:xacml:1.0:resource:resource-id"

DataType="http://www.w3.org/2001/XMLSchema#string" MustBePresent="true"/>

 </ResourceMatch>

 </Resource>

 </Resources>

 </Target>

 <Rule RuleId="rule?Rlockscreen=Alock" Effect="Permit">

 <Description>Rule for </Description>

 <Target>

 <Resources>

 <Resource>

 <ResourceMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">

 <AttributeValue

DataType="http://www.w3.org/2001/XMLSchema#string">lockscreen</AttributeValue>

 <ResourceAttributeDesignator

AttributeId="urn:oasis:names:tc:xacml:1.0:resource:resource-type:application"

DataType="http://www.w3.org/2001/XMLSchema#string" MustBePresent="true"/>

 </ResourceMatch>

 </Resource>

 </Resources>

Appendices

158

 <Actions>

 <Action>

 <ActionMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">

 <AttributeValue

DataType="http://www.w3.org/2001/XMLSchema#string">lock</AttributeValue>

 <ActionAttributeDesignator

AttributeId="urn:oasis:names:tc:xacml:1.0:action:action-id"

DataType="http://www.w3.org/2001/XMLSchema#string" MustBePresent="true"/>

 </ActionMatch>

 </Action>

 </Actions>

 </Target>

 </Rule>

 <Rule RuleId="rule?Rlockscreen=Aunlock" Effect="Permit">

 <Description>Rule for </Description>

 <Target>

 <Resources>

 <Resource>

 <ResourceMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">

 <AttributeValue

DataType="http://www.w3.org/2001/XMLSchema#string">lockscreen</AttributeValue>

 <ResourceAttributeDesignator

AttributeId="urn:oasis:names:tc:xacml:1.0:resource:resource-type:application"

DataType="http://www.w3.org/2001/XMLSchema#string" MustBePresent="true"/>

 </ResourceMatch>

 </Resource>

 </Resources>

 <Actions>

 <Action>

 <ActionMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">

 <AttributeValue

DataType="http://www.w3.org/2001/XMLSchema#string">unlock</AttributeValue>

 <ActionAttributeDesignator

AttributeId="urn:oasis:names:tc:xacml:1.0:action:action-id"

DataType="http://www.w3.org/2001/XMLSchema#string" MustBePresent="true"/>

 </ActionMatch>

 </Action>

 </Actions>

 </Target>

 </Rule>

</Policy>

pp\crd\shell\Rcrd\A.xml

<Policy PolicyId="pp:crd:shell?Rcrd/A" RuleCombiningAlgId="urn:oasis:names:tc:xacml:1.0:rule-

combining-algorithm:deny-overrides">

 <Description>Permission policy for rule crd:shell</Description>

 <Target>

 <Resources>

 <Resource>

 <ResourceMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">

 <AttributeValue

DataType="http://www.w3.org/2001/XMLSchema#string">crd</AttributeValue>

 <ResourceAttributeDesignator

AttributeId="urn:oasis:names:tc:xacml:1.0:resource:resource-id"

DataType="http://www.w3.org/2001/XMLSchema#string" MustBePresent="true"/>

 </ResourceMatch>

 </Resource>

 </Resources>

 </Target>

 <Rule RuleId="rule?Rshell=Aopen" Effect="Permit">

 <Description>Rule for </Description>

 <Target>

 <Resources>

 <Resource>

 <ResourceMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">

 <AttributeValue

DataType="http://www.w3.org/2001/XMLSchema#string">shell</AttributeValue>

 <ResourceAttributeDesignator

AttributeId="urn:oasis:names:tc:xacml:1.0:resource:resource-type:application"

DataType="http://www.w3.org/2001/XMLSchema#string" MustBePresent="true"/>

 </ResourceMatch>

 </Resource>

 </Resources>

 <Actions>

 <Action>

 <ActionMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">

Appendices

159

 <AttributeValue

DataType="http://www.w3.org/2001/XMLSchema#string">open</AttributeValue>

 <ActionAttributeDesignator

AttributeId="urn:oasis:names:tc:xacml:1.0:action:action-id"

DataType="http://www.w3.org/2001/XMLSchema#string" MustBePresent="true"/>

 </ActionMatch>

 </Action>

 </Actions>

 </Target>

 </Rule>

</Policy>

8.7.2.2 DAQ

pp\DAQ\db\daq_dir\Rdirectory\A.xml

<Policy PolicyId="pp:DAQ:db:daq_dir?Rdirectory/A"

RuleCombiningAlgId="urn:oasis:names:tc:xacml:1.0:rule-combining-algorithm:deny-overrides">

 <Description>Permission policy for rule DAQ:db:daq_dir</Description>

 <Target>

 <Resources>

 <Resource>

 <ResourceMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">

 <AttributeValue

DataType="http://www.w3.org/2001/XMLSchema#string">directory</AttributeValue>

 <ResourceAttributeDesignator

AttributeId="urn:oasis:names:tc:xacml:1.0:resource:resource-id"

DataType="http://www.w3.org/2001/XMLSchema#string" MustBePresent="true"/>

 </ResourceMatch>

 </Resource>

 </Resources>

 </Target>

 <Rule RuleId="rule?Rdaq=Acreate_subdir" Effect="Permit">

 <Description>Rule for DB Resource</Description>

 <Target>

 <Resources>

 <Resource>

 <ResourceMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-regexp-match">

 <AttributeValue

DataType="http://www.w3.org/2001/XMLSchema#string">^daq/.*</AttributeValue>

 <ResourceAttributeDesignator

AttributeId="urn:oasis:names:tc:xacml:1.0:resource:resource-type:path"

DataType="http://www.w3.org/2001/XMLSchema#string" MustBePresent="true"/>

 </ResourceMatch>

 </Resource>

 </Resources>

 <Actions>

 <Action>

 <ActionMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">

 <AttributeValue

DataType="http://www.w3.org/2001/XMLSchema#string">create_subdir</AttributeValue>

 <ActionAttributeDesignator

AttributeId="urn:oasis:names:tc:xacml:1.0:action:action-id"

DataType="http://www.w3.org/2001/XMLSchema#string" MustBePresent="true"/>

 </ActionMatch>

 </Action>

 </Actions>

 </Target>

 </Rule>

 <Rule RuleId="rule?Rdaq=Adelete_subdir" Effect="Permit">

 <Description>Rule for DB Resource</Description>

 <Target>

 <Resources>

 <Resource>

 <ResourceMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-regexp-match">

 <AttributeValue

DataType="http://www.w3.org/2001/XMLSchema#string">^daq/.*</AttributeValue>

 <ResourceAttributeDesignator

AttributeId="urn:oasis:names:tc:xacml:1.0:resource:resource-type:path"

DataType="http://www.w3.org/2001/XMLSchema#string" MustBePresent="true"/>

 </ResourceMatch>

 </Resource>

 </Resources>

 <Actions>

 <Action>

Appendices

160

 <ActionMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">

 <AttributeValue

DataType="http://www.w3.org/2001/XMLSchema#string">delete_subdir</AttributeValue>

 <ActionAttributeDesignator

AttributeId="urn:oasis:names:tc:xacml:1.0:action:action-id"

DataType="http://www.w3.org/2001/XMLSchema#string" MustBePresent="true"/>

 </ActionMatch>

 </Action>

 </Actions>

 </Target>

 </Rule>

 <Rule RuleId="rule?Rdaq=Acreate_file" Effect="Permit">

 <Description>Rule for DB Resource</Description>

 <Target>

 <Resources>

 <Resource>

 <ResourceMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-regexp-match">

 <AttributeValue

DataType="http://www.w3.org/2001/XMLSchema#string">^daq/.*</AttributeValue>

 <ResourceAttributeDesignator

AttributeId="urn:oasis:names:tc:xacml:1.0:resource:resource-type:path"

DataType="http://www.w3.org/2001/XMLSchema#string" MustBePresent="true"/>

 </ResourceMatch>

 </Resource>

 </Resources>

 <Actions>

 <Action>

 <ActionMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">

 <AttributeValue

DataType="http://www.w3.org/2001/XMLSchema#string">create_file</AttributeValue>

 <ActionAttributeDesignator

AttributeId="urn:oasis:names:tc:xacml:1.0:action:action-id"

DataType="http://www.w3.org/2001/XMLSchema#string" MustBePresent="true"/>

 </ActionMatch>

 </Action>

 </Actions>

 </Target>

 </Rule>

 <Rule RuleId="rule?Rdaq=Adelete_file" Effect="Permit">

 <Description>Rule for DB Resource</Description>

 <Target>

 <Resources>

 <Resource>

 <ResourceMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-regexp-match">

 <AttributeValue

DataType="http://www.w3.org/2001/XMLSchema#string">^daq/.*</AttributeValue>

 <ResourceAttributeDesignator

AttributeId="urn:oasis:names:tc:xacml:1.0:resource:resource-type:path"

DataType="http://www.w3.org/2001/XMLSchema#string" MustBePresent="true"/>

 </ResourceMatch>

 </Resource>

 </Resources>

 <Actions>

 <Action>

 <ActionMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">

 <AttributeValue

DataType="http://www.w3.org/2001/XMLSchema#string">delete_file</AttributeValue>

 <ActionAttributeDesignator

AttributeId="urn:oasis:names:tc:xacml:1.0:action:action-id"

DataType="http://www.w3.org/2001/XMLSchema#string" MustBePresent="true"/>

 </ActionMatch>

 </Action>

 </Actions>

 </Target>

 </Rule>

</Policy>

pp\DAQ\db\daq_partitions_xml\Rfile\A.xml

<Policy PolicyId="pp:DAQ:db:daq_partitions_xml?Rfile/A"

RuleCombiningAlgId="urn:oasis:names:tc:xacml:1.0:rule-combining-algorithm:deny-overrides">

 <Description>Permission policy for rule DAQ:db:daq_partitions_xml</Description>

 <Target>

 <Resources>

 <Resource>

 <ResourceMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">

Appendices

161

 <AttributeValue

DataType="http://www.w3.org/2001/XMLSchema#string">file</AttributeValue>

 <ResourceAttributeDesignator

AttributeId="urn:oasis:names:tc:xacml:1.0:resource:resource-id"

DataType="http://www.w3.org/2001/XMLSchema#string" MustBePresent="true"/>

 </ResourceMatch>

 </Resource>

 </Resources>

 </Target>

 <Rule RuleId="rule?Rdaqpartitionsxml=Aupdate_file" Effect="Permit">

 <Description>Rule for DB Resource</Description>

 <Target>

 <Resources>

 <Resource>

 <ResourceMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-regexp-match">

 <AttributeValue

DataType="http://www.w3.org/2001/XMLSchema#string">^daq/partitions/.*\.xml</AttributeValue>

 <ResourceAttributeDesignator

AttributeId="urn:oasis:names:tc:xacml:1.0:resource:resource-type:path"

DataType="http://www.w3.org/2001/XMLSchema#string" MustBePresent="true"/>

 </ResourceMatch>

 </Resource>

 </Resources>

 <Actions>

 <Action>

 <ActionMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">

 <AttributeValue

DataType="http://www.w3.org/2001/XMLSchema#string">update_file</AttributeValue>

 <ActionAttributeDesignator

AttributeId="urn:oasis:names:tc:xacml:1.0:action:action-id"

DataType="http://www.w3.org/2001/XMLSchema#string" MustBePresent="true"/>

 </ActionMatch>

 </Action>

 </Actions>

 </Target>

 </Rule>

</Policy>

pp\DAQ\db\daq_xml\Rfile\A.xml

<Policy PolicyId="pp:DAQ:db:daq_xml?Rfile/A"

RuleCombiningAlgId="urn:oasis:names:tc:xacml:1.0:rule-combining-algorithm:deny-overrides">

 <Description>Permission policy for rule DAQ:db:daq_xml</Description>

 <Target>

 <Resources>

 <Resource>

 <ResourceMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">

 <AttributeValue

DataType="http://www.w3.org/2001/XMLSchema#string">file</AttributeValue>

 <ResourceAttributeDesignator

AttributeId="urn:oasis:names:tc:xacml:1.0:resource:resource-id"

DataType="http://www.w3.org/2001/XMLSchema#string" MustBePresent="true"/>

 </ResourceMatch>

 </Resource>

 </Resources>

 </Target>

 <Rule RuleId="rule?Rdaqxml=Aupdate_file" Effect="Permit">

 <Description>Rule for DB Resource</Description>

 <Target>

 <Resources>

 <Resource>

 <ResourceMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-regexp-match">

 <AttributeValue

DataType="http://www.w3.org/2001/XMLSchema#string">^daq/.*\.xml</AttributeValue>

 <ResourceAttributeDesignator

AttributeId="urn:oasis:names:tc:xacml:1.0:resource:resource-type:path"

DataType="http://www.w3.org/2001/XMLSchema#string" MustBePresent="true"/>

 </ResourceMatch>

 </Resource>

 </Resources>

 <Actions>

 <Action>

 <ActionMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">

 <AttributeValue

DataType="http://www.w3.org/2001/XMLSchema#string">update_file</AttributeValue>

Appendices

162

 <ActionAttributeDesignator

AttributeId="urn:oasis:names:tc:xacml:1.0:action:action-id"

DataType="http://www.w3.org/2001/XMLSchema#string" MustBePresent="true"/>

 </ActionMatch>

 </Action>

 </Actions>

 </Target>

 </Rule>

</Policy>

pp\DAQ\igui\control\Rcontrol\Aview.xml

<Policy PolicyId="pp:DAQ:igui:control?Rcontrol/Aview"

RuleCombiningAlgId="urn:oasis:names:tc:xacml:1.0:rule-combining-algorithm:deny-overrides">

 <Description>Permission policy for rule DAQ:igui:control</Description>

 <Target>

 <Resources>

 <Resource>

 <ResourceMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">

 <AttributeValue

DataType="http://www.w3.org/2001/XMLSchema#string">control</AttributeValue>

 <ResourceAttributeDesignator

AttributeId="urn:oasis:names:tc:xacml:1.0:resource:resource-id"

DataType="http://www.w3.org/2001/XMLSchema#string" MustBePresent="true"/>

 </ResourceMatch>

 </Resource>

 </Resources>

 <Actions>

 <Action>

 <ActionMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">

 <AttributeValue

DataType="http://www.w3.org/2001/XMLSchema#string">view</AttributeValue>

 <ActionAttributeDesignator AttributeId="urn:oasis:names:tc:xacml:1.0:action:action-

id" DataType="http://www.w3.org/2001/XMLSchema#string" MustBePresent="true"/>

 </ActionMatch>

 </Action>

 </Actions>

 </Target>

 <Rule RuleId="rule" Effect="Permit">

 <Description>Rule for IGUI Resource</Description>

 <Target>

 </Target>

 </Rule>

</Policy>

pp\DAQ\igui\display\Rdisplay\Aview.xml

<Policy PolicyId="pp:DAQ:igui:display?Rdisplay/Aview"

RuleCombiningAlgId="urn:oasis:names:tc:xacml:1.0:rule-combining-algorithm:deny-overrides">

 <Description>Permission policy for rule DAQ:igui:display</Description>

 <Target>

 <Resources>

 <Resource>

 <ResourceMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">

 <AttributeValue

DataType="http://www.w3.org/2001/XMLSchema#string">display</AttributeValue>

 <ResourceAttributeDesignator

AttributeId="urn:oasis:names:tc:xacml:1.0:resource:resource-id"

DataType="http://www.w3.org/2001/XMLSchema#string" MustBePresent="true"/>

 </ResourceMatch>

 </Resource>

 </Resources>

 <Actions>

 <Action>

 <ActionMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">

 <AttributeValue

DataType="http://www.w3.org/2001/XMLSchema#string">view</AttributeValue>

 <ActionAttributeDesignator AttributeId="urn:oasis:names:tc:xacml:1.0:action:action-

id" DataType="http://www.w3.org/2001/XMLSchema#string" MustBePresent="true"/>

 </ActionMatch>

 </Action>

 </Actions>

 </Target>

 <Rule RuleId="rule" Effect="Permit">

 <Description>Rule for IGUI Resource</Description>

 <Target>

 </Target>

Appendices

163

 </Rule>

</Policy>

pp\DAQ\igui\expert\Rexpert\Aview.xml

<Policy PolicyId="pp:DAQ:igui:expert?Rexpert/Aview"

RuleCombiningAlgId="urn:oasis:names:tc:xacml:1.0:rule-combining-algorithm:deny-overrides">

 <Description>Permission policy for rule DAQ:igui:expert</Description>

 <Target>

 <Resources>

 <Resource>

 <ResourceMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">

 <AttributeValue

DataType="http://www.w3.org/2001/XMLSchema#string">expert</AttributeValue>

 <ResourceAttributeDesignator

AttributeId="urn:oasis:names:tc:xacml:1.0:resource:resource-id"

DataType="http://www.w3.org/2001/XMLSchema#string" MustBePresent="true"/>

 </ResourceMatch>

 </Resource>

 </Resources>

 <Actions>

 <Action>

 <ActionMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">

 <AttributeValue

DataType="http://www.w3.org/2001/XMLSchema#string">view</AttributeValue>

 <ActionAttributeDesignator AttributeId="urn:oasis:names:tc:xacml:1.0:action:action-

id" DataType="http://www.w3.org/2001/XMLSchema#string" MustBePresent="true"/>

 </ActionMatch>

 </Action>

 </Actions>

 </Target>

 <Rule RuleId="rule" Effect="Permit">

 <Description>Rule for IGUI Resource</Description>

 <Target>

 </Target>

 </Rule>

</Policy>

pp\DAQ\pmg\allow_all\R\Astart.xml

<Policy PolicyId="pp:DAQ:pmg:allow_all?R/Astart"

RuleCombiningAlgId="urn:oasis:names:tc:xacml:1.0:rule-combining-algorithm:deny-overrides">

 <Description>Permission policy for rule DAQ:pmg:allow_all</Description>

 <Target>

 <Actions>

 <Action>

 <ActionMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">

 <AttributeValue

DataType="http://www.w3.org/2001/XMLSchema#string">start</AttributeValue>

 <ActionAttributeDesignator AttributeId="urn:oasis:names:tc:xacml:1.0:action:action-

id" DataType="http://www.w3.org/2001/XMLSchema#string" MustBePresent="true"/>

 </ActionMatch>

 </Action>

 </Actions>

 </Target>

 <Rule RuleId="rule" Effect="Permit">

 <Description>Rule for PMG Resource</Description>

 <Target>

 </Target>

 </Rule>

</Policy>

pp\DAQ\pmg\allow_all\R\Aterminate.xml

<Policy PolicyId="pp:DAQ:pmg:allow_all?R/Aterminate"

RuleCombiningAlgId="urn:oasis:names:tc:xacml:1.0:rule-combining-algorithm:deny-overrides">

 <Description>Permission policy for rule DAQ:pmg:allow_all</Description>

 <Target>

 <Actions>

 <Action>

 <ActionMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">

 <AttributeValue

DataType="http://www.w3.org/2001/XMLSchema#string">terminate</AttributeValue>

 <ActionAttributeDesignator AttributeId="urn:oasis:names:tc:xacml:1.0:action:action-

id" DataType="http://www.w3.org/2001/XMLSchema#string" MustBePresent="true"/>

 </ActionMatch>

 </Action>

Appendices

164

 </Actions>

 </Target>

 <Rule RuleId="rule" Effect="Permit">

 <Description>Rule for PMG Resource</Description>

 <Target>

 </Target>

 </Rule>

</Policy>

pp\DAQ\rc\allow_all\Rrc\Aexec_cmd.xml

<Policy PolicyId="pp:DAQ:rc:allow_all?Rrc/Aexec_cmd"

RuleCombiningAlgId="urn:oasis:names:tc:xacml:1.0:rule-combining-algorithm:deny-overrides">

 <Description>Permission policy for rule DAQ:rc:allow_all</Description>

 <Target>

 <Resources>

 <Resource>

 <ResourceMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">

 <AttributeValue

DataType="http://www.w3.org/2001/XMLSchema#string">rc</AttributeValue>

 <ResourceAttributeDesignator

AttributeId="urn:oasis:names:tc:xacml:1.0:resource:resource-id"

DataType="http://www.w3.org/2001/XMLSchema#string" MustBePresent="true"/>

 </ResourceMatch>

 </Resource>

 </Resources>

 <Actions>

 <Action>

 <ActionMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">

 <AttributeValue

DataType="http://www.w3.org/2001/XMLSchema#string">exec_cmd</AttributeValue>

 <ActionAttributeDesignator AttributeId="urn:oasis:names:tc:xacml:1.0:action:action-

id" DataType="http://www.w3.org/2001/XMLSchema#string" MustBePresent="true"/>

 </ActionMatch>

 </Action>

 </Actions>

 </Target>

 <Rule RuleId="rule" Effect="Permit">

 <Description>Rule for Run Control Resource</Description>

 <Target>

 </Target>

 </Rule>

</Policy>

pp\DAQ\rc\publish\Rrc\Aexec_cmd.xml

<Policy PolicyId="pp:DAQ:rc:publish?Rrc/Aexec_cmd"

RuleCombiningAlgId="urn:oasis:names:tc:xacml:1.0:rule-combining-algorithm:deny-overrides">

 <Description>Permission policy for rule DAQ:rc:publish</Description>

 <Target>

 <Resources>

 <Resource>

 <ResourceMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">

 <AttributeValue

DataType="http://www.w3.org/2001/XMLSchema#string">rc</AttributeValue>

 <ResourceAttributeDesignator

AttributeId="urn:oasis:names:tc:xacml:1.0:resource:resource-id"

DataType="http://www.w3.org/2001/XMLSchema#string" MustBePresent="true"/>

 </ResourceMatch>

 </Resource>

 </Resources>

 <Actions>

 <Action>

 <ActionMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">

 <AttributeValue

DataType="http://www.w3.org/2001/XMLSchema#string">exec_cmd</AttributeValue>

 <ActionAttributeDesignator AttributeId="urn:oasis:names:tc:xacml:1.0:action:action-

id" DataType="http://www.w3.org/2001/XMLSchema#string" MustBePresent="true"/>

 </ActionMatch>

 </Action>

 </Actions>

 </Target>

 <Rule RuleId="rule?Rpublish=A" Effect="Permit">

 <Description>Rule for Run Control Resource</Description>

 <Target>

 <Resources>

 <Resource>

Appendices

165

 <ResourceMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">

 <AttributeValue

DataType="http://www.w3.org/2001/XMLSchema#string">publish</AttributeValue>

 <ResourceAttributeDesignator

AttributeId="urn:oasis:names:tc:xacml:1.0:resource:resource-type:command"

DataType="http://www.w3.org/2001/XMLSchema#string" MustBePresent="true"/>

 </ResourceMatch>

 </Resource>

 </Resources>

 </Target>

 </Rule>

 <Rule RuleId="rule?Rpublish_statistics=A" Effect="Permit">

 <Description>Rule for Run Control Resource</Description>

 <Target>

 <Resources>

 <Resource>

 <ResourceMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">

 <AttributeValue

DataType="http://www.w3.org/2001/XMLSchema#string">publish_statistics</AttributeValue>

 <ResourceAttributeDesignator

AttributeId="urn:oasis:names:tc:xacml:1.0:resource:resource-type:command"

DataType="http://www.w3.org/2001/XMLSchema#string" MustBePresent="true"/>

 </ResourceMatch>

 </Resource>

 </Resources>

 </Target>

 </Rule>

</Policy>

pp\DAQ\rm\allow_all\Rrm\Afree.xml

<Policy PolicyId="pp:DAQ:rm:allow_all?Rrm/Afree"

RuleCombiningAlgId="urn:oasis:names:tc:xacml:1.0:rule-combining-algorithm:deny-overrides">

 <Description>Permission policy for rule DAQ:rm:allow_all</Description>

 <Target>

 <Resources>

 <Resource>

 <ResourceMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">

 <AttributeValue

DataType="http://www.w3.org/2001/XMLSchema#string">rm</AttributeValue>

 <ResourceAttributeDesignator

AttributeId="urn:oasis:names:tc:xacml:1.0:resource:resource-id"

DataType="http://www.w3.org/2001/XMLSchema#string" MustBePresent="true"/>

 </ResourceMatch>

 </Resource>

 </Resources>

 <Actions>

 <Action>

 <ActionMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">

 <AttributeValue

DataType="http://www.w3.org/2001/XMLSchema#string">free</AttributeValue>

 <ActionAttributeDesignator AttributeId="urn:oasis:names:tc:xacml:1.0:action:action-

id" DataType="http://www.w3.org/2001/XMLSchema#string" MustBePresent="true"/>

 </ActionMatch>

 </Action>

 </Actions>

 </Target>

 <Rule RuleId="rule" Effect="Permit">

 <Description>Rule for RM Resource</Description>

 <Target>

 </Target>

 </Rule>

</Policy>

pp\DAQ\rm\allow_all\Rrm\Alock.xml

<Policy PolicyId="pp:DAQ:rm:allow_all?Rrm/Alock"

RuleCombiningAlgId="urn:oasis:names:tc:xacml:1.0:rule-combining-algorithm:deny-overrides">

 <Description>Permission policy for rule DAQ:rm:allow_all</Description>

 <Target>

 <Resources>

 <Resource>

 <ResourceMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">

 <AttributeValue

DataType="http://www.w3.org/2001/XMLSchema#string">rm</AttributeValue>

Appendices

166

 <ResourceAttributeDesignator

AttributeId="urn:oasis:names:tc:xacml:1.0:resource:resource-id"

DataType="http://www.w3.org/2001/XMLSchema#string" MustBePresent="true"/>

 </ResourceMatch>

 </Resource>

 </Resources>

 <Actions>

 <Action>

 <ActionMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">

 <AttributeValue

DataType="http://www.w3.org/2001/XMLSchema#string">lock</AttributeValue>

 <ActionAttributeDesignator AttributeId="urn:oasis:names:tc:xacml:1.0:action:action-

id" DataType="http://www.w3.org/2001/XMLSchema#string" MustBePresent="true"/>

 </ActionMatch>

 </Action>

 </Actions>

 </Target>

 <Rule RuleId="rule" Effect="Permit">

 <Description>Rule for RM Resource</Description>

 <Target>

 </Target>

 </Rule>

</Policy>

pp\DAQ\rm\free_except_initial\Rrm\Afree.xml

<Policy PolicyId="pp:DAQ:rm:free_except_initial?Rrm/Afree"

RuleCombiningAlgId="urn:oasis:names:tc:xacml:1.0:rule-combining-algorithm:deny-overrides">

 <Description>Permission policy for rule DAQ:rm:free_except_initial</Description>

 <Target>

 <Resources>

 <Resource>

 <ResourceMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">

 <AttributeValue

DataType="http://www.w3.org/2001/XMLSchema#string">rm</AttributeValue>

 <ResourceAttributeDesignator

AttributeId="urn:oasis:names:tc:xacml:1.0:resource:resource-id"

DataType="http://www.w3.org/2001/XMLSchema#string" MustBePresent="true"/>

 </ResourceMatch>

 </Resource>

 </Resources>

 <Actions>

 <Action>

 <ActionMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">

 <AttributeValue

DataType="http://www.w3.org/2001/XMLSchema#string">free</AttributeValue>

 <ActionAttributeDesignator AttributeId="urn:oasis:names:tc:xacml:1.0:action:action-

id" DataType="http://www.w3.org/2001/XMLSchema#string" MustBePresent="true"/>

 </ActionMatch>

 </Action>

 </Actions>

 </Target>

 <Rule RuleId="rule" Effect="Permit">

 <Description>Rule for RM Resource</Description>

 <Target>

 </Target>

 </Rule>

 <Rule RuleId="rule?Rinitial=A" Effect="Deny">

 <Description>Rule for RM Resource</Description>

 <Target>

 <Resources>

 <Resource>

 <ResourceMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">

 <AttributeValue

DataType="http://www.w3.org/2001/XMLSchema#string">initial</AttributeValue>

 <ResourceAttributeDesignator

AttributeId="urn:oasis:names:tc:xacml:1.0:resource:resource-type:partition"

DataType="http://www.w3.org/2001/XMLSchema#string" MustBePresent="true"/>

 </ResourceMatch>

 </Resource>

 </Resources>

 </Target>

 </Rule>

</Policy>

Appendices

167

8.7.2.3 Remote Access

pp\remoteaccess\Rgateway\A.xml

<Policy PolicyId="pp:remoteaccess?Rgateway/A"

RuleCombiningAlgId="urn:oasis:names:tc:xacml:1.0:rule-combining-algorithm:deny-overrides">

 <Description>Permission policy for rule remoteaccess</Description>

 <Target>

 <Resources>

 <Resource>

 <ResourceMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">

 <AttributeValue

DataType="http://www.w3.org/2001/XMLSchema#string">gateway</AttributeValue>

 <ResourceAttributeDesignator

AttributeId="urn:oasis:names:tc:xacml:1.0:resource:resource-id"

DataType="http://www.w3.org/2001/XMLSchema#string" MustBePresent="true"/>

 </ResourceMatch>

 </Resource>

 </Resources>

 </Target>

 <Rule RuleId="rule?Rlogin=Aremote" Effect="Permit">

 <Description>Rule for </Description>

 <Target>

 <Resources>

 <Resource>

 <ResourceMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">

 <AttributeValue

DataType="http://www.w3.org/2001/XMLSchema#string">login</AttributeValue>

 <ResourceAttributeDesignator

AttributeId="urn:oasis:names:tc:xacml:1.0:resource:resource-type:application"

DataType="http://www.w3.org/2001/XMLSchema#string" MustBePresent="true"/>

 </ResourceMatch>

 </Resource>

 </Resources>

 <Actions>

 <Action>

 <ActionMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">

 <AttributeValue

DataType="http://www.w3.org/2001/XMLSchema#string">remote</AttributeValue>

 <ActionAttributeDesignator

AttributeId="urn:oasis:names:tc:xacml:1.0:action:action-id"

DataType="http://www.w3.org/2001/XMLSchema#string" MustBePresent="true"/>

 </ActionMatch>

 </Action>

 </Actions>

 </Target>

 </Rule>

</Policy>

8.7.3 (PPSrules) Permissions Policies Sets for rules

8.7.3.1 crd

ppsrules\crd\am_tool\Ros\A.xml

<PolicySet PolicySetId="ppsrules:crd:am_tool?Ros/A"

PolicyCombiningAlgId="urn:oasis:names:tc:xacml:1.0:policy-combining-algorithm:first-

applicable">

 <Description>Permission Policy Set for rule [crd:am_tool]</Description>

 <Target>

 <Resources>

 <Resource>

 <ResourceMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">

 <AttributeValue

DataType="http://www.w3.org/2001/XMLSchema#string">os</AttributeValue>

 <ResourceAttributeDesignator

AttributeId="urn:oasis:names:tc:xacml:1.0:resource:resource-category"

DataType="http://www.w3.org/2001/XMLSchema#string" MustBePresent="true"/>

 </ResourceMatch>

 </Resource>

 </Resources>

 </Target>

 <PolicyIdReference>pp:crd:am_tool?Rcrd/A</PolicyIdReference>

</PolicySet>

Appendices

168

ppsrules\crd\lockscreen\Ros\A.xml

<PolicySet PolicySetId="ppsrules:crd:lockscreen?Ros/A"

PolicyCombiningAlgId="urn:oasis:names:tc:xacml:1.0:policy-combining-algorithm:first-

applicable">

 <Description>Permission Policy Set for rule [crd:lockscreen]</Description>

 <Target>

 <Resources>

 <Resource>

 <ResourceMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">

 <AttributeValue

DataType="http://www.w3.org/2001/XMLSchema#string">os</AttributeValue>

 <ResourceAttributeDesignator

AttributeId="urn:oasis:names:tc:xacml:1.0:resource:resource-category"

DataType="http://www.w3.org/2001/XMLSchema#string" MustBePresent="true"/>

 </ResourceMatch>

 </Resource>

 </Resources>

 </Target>

 <PolicyIdReference>pp:crd:lockscreen?Rcrd/A</PolicyIdReference>

</PolicySet>

ppsrules\crd\shell\Ros\A.xml

<PolicySet PolicySetId="ppsrules:crd:shell?Ros/A"

PolicyCombiningAlgId="urn:oasis:names:tc:xacml:1.0:policy-combining-algorithm:first-

applicable">

 <Description>Permission Policy Set for rule [crd:shell]</Description>

 <Target>

 <Resources>

 <Resource>

 <ResourceMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">

 <AttributeValue

DataType="http://www.w3.org/2001/XMLSchema#string">os</AttributeValue>

 <ResourceAttributeDesignator

AttributeId="urn:oasis:names:tc:xacml:1.0:resource:resource-category"

DataType="http://www.w3.org/2001/XMLSchema#string" MustBePresent="true"/>

 </ResourceMatch>

 </Resource>

 </Resources>

 </Target>

 <PolicyIdReference>pp:crd:shell?Rcrd/A</PolicyIdReference>

</PolicySet>

8.7.3.2 DAQ

DAQ\db\daq_dir\RDataBase\A.xml

<PolicySet PolicySetId="ppsrules:DAQ:db:daq_dir?RDataBase/A"

PolicyCombiningAlgId="urn:oasis:names:tc:xacml:1.0:policy-combining-algorithm:first-

applicable">

 <Description>Permission Policy Set for rule [DAQ:db:daq_dir]</Description>

 <Target>

 <Resources>

 <Resource>

 <ResourceMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">

 <AttributeValue

DataType="http://www.w3.org/2001/XMLSchema#string">DataBase</AttributeValue>

 <ResourceAttributeDesignator

AttributeId="urn:oasis:names:tc:xacml:1.0:resource:resource-category"

DataType="http://www.w3.org/2001/XMLSchema#string" MustBePresent="true"/>

 </ResourceMatch>

 </Resource>

 </Resources>

 </Target>

 <PolicyIdReference>pp:DAQ:db:daq_dir?Rdirectory/A</PolicyIdReference>

</PolicySet>

ppsrules\DAQ\db\daq_partitions_xml\RDataBase\A.xml

<PolicySet PolicySetId="ppsrules:DAQ:db:daq_partitions_xml?RDataBase/A"

PolicyCombiningAlgId="urn:oasis:names:tc:xacml:1.0:policy-combining-algorithm:first-

applicable">

 <Description>Permission Policy Set for rule [DAQ:db:daq_partitions_xml]</Description>

 <Target>

 <Resources>

 <Resource>

Appendices

169

 <ResourceMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">

 <AttributeValue

DataType="http://www.w3.org/2001/XMLSchema#string">DataBase</AttributeValue>

 <ResourceAttributeDesignator

AttributeId="urn:oasis:names:tc:xacml:1.0:resource:resource-category"

DataType="http://www.w3.org/2001/XMLSchema#string" MustBePresent="true"/>

 </ResourceMatch>

 </Resource>

 </Resources>

 </Target>

 <PolicyIdReference>pp:DAQ:db:daq_partitions_xml?Rfile/A</PolicyIdReference>

</PolicySet>

ppsrules\DAQ\db\daq_xml\RDataBase\A.xml

<PolicySet PolicySetId="ppsrules:DAQ:db:daq_xml?RDataBase/A"

PolicyCombiningAlgId="urn:oasis:names:tc:xacml:1.0:policy-combining-algorithm:first-

applicable">

 <Description>Permission Policy Set for rule [DAQ:db:daq_xml]</Description>

 <Target>

 <Resources>

 <Resource>

 <ResourceMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">

 <AttributeValue

DataType="http://www.w3.org/2001/XMLSchema#string">DataBase</AttributeValue>

 <ResourceAttributeDesignator

AttributeId="urn:oasis:names:tc:xacml:1.0:resource:resource-category"

DataType="http://www.w3.org/2001/XMLSchema#string" MustBePresent="true"/>

 </ResourceMatch>

 </Resource>

 </Resources>

 </Target>

 <PolicyIdReference>pp:DAQ:db:daq_xml?Rfile/A</PolicyIdReference>

</PolicySet>

ppsrules\DAQ\igui\control\Rigui\A.xml

<PolicySet PolicySetId="ppsrules:DAQ:igui:control?Rigui/A"

PolicyCombiningAlgId="urn:oasis:names:tc:xacml:1.0:policy-combining-algorithm:first-

applicable">

 <Description>Permission Policy Set for rule [DAQ:igui:control]</Description>

 <Target>

 <Resources>

 <Resource>

 <ResourceMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">

 <AttributeValue

DataType="http://www.w3.org/2001/XMLSchema#string">igui</AttributeValue>

 <ResourceAttributeDesignator

AttributeId="urn:oasis:names:tc:xacml:1.0:resource:resource-category"

DataType="http://www.w3.org/2001/XMLSchema#string" MustBePresent="true"/>

 </ResourceMatch>

 </Resource>

 </Resources>

 </Target>

 <PolicyIdReference>pp:DAQ:igui:control?Rcontrol/Aview</PolicyIdReference>

</PolicySet>

ppsrules\DAQ\igui\display\Rigui\A.xml

<PolicySet PolicySetId="ppsrules:DAQ:igui:display?Rigui/A"

PolicyCombiningAlgId="urn:oasis:names:tc:xacml:1.0:policy-combining-algorithm:first-

applicable">

 <Description>Permission Policy Set for rule [DAQ:igui:display]</Description>

 <Target>

 <Resources>

 <Resource>

 <ResourceMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">

 <AttributeValue

DataType="http://www.w3.org/2001/XMLSchema#string">igui</AttributeValue>

 <ResourceAttributeDesignator

AttributeId="urn:oasis:names:tc:xacml:1.0:resource:resource-category"

DataType="http://www.w3.org/2001/XMLSchema#string" MustBePresent="true"/>

 </ResourceMatch>

 </Resource>

 </Resources>

 </Target>

 <PolicyIdReference>pp:DAQ:igui:display?Rdisplay/Aview</PolicyIdReference>

Appendices

170

</PolicySet>

ppsrules\DAQ\igui\expert\Rigui\A.xml

<PolicySet PolicySetId="ppsrules:DAQ:igui:expert?Rigui/A"

PolicyCombiningAlgId="urn:oasis:names:tc:xacml:1.0:policy-combining-algorithm:first-

applicable">

 <Description>Permission Policy Set for rule [DAQ:igui:expert]</Description>

 <Target>

 <Resources>

 <Resource>

 <ResourceMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">

 <AttributeValue

DataType="http://www.w3.org/2001/XMLSchema#string">igui</AttributeValue>

 <ResourceAttributeDesignator

AttributeId="urn:oasis:names:tc:xacml:1.0:resource:resource-category"

DataType="http://www.w3.org/2001/XMLSchema#string" MustBePresent="true"/>

 </ResourceMatch>

 </Resource>

 </Resources>

 </Target>

 <PolicyIdReference>pp:DAQ:igui:expert?Rexpert/Aview</PolicyIdReference>

</PolicySet>

ppsrules\DAQ\pmg\allow_all\Rpmg\A.xml

<PolicySet PolicySetId="ppsrules:DAQ:pmg:allow_all?Rpmg/A"

PolicyCombiningAlgId="urn:oasis:names:tc:xacml:1.0:policy-combining-algorithm:first-

applicable">

 <Description>Permission Policy Set for rule [DAQ:pmg:allow_all]</Description>

 <Target>

 <Resources>

 <Resource>

 <ResourceMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">

 <AttributeValue

DataType="http://www.w3.org/2001/XMLSchema#string">pmg</AttributeValue>

 <ResourceAttributeDesignator

AttributeId="urn:oasis:names:tc:xacml:1.0:resource:resource-category"

DataType="http://www.w3.org/2001/XMLSchema#string" MustBePresent="true"/>

 </ResourceMatch>

 </Resource>

 </Resources>

 </Target>

 <PolicyIdReference>pp:DAQ:pmg:allow_all?R/Astart</PolicyIdReference>

 <PolicyIdReference>pp:DAQ:pmg:allow_all?R/Aterminate</PolicyIdReference>

</PolicySet>

ppsrules\DAQ\rc\allow_all\RRunControl\A.xml

<PolicySet PolicySetId="ppsrules:DAQ:rc:allow_all?RRunControl/A"

PolicyCombiningAlgId="urn:oasis:names:tc:xacml:1.0:policy-combining-algorithm:first-

applicable">

 <Description>Permission Policy Set for rule [DAQ:rc:allow_all]</Description>

 <Target>

 <Resources>

 <Resource>

 <ResourceMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">

 <AttributeValue

DataType="http://www.w3.org/2001/XMLSchema#string">RunControl</AttributeValue>

 <ResourceAttributeDesignator

AttributeId="urn:oasis:names:tc:xacml:1.0:resource:resource-category"

DataType="http://www.w3.org/2001/XMLSchema#string" MustBePresent="true"/>

 </ResourceMatch>

 </Resource>

 </Resources>

 </Target>

 <PolicyIdReference>pp:DAQ:rc:allow_all?Rrc/Aexec_cmd</PolicyIdReference>

</PolicySet>

ppsrules\DAQ\rc\publish\RRunControl\A.xml

<PolicySet PolicySetId="ppsrules:DAQ:rc:publish?RRunControl/A"

PolicyCombiningAlgId="urn:oasis:names:tc:xacml:1.0:policy-combining-algorithm:first-

applicable">

 <Description>Permission Policy Set for rule [DAQ:rc:publish]</Description>

 <Target>

 <Resources>

Appendices

171

 <Resource>

 <ResourceMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">

 <AttributeValue

DataType="http://www.w3.org/2001/XMLSchema#string">RunControl</AttributeValue>

 <ResourceAttributeDesignator

AttributeId="urn:oasis:names:tc:xacml:1.0:resource:resource-category"

DataType="http://www.w3.org/2001/XMLSchema#string" MustBePresent="true"/>

 </ResourceMatch>

 </Resource>

 </Resources>

 </Target>

 <PolicyIdReference>pp:DAQ:rc:publish?Rrc/Aexec_cmd</PolicyIdReference>

</PolicySet>

ppsrules\DAQ\rm\allow_all\RResourceManager\A.xml

<PolicySet PolicySetId="ppsrules:DAQ:rm:allow_all?RResourceManager/A"

PolicyCombiningAlgId="urn:oasis:names:tc:xacml:1.0:policy-combining-algorithm:first-

applicable">

 <Description>Permission Policy Set for rule [DAQ:rm:allow_all]</Description>

 <Target>

 <Resources>

 <Resource>

 <ResourceMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">

 <AttributeValue

DataType="http://www.w3.org/2001/XMLSchema#string">ResourceManager</AttributeValue>

 <ResourceAttributeDesignator

AttributeId="urn:oasis:names:tc:xacml:1.0:resource:resource-category"

DataType="http://www.w3.org/2001/XMLSchema#string" MustBePresent="true"/>

 </ResourceMatch>

 </Resource>

 </Resources>

 </Target>

 <PolicyIdReference>pp:DAQ:rm:allow_all?Rrm/Alock</PolicyIdReference>

 <PolicyIdReference>pp:DAQ:rm:allow_all?Rrm/Afree</PolicyIdReference>

</PolicySet>

ppsrules\DAQ\rm\free_except_initial\RResourceManager\A.xml

<PolicySet PolicySetId="ppsrules:DAQ:rm:free_except_initial?RResourceManager/A"

PolicyCombiningAlgId="urn:oasis:names:tc:xacml:1.0:policy-combining-algorithm:first-

applicable">

 <Description>Permission Policy Set for rule [DAQ:rm:free_except_initial]</Description>

 <Target>

 <Resources>

 <Resource>

 <ResourceMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">

 <AttributeValue

DataType="http://www.w3.org/2001/XMLSchema#string">ResourceManager</AttributeValue>

 <ResourceAttributeDesignator

AttributeId="urn:oasis:names:tc:xacml:1.0:resource:resource-category"

DataType="http://www.w3.org/2001/XMLSchema#string" MustBePresent="true"/>

 </ResourceMatch>

 </Resource>

 </Resources>

 </Target>

 <PolicyIdReference>pp:DAQ:rm:free_except_initial?Rrm/Afree</PolicyIdReference>

</PolicySet>

8.7.3.3 Remote Access

ppsrules\remoteaccess\Ros\A.xml

<PolicySet PolicySetId="ppsrules:remoteaccess?Ros/A"

PolicyCombiningAlgId="urn:oasis:names:tc:xacml:1.0:policy-combining-algorithm:first-

applicable">

 <Description>Permission Policy Set for rule [remoteaccess]</Description>

 <Target>

 <Resources>

 <Resource>

 <ResourceMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">

 <AttributeValue

DataType="http://www.w3.org/2001/XMLSchema#string">os</AttributeValue>

 <ResourceAttributeDesignator

AttributeId="urn:oasis:names:tc:xacml:1.0:resource:resource-category"

DataType="http://www.w3.org/2001/XMLSchema#string" MustBePresent="true"/>

 </ResourceMatch>

Appendices

172

 </Resource>

 </Resources>

 </Target>

 <PolicyIdReference>pp:remoteaccess?Rgateway/A</PolicyIdReference>

</PolicySet>

8.7.4 (RPS) Role Policies Sets

rps\ATLAS.xml

<PolicySet PolicySetId="rps:ATLAS" PolicyCombiningAlgId="urn:oasis:names:tc:xacml:1.0:policy-

combining-algorithm:first-applicable">

 <Description>The root policy for all the roles</Description>

 <Target>

 <Subjects>

 <Subject>

 <SubjectMatch MatchId="urn:oasis:names:tc:xacml:2.0:function:anyURI-regexp-match">

 <AttributeValue

DataType="http://www.w3.org/2001/XMLSchema#string">TDAQ*</AttributeValue>

 <SubjectAttributeDesignator AttributeId="urn:oasis:names:tc:xacml:2.0:subject:role"

DataType="http://www.w3.org/2001/XMLSchema#anyURI" MustBePresent="true"/>

 </SubjectMatch>

 </Subject>

 <Subject>

 <SubjectMatch MatchId="urn:oasis:names:tc:xacml:2.0:function:anyURI-regexp-match">

 <AttributeValue

DataType="http://www.w3.org/2001/XMLSchema#string">DCS*</AttributeValue>

 <SubjectAttributeDesignator AttributeId="urn:oasis:names:tc:xacml:2.0:subject:role"

DataType="http://www.w3.org/2001/XMLSchema#anyURI" MustBePresent="true"/>

 </SubjectMatch>

 </Subject>

 <Subject>

 <SubjectMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:anyURI-equal">

 <AttributeValue

DataType="http://www.w3.org/2001/XMLSchema#anyURI">ShiftLeader</AttributeValue>

 <SubjectAttributeDesignator AttributeId="urn:oasis:names:tc:xacml:2.0:subject:role"

DataType="http://www.w3.org/2001/XMLSchema#anyURI" MustBePresent="true"/>

 </SubjectMatch>

 </Subject>

 <Subject>

 <SubjectMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:anyURI-equal">

 <AttributeValue

DataType="http://www.w3.org/2001/XMLSchema#anyURI">Observer</AttributeValue>

 <SubjectAttributeDesignator AttributeId="urn:oasis:names:tc:xacml:2.0:subject:role"

DataType="http://www.w3.org/2001/XMLSchema#anyURI" MustBePresent="true"/>

 </SubjectMatch>

 </Subject>

 </Subjects>

 </Target>

 <PolicySetIdReference>rps:IntermediaryTopRole:DCS</PolicySetIdReference>

 <PolicySetIdReference>rps:RoleAssignable?Observer</PolicySetIdReference>

 <PolicySetIdReference>rps:IntermediaryTopRole:TDAQ</PolicySetIdReference>

 <PolicySetIdReference>rps:RoleAssignable?ShiftLeader</PolicySetIdReference>

</PolicySet>

rps\IntermediaryTopRole\DCS.xml

<PolicySet PolicySetId="rps:IntermediaryTopRole:DCS"

PolicyCombiningAlgId="urn:oasis:names:tc:xacml:1.0:policy-combining-algorithm:first-

applicable">

 <Description>Intermediate RPS for role prefix [DCS]</Description>

 <Target>

 <Subjects>

 <Subject>

 <SubjectMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:anyURI-equal">

 <AttributeValue

DataType="http://www.w3.org/2001/XMLSchema#anyURI">DCS:expert</AttributeValue>

 <SubjectAttributeDesignator AttributeId="urn:oasis:names:tc:xacml:2.0:subject:role"

DataType="http://www.w3.org/2001/XMLSchema#anyURI" MustBePresent="true"/>

 </SubjectMatch>

 </Subject>

 <Subject>

 <SubjectMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:anyURI-equal">

 <AttributeValue

DataType="http://www.w3.org/2001/XMLSchema#anyURI">DCS:shifter</AttributeValue>

Appendices

173

 <SubjectAttributeDesignator AttributeId="urn:oasis:names:tc:xacml:2.0:subject:role"

DataType="http://www.w3.org/2001/XMLSchema#anyURI" MustBePresent="true"/>

 </SubjectMatch>

 </Subject>

 </Subjects>

 </Target>

 <PolicySetIdReference>rps:RoleAssignable?DCS:shifter</PolicySetIdReference>

 <PolicySetIdReference>rps:RoleAssignable?DCS:expert</PolicySetIdReference>

</PolicySet>

rps\IntermediaryTopRole\TDAQ.xml

<PolicySet PolicySetId="rps:IntermediaryTopRole:TDAQ"

PolicyCombiningAlgId="urn:oasis:names:tc:xacml:1.0:policy-combining-algorithm:first-

applicable">

 <Description>Intermediate RPS for role prefix [TDAQ]</Description>

 <Target>

 <Subjects>

 <Subject>

 <SubjectMatch MatchId="urn:oasis:names:tc:xacml:2.0:function:anyURI-regexp-match">

 <AttributeValue

DataType="http://www.w3.org/2001/XMLSchema#string">TDAQ:SYSADMIN*</AttributeValue>

 <SubjectAttributeDesignator AttributeId="urn:oasis:names:tc:xacml:2.0:subject:role"

DataType="http://www.w3.org/2001/XMLSchema#anyURI" MustBePresent="true"/>

 </SubjectMatch>

 </Subject>

 <Subject>

 <SubjectMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:anyURI-equal">

 <AttributeValue

DataType="http://www.w3.org/2001/XMLSchema#anyURI">TDAQ:shifter</AttributeValue>

 <SubjectAttributeDesignator AttributeId="urn:oasis:names:tc:xacml:2.0:subject:role"

DataType="http://www.w3.org/2001/XMLSchema#anyURI" MustBePresent="true"/>

 </SubjectMatch>

 </Subject>

 <Subject>

 <SubjectMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:anyURI-equal">

 <AttributeValue

DataType="http://www.w3.org/2001/XMLSchema#anyURI">TDAQ:expert</AttributeValue>

 <SubjectAttributeDesignator AttributeId="urn:oasis:names:tc:xacml:2.0:subject:role"

DataType="http://www.w3.org/2001/XMLSchema#anyURI" MustBePresent="true"/>

 </SubjectMatch>

 </Subject>

 </Subjects>

 </Target>

 <PolicySetIdReference>rps:RoleAssignable?TDAQ:expert</PolicySetIdReference>

 <PolicySetIdReference>rps:IntermediaryTopRole:TDAQ:SYSADMIN</PolicySetIdReference>

 <PolicySetIdReference>rps:RoleAssignable?TDAQ:shifter</PolicySetIdReference>

</PolicySet>

rps\IntermediaryTopRole\TDAQ\SYSADMIN.xml

<PolicySet PolicySetId="rps:IntermediaryTopRole:TDAQ:SYSADMIN"

PolicyCombiningAlgId="urn:oasis:names:tc:xacml:1.0:policy-combining-algorithm:first-

applicable">

 <Description>Intermediate RPS for role prefix [TDAQ:SYSADMIN]</Description>

 <Target>

 <Subjects>

 <Subject>

 <SubjectMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:anyURI-equal">

 <AttributeValue

DataType="http://www.w3.org/2001/XMLSchema#anyURI">TDAQ:SYSADMIN:expert</AttributeValue>

 <SubjectAttributeDesignator AttributeId="urn:oasis:names:tc:xacml:2.0:subject:role"

DataType="http://www.w3.org/2001/XMLSchema#anyURI" MustBePresent="true"/>

 </SubjectMatch>

 </Subject>

 </Subjects>

 </Target>

 <PolicySetIdReference>rps:RoleAssignable?TDAQ:SYSADMIN:expert</PolicySetIdReference>

</PolicySet>

rps\RoleAssignable\DCS\expert.xml

<PolicySet PolicySetId="rps:RoleAssignable?DCS:expert"

PolicyCombiningAlgId="urn:oasis:names:tc:xacml:1.0:policy-combining-algorithm:first-

applicable">

 <Description>Role Policy Set for role DCS:expert</Description>

 <Target>

Appendices

174

 <Subjects>

 <Subject>

 <SubjectMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:anyURI-equal">

 <AttributeValue

DataType="http://www.w3.org/2001/XMLSchema#anyURI">DCS:expert</AttributeValue>

 <SubjectAttributeDesignator AttributeId="urn:oasis:names:tc:xacml:2.0:subject:role"

DataType="http://www.w3.org/2001/XMLSchema#anyURI" MustBePresent="true"/>

 </SubjectMatch>

 </Subject>

 </Subjects>

 </Target>

 <PolicySetIdReference>ppsroles:DCS:expert</PolicySetIdReference>

</PolicySet>

rps\RoleAssignable\DCS\shifter.xml

<PolicySet PolicySetId="rps:RoleAssignable?DCS:shifter"

PolicyCombiningAlgId="urn:oasis:names:tc:xacml:1.0:policy-combining-algorithm:first-

applicable">

 <Description>Role Policy Set for role DCS:shifter</Description>

 <Target>

 <Subjects>

 <Subject>

 <SubjectMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:anyURI-equal">

 <AttributeValue

DataType="http://www.w3.org/2001/XMLSchema#anyURI">DCS:shifter</AttributeValue>

 <SubjectAttributeDesignator AttributeId="urn:oasis:names:tc:xacml:2.0:subject:role"

DataType="http://www.w3.org/2001/XMLSchema#anyURI" MustBePresent="true"/>

 </SubjectMatch>

 </Subject>

 </Subjects>

 </Target>

 <PolicySetIdReference>ppsroles:DCS:shifter</PolicySetIdReference>

</PolicySet>

rps\RoleAssignable\TDAQ\SYSADMIN\expert.xml

<PolicySet PolicySetId="rps:RoleAssignable?TDAQ:SYSADMIN:expert"

PolicyCombiningAlgId="urn:oasis:names:tc:xacml:1.0:policy-combining-algorithm:first-

applicable">

 <Description>Role Policy Set for role TDAQ:SYSADMIN:expert</Description>

 <Target>

 <Subjects>

 <Subject>

 <SubjectMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:anyURI-equal">

 <AttributeValue

DataType="http://www.w3.org/2001/XMLSchema#anyURI">TDAQ:SYSADMIN:expert</AttributeValue>

 <SubjectAttributeDesignator AttributeId="urn:oasis:names:tc:xacml:2.0:subject:role"

DataType="http://www.w3.org/2001/XMLSchema#anyURI" MustBePresent="true"/>

 </SubjectMatch>

 </Subject>

 </Subjects>

 </Target>

 <PolicySetIdReference>ppsroles:TDAQ:SYSADMIN:expert</PolicySetIdReference>

</PolicySet>

rps\RoleAssignable\TDAQ\expert.xml

<PolicySet PolicySetId="rps:RoleAssignable?TDAQ:expert"

PolicyCombiningAlgId="urn:oasis:names:tc:xacml:1.0:policy-combining-algorithm:first-

applicable">

 <Description>Role Policy Set for role TDAQ:expert</Description>

 <Target>

 <Subjects>

 <Subject>

 <SubjectMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:anyURI-equal">

 <AttributeValue

DataType="http://www.w3.org/2001/XMLSchema#anyURI">TDAQ:expert</AttributeValue>

 <SubjectAttributeDesignator AttributeId="urn:oasis:names:tc:xacml:2.0:subject:role"

DataType="http://www.w3.org/2001/XMLSchema#anyURI" MustBePresent="true"/>

 </SubjectMatch>

 </Subject>

 </Subjects>

 </Target>

 <PolicySetIdReference>ppsroles:TDAQ:expert</PolicySetIdReference>

</PolicySet>

Appendices

175

rps\RoleAssignable\TDAQ\shifter.xml

<PolicySet PolicySetId="rps:RoleAssignable?TDAQ:shifter"

PolicyCombiningAlgId="urn:oasis:names:tc:xacml:1.0:policy-combining-algorithm:first-

applicable">

 <Description>Role Policy Set for role TDAQ:shifter</Description>

 <Target>

 <Subjects>

 <Subject>

 <SubjectMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:anyURI-equal">

 <AttributeValue

DataType="http://www.w3.org/2001/XMLSchema#anyURI">TDAQ:shifter</AttributeValue>

 <SubjectAttributeDesignator AttributeId="urn:oasis:names:tc:xacml:2.0:subject:role"

DataType="http://www.w3.org/2001/XMLSchema#anyURI" MustBePresent="true"/>

 </SubjectMatch>

 </Subject>

 </Subjects>

 </Target>

 <PolicySetIdReference>ppsroles:TDAQ:shifter</PolicySetIdReference>

</PolicySet>

rps\RoleAssignable\Observer.xml

<PolicySet PolicySetId="rps:RoleAssignable?Observer"

PolicyCombiningAlgId="urn:oasis:names:tc:xacml:1.0:policy-combining-algorithm:first-

applicable">

 <Description>Role Policy Set for role Observer</Description>

 <Target>

 <Subjects>

 <Subject>

 <SubjectMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:anyURI-equal">

 <AttributeValue

DataType="http://www.w3.org/2001/XMLSchema#anyURI">Observer</AttributeValue>

 <SubjectAttributeDesignator AttributeId="urn:oasis:names:tc:xacml:2.0:subject:role"

DataType="http://www.w3.org/2001/XMLSchema#anyURI" MustBePresent="true"/>

 </SubjectMatch>

 </Subject>

 </Subjects>

 </Target>

 <PolicySetIdReference>ppsroles:Observer</PolicySetIdReference>

</PolicySet>

rps\RoleAssignable\ShiftLeader.xml

<PolicySet PolicySetId="rps:RoleAssignable?ShiftLeader"

PolicyCombiningAlgId="urn:oasis:names:tc:xacml:1.0:policy-combining-algorithm:first-

applicable">

 <Description>Role Policy Set for role ShiftLeader</Description>

 <Target>

 <Subjects>

 <Subject>

 <SubjectMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:anyURI-equal">

 <AttributeValue

DataType="http://www.w3.org/2001/XMLSchema#anyURI">ShiftLeader</AttributeValue>

 <SubjectAttributeDesignator AttributeId="urn:oasis:names:tc:xacml:2.0:subject:role"

DataType="http://www.w3.org/2001/XMLSchema#anyURI" MustBePresent="true"/>

 </SubjectMatch>

 </Subject>

 </Subjects>

 </Target>

 <PolicySetIdReference>ppsroles:ShiftLeader</PolicySetIdReference>

</PolicySet>

8.7.5 (PPSroles) Permissions Policies Sets for roles

ppsroles\DAQ\expert.xml

<PolicySet PolicySetId="ppsroles:DAQ:expert"

PolicyCombiningAlgId="urn:oasis:names:tc:xacml:1.0:policy-combining-algorithm:first-

applicable">

 <Description>The main Permission Policy Set for role [DAQ:expert]</Description>

<Target/>

 <PolicySetIdReference>ppsrules:DAQ:rm:allow_all?RResourceManager/A</PolicySetIdReference>

 <PolicySetIdReference>ppsroles:RemoteAccess</PolicySetIdReference>

 <PolicySetIdReference>ppsrules:DAQ:pmg:allow_all?Rpmg/A</PolicySetIdReference>

 <PolicySetIdReference>ppsrules:crd:shell?Ros/A</PolicySetIdReference>

 <PolicySetIdReference>ppsrules:DAQ:rc:allow_all?RRunControl/A</PolicySetIdReference>

Appendices

176

</PolicySet>

ppsroles\DAQ\shifter.xml

<PolicySet PolicySetId="ppsroles:DAQ:shifter"

PolicyCombiningAlgId="urn:oasis:names:tc:xacml:1.0:policy-combining-algorithm:first-

applicable">

 <Description>The main Permission Policy Set for role [DAQ:shifter]</Description>

<Target/>

 <PolicySetIdReference>ppsrules:DAQ:igui:expert?Rigui/A</PolicySetIdReference>

 <PolicySetIdReference>ppsrules:crd:lockscreen?Ros/A</PolicySetIdReference>

<PolicySetIdReference>ppsrules:DAQ:rm:free_except_initial?RResourceManager/A</PolicySetIdRefer

ence>

 <PolicySetIdReference>ppsrules:DAQ:pmg:allow_all?Rpmg/A</PolicySetIdReference>

 <PolicySetIdReference>ppsrules:crd:shell?Ros/A</PolicySetIdReference>

 <PolicySetIdReference>ppsrules:DAQ:igui:display?Rigui/A</PolicySetIdReference>

 <PolicySetIdReference>ppsrules:DAQ:rc:publish?RRunControl/A</PolicySetIdReference>

 <PolicySetIdReference>ppsrules:DAQ:igui:control?Rigui/A</PolicySetIdReference>

</PolicySet>

ppsroles\DCS\expert.xml

<PolicySet PolicySetId="ppsroles:DCS:expert"

PolicyCombiningAlgId="urn:oasis:names:tc:xacml:1.0:policy-combining-algorithm:first-

applicable">

 <Description>The main Permission Policy Set for role [DCS:expert]</Description>

<Target/>

 <PolicySetIdReference>ppsroles:RemoteAccess</PolicySetIdReference>

 <PolicySetIdReference>ppsroles:DCS:shifter</PolicySetIdReference>

</PolicySet>

ppsroles\DCS\shifter.xml

<PolicySet PolicySetId="ppsroles:DCS:shifter"

PolicyCombiningAlgId="urn:oasis:names:tc:xacml:1.0:policy-combining-algorithm:first-

applicable">

 <Description>The main Permission Policy Set for role [DCS:shifter]</Description>

<Target/>

 <PolicySetIdReference>ppsroles:Observer</PolicySetIdReference>

 <PolicySetIdReference>ppsrules:crd:shell?Ros/A</PolicySetIdReference>

</PolicySet>

ppsroles\TDAQ\SYSADMIN\expert.xml

<PolicySet PolicySetId="ppsroles:TDAQ:SYSADMIN:expert"

PolicyCombiningAlgId="urn:oasis:names:tc:xacml:1.0:policy-combining-algorithm:first-

applicable">

 <Description>The main Permission Policy Set for role [TDAQ:SYSADMIN:expert]</Description>

<Target/>

 <PolicySetIdReference>ppsroles:RemoteAccess</PolicySetIdReference>

 <PolicySetIdReference>ppsrules:crd:lockscreen?Ros/A</PolicySetIdReference>

 <PolicySetIdReference>ppsrules:crd:shell?Ros/A</PolicySetIdReference>

</PolicySet>

ppsroles\TDAQ\expert.xml

<PolicySet PolicySetId="ppsroles:TDAQ:expert"

PolicyCombiningAlgId="urn:oasis:names:tc:xacml:1.0:policy-combining-algorithm:first-

applicable">

 <Description>The main Permission Policy Set for role [TDAQ:expert]</Description>

<Target/>

 <PolicySetIdReference>ppsroles:TDAQ:shifter</PolicySetIdReference>

 <PolicySetIdReference>ppsroles:DAQ:expert</PolicySetIdReference>

 <PolicySetIdReference>ppsrules:DAQ:db:daq_xml?RDataBase/A</PolicySetIdReference>

 <PolicySetIdReference>ppsrules:DAQ:db:daq_dir?RDataBase/A</PolicySetIdReference>

</PolicySet>

ppsroles\TDAQ\shifter.xml

<PolicySet PolicySetId="ppsroles:TDAQ:shifter"

PolicyCombiningAlgId="urn:oasis:names:tc:xacml:1.0:policy-combining-algorithm:first-

applicable">

 <Description>The main Permission Policy Set for role [TDAQ:shifter]</Description>

<Target/>

 <PolicySetIdReference>ppsroles:Observer</PolicySetIdReference>

 <PolicySetIdReference>ppsrules:DAQ:db:daq_partitions_xml?RDataBase/A</PolicySetIdReference>

 <PolicySetIdReference>ppsroles:DAQ:shifter</PolicySetIdReference>

Appendices

177

</PolicySet>

ppsroles\Observer.xml

<PolicySet PolicySetId="ppsroles:Observer"

PolicyCombiningAlgId="urn:oasis:names:tc:xacml:1.0:policy-combining-algorithm:first-

applicable">

 <Description>The main Permission Policy Set for role [Observer]</Description>

<Target/>

</PolicySet>

ppsroles\RemoteAccess.xml

<PolicySet PolicySetId="ppsroles:RemoteAccess"

PolicyCombiningAlgId="urn:oasis:names:tc:xacml:1.0:policy-combining-algorithm:first-

applicable">

 <Description>The main Permission Policy Set for role [RemoteAccess]</Description>

<Target/>

 <PolicySetIdReference>ppsrules:remoteaccess?Ros/A</PolicySetIdReference>

</PolicySet>

ppsroles\ShiftLeader.xml

<PolicySet PolicySetId="ppsroles:ShiftLeader"

PolicyCombiningAlgId="urn:oasis:names:tc:xacml:1.0:policy-combining-algorithm:first-

applicable">

 <Description>The main Permission Policy Set for role [ShiftLeader]</Description>

<Target/>

 <PolicySetIdReference>ppsroles:TDAQ:shifter</PolicySetIdReference>

 <PolicySetIdReference>ppsroles:DCS:shifter</PolicySetIdReference>

 <PolicySetIdReference>ppsrules:crd:am_tool?Ros/A</PolicySetIdReference>

</PolicySet>

8.8 Server statistics log sample

[11/11 22:39:21][am.server.statistics.StatisticsCollector:<init>] FINE: Sampling clock object

initialized with sampling time interval 1000 ms

[11/11 22:39:21][am.server.statistics.StatisticsCollector:registerReporter] INFO: Register

new_req[new requests to be processed]:0.0 new_req/s

[11/11 22:39:21][am.server.statistics.StatisticsCollector:registerReporter] INFO: Register

req_proc_ok[requests processed successfully]:0.0 req_proc_ok/s

[11/11 22:39:21][am.server.statistics.StatisticsCollector:registerReporter] INFO: Register

req_proc_err[requests processed with errors]:0.0 req_proc_err/s

[11/11 22:39:21][am.server.statistics.StatisticsCollector:registerReporter] INFO: Register

Load counter: current load [0 srv_load] last peak [0 srv_load_peak]

[11/11 22:39:21][am.server.statistics.StatisticsCollector:registerReporter] INFO: Register

req_when_busy[requests received when the server is busy]:0.0 req_when_busy/s

[11/11 22:39:21][am.server.statistics.StatisticsCollector:registerReporter] INFO: Register

busy_resp[busy reponses sent to clients]:0.0 busy_resp/s

[11/11 22:39:21][am.server.statistics.StatisticsCollector:registerReporter] INFO: Register

busy_resp_err[errors while sending busy responses]:0.0 busy_resp_err/s

[11/11 22:39:22][am.server.statistics.StatisticsCollector:registerReporter] INFO: Register JVM

monitoring:510391504 JVM_free_mem 518979584 JVM_total_mem 518979584 JVM_max_mem

[11/11 22:40:24][am.server.statistics.StatisticsCollector:update] INFO: Reporters[8]: 0.0

 new_req/s 0.0 req_proc_ok/s 0.0 req_proc_err/s 0 srv_load_peak 0.0

 req_when_busy/s 0.0 busy_resp/s 0.0 busy_resp_err/s 501803152

 JVM_free_mem 518979584 JVM_total_mem 518979584 JVM_max_mem

[11/11 22:40:25][am.server.statistics.StatisticsCollector:update] INFO: Reporters[8]: 1.0

 new_req/s 0.0 req_proc_ok/s 0.0 req_proc_err/s 1 srv_load_peak 0.0

 req_when_busy/s 0.0 busy_resp/s 0.0 busy_resp_err/s 493215152

 JVM_free_mem 518979584 JVM_total_mem 518979584 JVM_max_mem

[11/11 22:40:26][am.server.statistics.StatisticsCollector:update] INFO: Reporters[8]: 3.0

 new_req/s 3.0 req_proc_ok/s 0.0 req_proc_err/s 1 srv_load_peak 0.0

 req_when_busy/s 0.0 busy_resp/s 0.0 busy_resp_err/s 476032080

 JVM_free_mem 518979584 JVM_total_mem 518979584 JVM_max_mem

[11/11 22:40:27][am.server.statistics.StatisticsCollector:update] INFO: Reporters[8]: 11.0

 new_req/s 11.0 req_proc_ok/s 0.0 req_proc_err/s 1 srv_load_peak 0.0

 req_when_busy/s 0.0 busy_resp/s 0.0 busy_resp_err/s 467444096

 JVM_free_mem 518979584 JVM_total_mem 518979584 JVM_max_mem

[11/11 22:40:28][am.server.statistics.StatisticsCollector:update] INFO: Reporters[8]: 12.0

 new_req/s 12.0 req_proc_ok/s 0.0 req_proc_err/s 1 srv_load_peak 0.0

 req_when_busy/s 0.0 busy_resp/s 0.0 busy_resp_err/s 455974816

 JVM_free_mem 518979584 JVM_total_mem 518979584 JVM_max_mem

[11/11 22:40:29][am.server.statistics.StatisticsCollector:update] INFO: Reporters[8]: 13.0

 new_req/s 13.0 req_proc_ok/s 0.0 req_proc_err/s 1 srv_load_peak 0.0

Appendices

178

 req_when_busy/s 0.0 busy_resp/s 0.0 busy_resp_err/s 447386440

 JVM_free_mem 518979584 JVM_total_mem 518979584 JVM_max_mem

[11/11 22:40:30][am.server.statistics.StatisticsCollector:update] INFO: Reporters[8]: 12.0

 new_req/s 12.0 req_proc_ok/s 0.0 req_proc_err/s 1 srv_load_peak 0.0

 req_when_busy/s 0.0 busy_resp/s 0.0 busy_resp_err/s 435935248

 JVM_free_mem 518979584 JVM_total_mem 518979584 JVM_max_mem

[11/11 22:40:31][am.server.statistics.StatisticsCollector:update] INFO: Reporters[8]: 12.0

 new_req/s 13.0 req_proc_ok/s 0.0 req_proc_err/s 1 srv_load_peak 0.0

 req_when_busy/s 0.0 busy_resp/s 0.0 busy_resp_err/s 427346720

 JVM_free_mem 518979584 JVM_total_mem 518979584 JVM_max_mem

[11/11 22:40:33][am.server.statistics.StatisticsCollector:update] INFO: Reporters[8]: 11.0

 new_req/s 10.0 req_proc_ok/s 0.0 req_proc_err/s 1 srv_load_peak 0.0

 req_when_busy/s 0.0 busy_resp/s 0.0 busy_resp_err/s 418758384

 JVM_free_mem 518979584 JVM_total_mem 518979584 JVM_max_mem

[11/11 22:40:34][am.server.statistics.StatisticsCollector:update] INFO: Reporters[8]: 9.0

 new_req/s 9.0 req_proc_ok/s 0.0 req_proc_err/s 1 srv_load_peak 0.0

 req_when_busy/s 0.0 busy_resp/s 0.0 busy_resp_err/s 413032920

 JVM_free_mem 518979584 JVM_total_mem 518979584 JVM_max_mem

[11/11 22:40:35][am.server.statistics.StatisticsCollector:update] INFO: Reporters[8]: 10.0

 new_req/s 10.0 req_proc_ok/s 0.0 req_proc_err/s 1 srv_load_peak 0.0

 req_when_busy/s 0.0 busy_resp/s 0.0 busy_resp_err/s 404436720

 JVM_free_mem 518979584 JVM_total_mem 518979584 JVM_max_mem

[11/11 22:40:36][am.server.statistics.StatisticsCollector:update] INFO: Reporters[8]: 6.0

 new_req/s 7.0 req_proc_ok/s 0.0 req_proc_err/s 1 srv_load_peak 0.0

 req_when_busy/s 0.0 busy_resp/s 0.0 busy_resp_err/s 398710224

 JVM_free_mem 518979584 JVM_total_mem 518979584 JVM_max_mem

[11/11 22:40:37][am.server.statistics.StatisticsCollector:update] INFO: Reporters[8]: 0.0

 new_req/s 0.0 req_proc_ok/s 0.0 req_proc_err/s 0 srv_load_peak 0.0

 req_when_busy/s 0.0 busy_resp/s 0.0 busy_resp_err/s 398710224

 JVM_free_mem 518979584 JVM_total_mem 518979584 JVM_max_mem

179

Bibliography

[1] CERN, "European Organization for Nuclear Research," CERN, [Online]. Available:
http://www.cern.ch.

[2] CERN, "ATLAS TDAQ SysAdmin Team," [Online]. Available: http://atlas-tdaq-
sysadmin.web.cern.ch.

[3] CERN, "LHC First Beam," CERN, 10 September 2008. [Online]. Available: http://lhc-first-
beam.web.cern.ch.

[4] CERN, "The LHC is back," CERN, 20 November 2009. [Online]. Available:
http://press.web.cern.ch/press/PressReleases/Releases2009/PR16.09E.html.

[5] CERN, "The ATLAS Experiment," CERN, [Online]. Available: http://atlas.ch.

[6] ATLAS Collaboration, "The ATLAS Experiment at the CERN Large Hadron Collider," Journal of
Instrumentation, vol. 3, no. 08, August 2008.

[7] ATLAS Collaboration, "ATLAS : technical proposal for a general-purpose pp experiment at the
Large Hadron Collider at CERN," CERN, Geneva, 1995.

[8] CERN, "Latest Results from ATLAS Higgs Search," 2012. [Online]. Available:
http://www.atlas.ch/news/2012/latest-results-from-higgs-search.html.

[9] M. A. e. al, "Integration of the trigger and data acquisition systems in ATLAS," Journal of
Physics: Conference Series, vol. 119, no. 2, 2008.

[10] ATLAS Collaboration, "ATLAS high-level trigger, data-acquisition and controls : Technical
Design Report," CERN, Geneva, 2003.

[11] G. L. Miotto, I. Aleksandrov, A. Amorim, G. Avolio, E. Badescu, M. Caprini, A. Corso-Radu, G. L.
Darlea, A. Dos Anjos, I. Fedorko, A. Kazarov, S. Kolos, V. Kotov, A. J. Lankford, M. Leahu, L.
Mapelli, R. M. Garcia and Y. Ryabov, "Configuration and control of the ATLAS trigger and
data acquisition," Nuclear Instruments and Methods in Physics Research Section A, vol. 623,
no. 1, pp. 549-551, 11 2010.

[12] M. C. Leahu, M. Dobson and G. Avolio, "Access Control Design and Implementations in the
ATLAS Experiment," IEEE Transactions on Nuclear Science, vol. 55, no. 1, pp. 386 - 391, 8
February 2008.

[13] OASIS, "OASIS XACML Standard," [Online]. Available: http://www.oasis-
open.org/specs/index.php#xacmlv2.0.

[14] T. I. E. T. F. (. -. N. W. Group, "Lightweight Directory Access Protocol (LDAP): The Protocol,"
June 2006. [Online]. Available: http://tools.ietf.org/html/rfc4511.

[15] NSTISSC, National Information Systems Security (INFOSEC) Glossary, September,2000.

[16] J. Saltzer and M. Schroeder, "The protection of information in computer systems," September
1975.

[17] D. F. Ferraiolo, D. R. Kuhn and R. Chandramouli, "Role-Based Access Control," vol. Computer

180

Security Series, 2003.

[18] DoD, "Department of Defense Trusted Computer System Evaluation Criteria," 26 December
1985. [Online]. Available: http://www.fas.org/irp/nsa/rainbow/std001.htm.

[19] R. Sandhu, D. Ferraiolo and R. K. D, "The NIST Model for Role Based Access Control: Towards a
Unified Standard," Berlin, 2000.

[20] CERN, "Information Technology Department - Organization," 2012. [Online]. Available:
http://information-technology.web.cern.ch/about/organisation.

[21] J. Sloper, M. Leahu, M. Dobson and G. Lehmann, "Access management in the ATLAS TDAQ,"
IEEE Transactions on Nuclear Science, vol. 53, no. 3, pp. 986 - 989, 26 June 2006.

[22] M. Dobson, M. Ciobotaru, E. Ertorer, H. Garitaonandia, L. Leahu, M. Leahu, I. M. Malciu, E.
Panikashvili, A. Topurov and G. Ünel, "The Architecture and Administration of the ATLAS
Online Computing System," in 15th International Conference on Computing in High Energy
and Nuclear Physics (CHEP 2006), Mumbai, 2006.

[23] CERN, "Scientific Linux CERN 5," [Online]. Available:
http://linux.web.cern.ch/linux/scientific5/.

[24] "SCADA System (Supervisory Control & Data Acquisition)," [Online]. Available:
http://www.pvss.com.

[25] CERN, "JCOP Framework Access Control component," [Online]. Available:
http://j2eeps.cern.ch/wikis/display/EN/JCOP+Framework+Access+Control.

[26] O.Holme, M. Gonzalez-Berges, P.Golonka and S. Schmeling, "The JCOP Framework," in 10th
International Conference on Accelerator and Large Experimental Physics Control Systems,
Geneva, 2005.

[27] CERN, "Training on JCOP Framework - Access Control Component," October 2006. [Online].
Available: https://edms.cern.ch/file/1056103/1/advancedCourse-AccessControl.pdf.

[28] "Linux PAM," [Online]. Available: http://www.linux-pam.org/.

[29] "OpenSSH," [Online]. Available: http://www.openssh.org/.

[30] "Linux Sudo," [Online]. Available: http://www.sudo.ws/.

[31] KDE TechBase, "KDE System Administration/Kiosk/Introduction," 2012. [Online]. Available:
http://techbase.kde.org/KDE_System_Administration/Kiosk/Introduction.

[32] OASIS, "Organization for the Advancement of Structured Information Standards," [Online].
Available: https://www.oasis-open.org/org.

[33] World Wide Web Consortium (W3C), "Extensible Markup Language (XML)," [Online].
Available: http://www.w3.org/XML/.

[34] BeginLinux.com, "Basics of LDAP," [Online]. Available:
http://beginlinux.com/server_training/server-managment-topics/1015-basics-of-ldap.

[35] "OpenLDAP," [Online]. Available: http://www.openldap.org/.

[36] "php LDAP Admin," [Online]. Available: http://phpldapadmin.sourceforge.net.

[37] ORACLE, "System Administration Guide: Naming and Directory Services (DNS, NIS, and LDAP),"

181

[Online]. Available: http://docs.oracle.com/cd/E19082-01/819-3194/anis2-
14244/index.html.

[38] OpenLDAP, "Schema specification," [Online]. Available:
http://www.openldap.org/doc/admin22/schema.html.

[39] ORACLE, "NIS Extension Guide: NIS Information in the LDAP Directory," [Online]. Available:
http://docs.oracle.com/cd/E19513-01/806-4251-10/mapping.htm.

[40] "Sudo - OpenLDAP schema," [Online]. Available:
http://www.sudo.ws/repos/sudo/file/dacfad7e7a95/doc/schema.OpenLDAP. [Accessed
September 2012].

[41] "GNU Bash Reference Manual," [Online]. Available:
http://www.gnu.org/software/bash/manual/bashref.html.

[42] "PHP," [Online]. Available: http://www.php.net/.

[43] "PHP Tree Graph Ext," [Online]. Available: http://freecode.com/projects/phptreegraphext.

[44] CERN, "IT Department - Public Interactive Logon Service," [Online]. Available:
http://plus.web.cern.ch/plus/.

[45] A. Collaboration, "Development of the ATLAS control room," 2006. [Online]. Available:
http://www.atlas.ch/news/2006/control-room.html.

[46] "K Desktop Environment," [Online]. Available: http://www.kde.org/.

[47] "KDE Kiosk," [Online]. Available:
http://techbase.kde.org/KDE_System_Administration/Kiosk/Introduction.

[48] "Name Service Switch - The GNU C Library," [Online]. Available:
http://www.gnu.org/software/libc/manual/html_node/Name-Service-Switch.html.

[49] "PAM Access," [Online]. Available: http://linux.die.net/man/8/pam_access.

[50] "cron," [Online]. Available: http://linux.die.net/man/8/cron.

[51] J. E. Sloper and I. Soloviev, "ATLAS TDAQ Online Software - Access Manager Requirements,"
CERN, 26 August 2004. [Online]. Available:
https://edms.cern.ch/file/484984/2/requirements_draft_v2.pdf.

[52] J. E. Sloper, "ATLAS TDAQ - Access Manager Architectural Analysis and Design," CERN, 31
January 2005. [Online]. Available:
https://edms.cern.ch/file/558196/1.0/AM_design_draft.pdf.

[53] W3C, "XML," [Online]. Available: http://www.w3.org/XML/.

[54] OASIS, "eXtensible Access Control Markup Language (XACML) Version 2.0," 1 February 2005.
[Online]. Available: http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-core-
spec-os.pdf.

[55] OASIS, "XACML Profile for Role Based Access Control (RBAC)," 13 February 2004. [Online].
Available: http://docs.oasis-open.org/xacml/cd-xacml-rbac-profile-01.pdf.

[56] OMG, "Unified Modeling Language," [Online]. Available: http://www.uml.org/.

[57] V. Bahyl and N. Garfield, "DNS load balancing and failover at CERN," in 15th International

182

Conference on Computing in High Energy and Nuclear Physics (CHEP 2006), Mumbai, 2006.

[58] "Sun's XACML Implementation," [Online]. Available: http://sunxacml.sourceforge.net/.

[59] "Junit," [Online]. Available: https://github.com/kentbeck/junit/wiki.

[60] "Nagios," [Online]. Available: http://www.nagios.org/.

[61] "dnotify(1) - Linux man page," [Online]. Available: http://linux.die.net/man/1/dnotify.

[62] A. Adeel-Ur-Rehman, F. Bujor, J. Benes, C. Caramarcu, M. Dobson, A. Dumitrescu, I. Dumitru,
M. Leahu, L. Valsan, A. Oreshkin, D. Popov, G. Unel and A. Zaytsev, "System administration
of ATLAS TDAQ computing environment," Journal of Physics: Conference Series, vol. 219, no.
2, 2010.

[63] M. Leahu, V. Buzuloiu and D. A. Stoichescu, "A Role Based Access Control Solution for Linux
Network," "The Scientific Buletin" of University Politehnica of Bucharest, in press.

183

Index

A

Access Manager · iii, 6, 41, 42, 55, 59, 60, 61, 68, 70, 79,
97, 101, 103, 104, 109, 110, 122, 125, 128, 129, 140,
142

ACR · See ATLAS Control Room
AM · See Access Manager
Application Gateway · 40, 65, 66, 68, 80, 115
ATCN · 43, 45, See ATLAS Technical Control Network
ATLAS Control Room · 65
ATLAS Online cluster · iii, 47, 50, 58, 63, 65, 66, 68, 70,

71, 79, 80, 81, 82, 98, 102, 105, 108, 115, 117, 121,
122

ATLAS Technical Control Network · 40

C

Control Room Desktop · 39, 41, 45, 66, 115
CRD · 41, 42, 72, 73, 80, See Control Room Desktop

D

DAC · See Discretionary Access Control
Discretionary Access Control · 19

E

eXtensible Access Control Markup Language · See XACML

H

Hierarchical RBAC · vii, xi, xii, 24, 47

L

LDAP · 7, 45, 47, 48, 49, 50, 54, 55, 57, 58, 59, 60, 65, 68,
73, 74, 75, 76, 77, 79, 89, 95, 96, 98, 99, 100, 103,
104, 105, 108, 111, 113, 115, 116, 117, 118, 119, 121,
123, 125, 128, 129, 130, 131, 132, 133, 134, 135, 136,
137, 138, 139, 140, 141, 142, 143,144, 145, 146, 147,
148, 149, 150, 151, 153, 154, 156, See Lightweight
Directory Access Protocol

Lightweight Directory Access Protocol · 7

M

MAC · See Mandatory Access Control
Mandatory Access Control · 21

N

NIS netgroups · 49, 50

O

Online Software · 5

P

PAP · 45, 83, 84, 86, 89, 95, 96, 97, 98, 104, 108, 154, See
Policy Administration Point

PDP · 45, 82, 83, 84, 89, 99, 100, See Policy Decision
Point

PEP · 45, 82, 83, 84, See Policy Enforcement Point
PIP · 45, 82, 83, 84, 89, 99, 100, 111, 113, See Policy

Information Point
Policy Administration Point · 43, 45, 83, 84, 96, 97, 104,

106
Policy Decision Point · 43, 45
Policy Enforcement Point · 43
Policy Information Point · 43, 45

R

RBAC · iii, 6, 7, 9, 17, 22, 23, 24, 25, 26, 29, 30, 31, 32, 34,
35, 36, 39, 40, 41, 42, 45, 46, 47, 49, 50, 51, 53, 55,
59, 61, 72, 73, 74, 79, 80, 82, 83, 87, 88, 89, 96, 108,
111, 113, 121, 122, 127, 142, See Role Based Access
Control

Role Based Access Control · iii, 6, 7, 9, 22, 23, 121, 125

S

Scientific Linux CERN · iii, 40, 50
SLC · 50, 55, 73, 74, 76, 82, 96, 121, See Scientific Linux

CERN
sudo · 45, 50, 60, 73, 74, 76, 77

T

TDAQ · See Trigger and Data Acquisition
TDAQ Access Manager · See Access Manager
Trigger and Data Acquisition · 3

X

XACML · iii, 6, 42, 43, 45, 46, 61, 82, 83, 84, 86, 87, 88,
89, 93, 95, 96, 97, 98, 99, 100, 103, 105, 106, 108,
116, 123, 154

