

European Coordination for Accelerator Research and Development

PUBLICATION

Future Possibilities for Precise Studies of the X(125) Higgs Candidate – Higgs Factories

Zimmermann, F (CERN, Switzerland)

06 December 2012

The research leading to these results has received funding from the European Commission under the FP7 Research Infrastructures project EuCARD, grant agreement no. 227579.

This work is part of EuCARD Work Package 4: AccNet: Accelerator Science Networks.

The electronic version of this EuCARD Publication is available via the EuCARD web site <http://cern.ch/eucard> or on the CERN Document Server at the following URL: <http://cds.cern.ch/record/1498095

– EuCARD-PRE-2012-002 —

EUCARD ACCNE

Future Possibilities for Precise Studies of the X(125) Higgs Candidate – *Higgs Factories*

前広島大学

Accelerators for a Higgs Factory: Linear vs. Circular November 14-16,2012 Fermitab. Bardra, Illinois, U.S.A.

Higgs Factory

> Higs Physics Beyond the UIC + Uneer Higs Factorie Circular Higs Factories + Muon Collider as a Higs Factory y Collider as a Higs Factory conferences.fnal.gov/hi2012

Frank Zimmermann CERN Colloquium 22 November 2012 ICFA Beam Dynamics Workshop Accelerators for a Higgs Factory Linear vs. Circular November 14-16, 2012 Fermilab, Batavia, Illinois, U.S.A.

Hopp Physics Beyond The UIC + Union Hopp Technone Circular Begin Fachions - Mano Caldina en a Hopp Facher yn Collider an a Hopp Facher Conferences: Incl. gov/hit2012 Amerikanisme Berner State - Stat

work supported by the European Commission under the FP7 Research Infrastructures project EuCARD, grant agreement no. 227579

Higgs Factory (HF) candidates

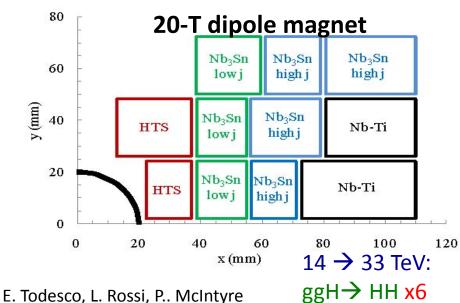
- LHC & upgrades
- linear colliders
- circular e⁺e⁻ colliders
- lepton-hadron collider
- gamma-gamma colliders
- muon collider

HF quality indicators

- readiness / maturity
- cost , electrical power
- peak luminosity , #IPs
- integrated luminosity
 - Hübner (H) factor = integrated lumi/(peak lumi x calendar time for physics)

 $H_{\text{LEP}} \approx 0.2, H_{\text{LHC}} \approx 0.2, H_{\text{KEKB}} \approx 0.7$

- commissioning time
- expandability


LHC Higgs Factory & LHC upgrades

LHC Higgs factory & upgrades

LHC is the 1st Higgs factory! E_{COM} =8-14 TeV, $\hat{L} \sim 10^{34}$ cm⁻²s⁻¹ total cross section at 8 TeV: 22 pb 1 M Higgs produced so far – more to come 15 H bosons / min – and more to come

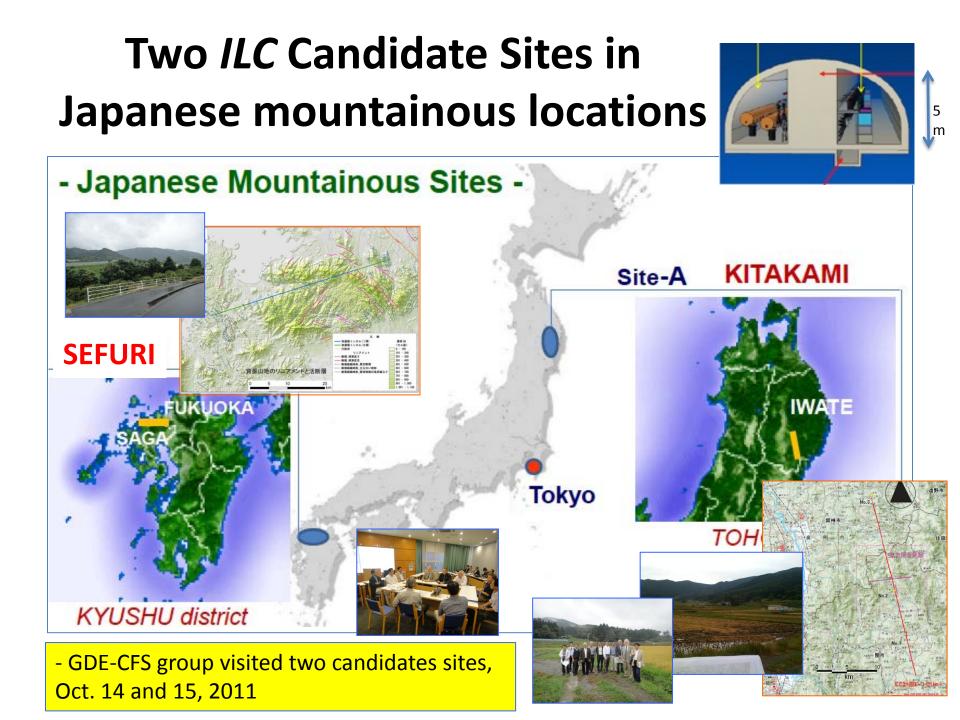
 $8 \rightarrow 14$ TeV: ggH x1.5 F. Cerutti, P. Janot

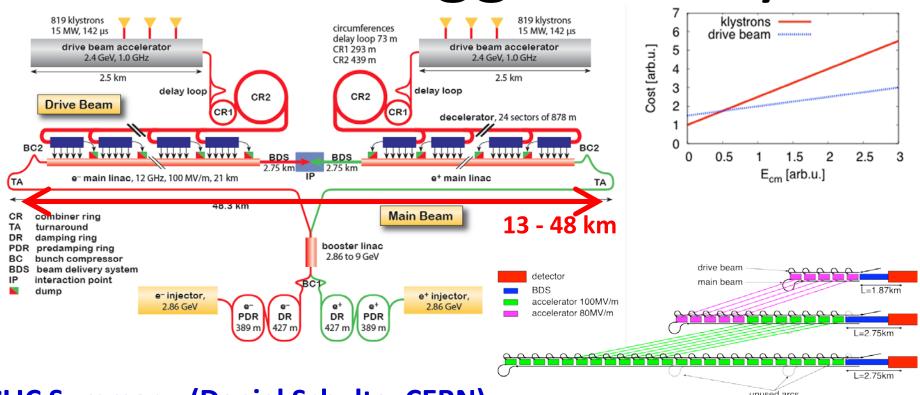
HE-LHC: in LHC tunnel (2035-) E_{COM} =33 TeV, $\hat{L} = 2x10^{34} \text{ cm}^{-2}\text{s}^{-1}$

HL-LHC (~2022-2030) will deliver ~9x more H bosons! E_{COM} =14 TeV, \hat{L} ~5x10³⁴cm⁻²s⁻¹ with luminosity leveling

SHE-LHC: new 80 km tunnel E_{COM} =84-104 TeV, $\hat{L} = 2x10^{34} \text{ cm}^{-2}\text{s}^{-1}$

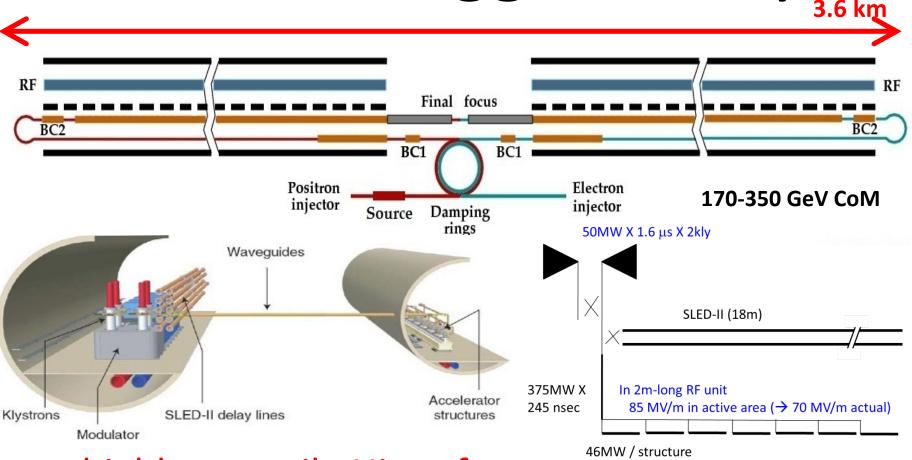
J. Osborne, C. Waaijer, S. Myers


Linear Collider Higgs Factories



ILC Summary (Nick Walker, DESY)

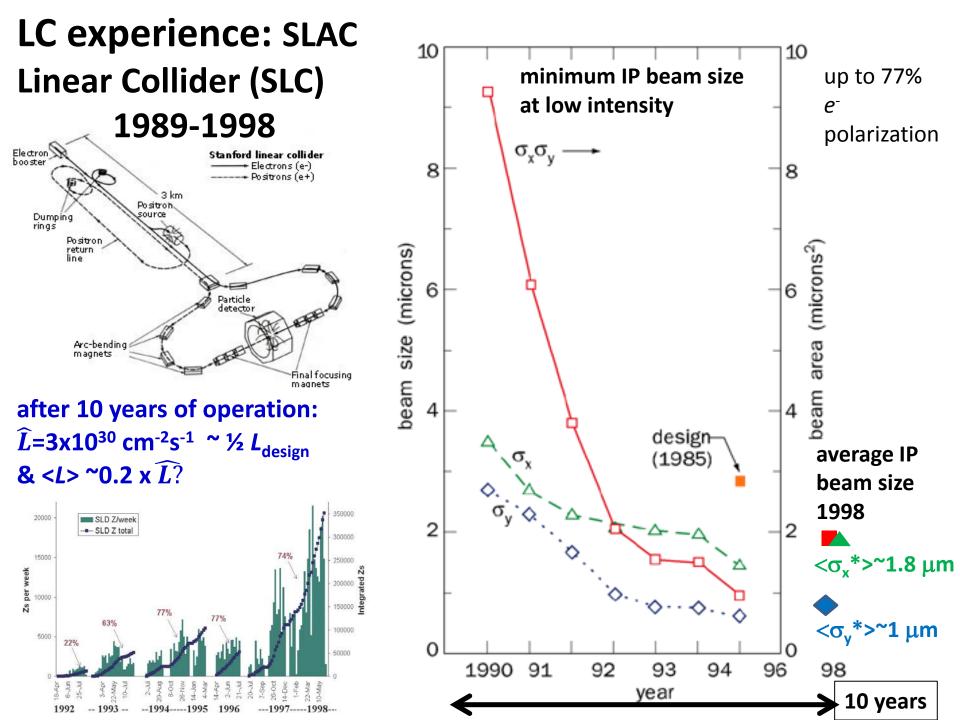
ILC (500 GeV) "contains" light Higgs factor; luminosity **7.5×10³³ cm⁻² s⁻¹** (**possible upgrade x2**); Standalone machine for LHF: <u>reduced cost by</u> <u>~35% (P_{AC} ~ 100 MW)</u>. **Only makes sense as part of 1st-stage machine**; scope still ~500 GeV, TeV optional



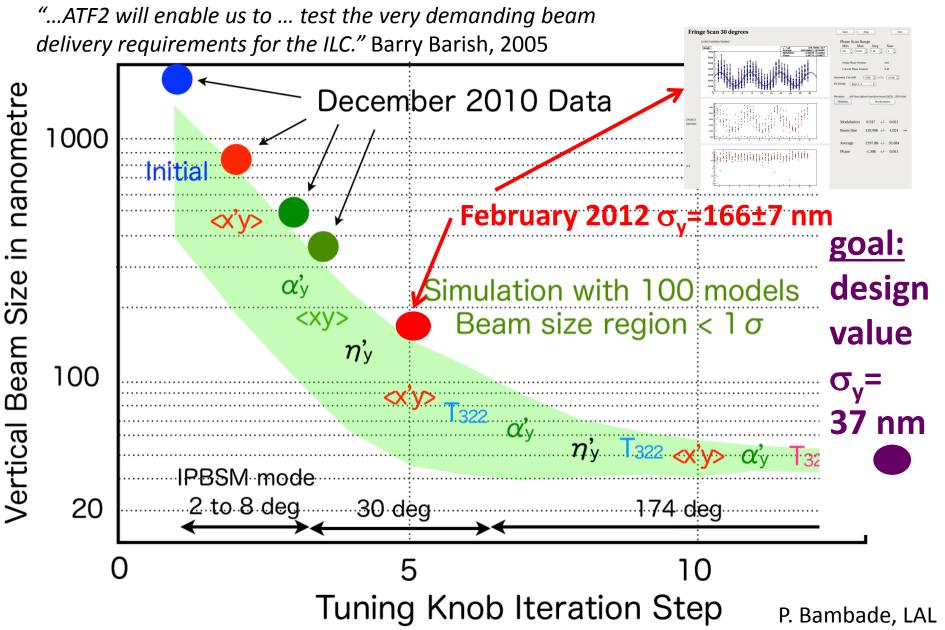
CLIC as Higgs factory

CLIC Summary (Daniel Schulte, CERN)
The feasibility of the CLIC scheme has been established.
CLIC proposes a staged approach to reach 3 TeV: Stages with 500fb⁻¹ at 375-500GeV, 1500fb⁻¹ at 1-2TeV, 2000fb⁻¹ at 3 TeV; 2.3×10³⁴ cm⁻² s⁻¹ at 500 GeV. First stage with klystrons is being explored - promising alternative; Construction could start in 2022; commissioning in 2030.

X-band Higgs factory

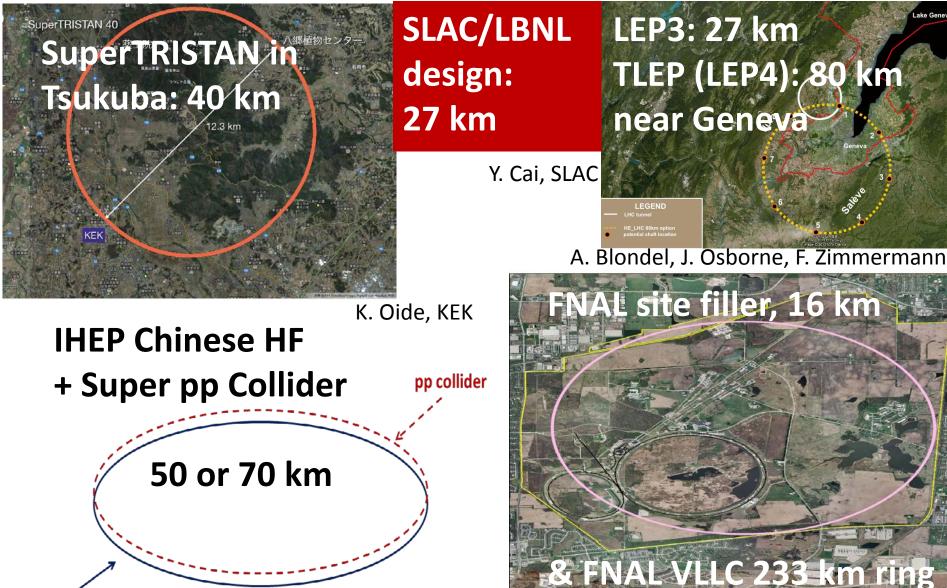

- highly versatile Higgs factory
- first stage of operation ($\gamma\gamma \rightarrow H$) fits on KEK site
- genuine test facility for CLIC

R. Belusevic & T. Higo, KEK


NCRF vs SCRF (Tor Raubenheimer, SLAC)

- NCRF may be more cost effective than SCRF for a low energy (Higgs Factory) LC
- Topic may be re-examined if a project is formed but hard to make progress at this time

0 · · · · · · · · · · · · · · · · · · ·		500 (); () () () () () () ()		
Costs (M\$)	0.5 TeV ILC	596 rf units: 1 Mod, 1 Klys + 3 CM	0.5 TeV NLC	2232 rf units: 1 Mod, 2 Kly, 8 Accel
Mods and Klys	410	420 k\$ Mod, 268k\$ Kly+LLRF	498	83 k\$ Mod, 70 k\$ Kly+LLRF
RF Dist (Klys - Accel)	151	253 K\$ per rf unit	536	240 k\$ per rf unit
Accel Structures	1287	720 k\$ per Tested CM	379	170 k\$ per rf unit
Water Cooling	185	142 MW at 1.3 \$/W	261	201 MW at 1.3 \$/W
Cryo Cooling	225		0	
Electrical Dist	170	142 MW at 1.2 \$/W	241	201 MW at 1.2 \$/W
Tunnel	672	2*22.4 km at 15 k\$/m	360	2*12 km at 15 k\$/m
Totals (w/o EDIA, Install,	3100		2275	
Global Cntrls or Return Lines)				



LC experience: final-focus test facility KEK-ATF2 in operation since early 2009 - IP spot size tuning

Circular Higgs Factories

circular HFs – a few examples

T. Sen, E. Gianfelice-Wendt, Y. Alexahin, FNAL

e⁻e⁺ Higgs Factory

Q. Qin, IHEP

LEP3, TLEP (LEP4) ($e^+e^- \rightarrow ZH$, $e^+e^- \rightarrow W^+W^-$, $e^+e^- \rightarrow Z$, [$e^+e^- \rightarrow t\bar{t}$])

key parameters

	LEP3	TLEP (LEP4)	
circumference	26.7 km	80 km	
max beam energy	120 GeV	175 GeV	
max no. of IPs	4	4	
luminosity at 350 GeV c.m.	-	$0.7 x 10^{34} cm^{-2} s^{-1}$	
luminosity at 240 GeV c.m.	10 ³⁴ cm ⁻² s ⁻¹	$5x10^{34}$ cm ⁻² s ⁻¹	
luminosity at 160 GeV c.m.	$5x10^{34}$ cm ⁻² s ⁻¹	$2.5 x 10^{35} cm^{-2} s^{-1}$	
luminosity at 90 GeV c.m.	$2x10^{35}$ cm ⁻² s ⁻¹	$10^{36} cm^{-2} s^{-1}$	

at the Z pole repeating LEP physics programme in a few minutes...

circular HFs – beam lifetime

LEP2:

- beam lifetime ~ 6 h
- dominated by radiative Bhahba scattering with cross section $\sigma^{\sim}0.215$ barn

(H. Burkhardt)

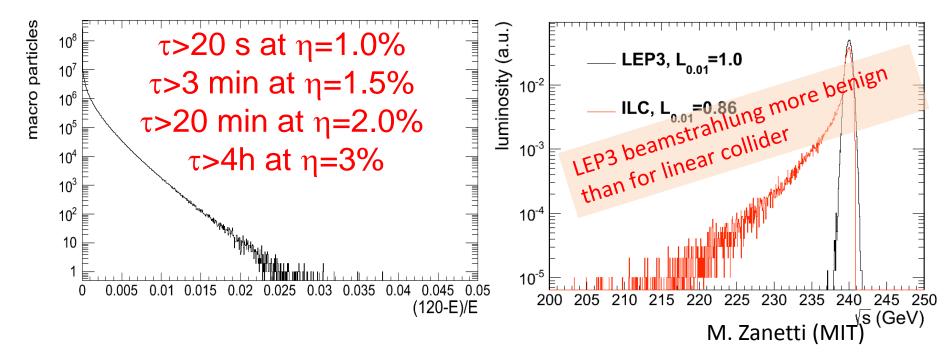
LEP3:

• with L^{2034} cm⁻²s⁻¹ at each of several IPs:

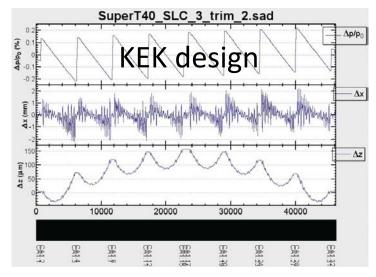
τ_{beam,LEP3} ~18 minutes from rad. Bhabha scattering
→ solution: top-up injection (A. Blondel)

additional beam lifetime limit due to beamstrahlung:

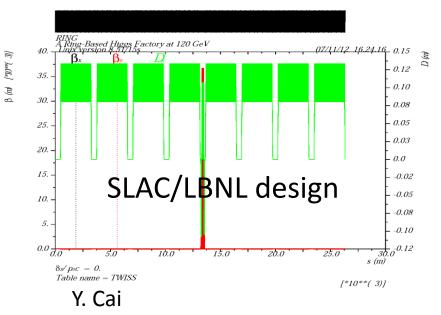
- (1) large momentum acceptance ($\eta \ge 3\%$), and/or
- (2) flat(ter) beams and/or
- (3) fast replenishing

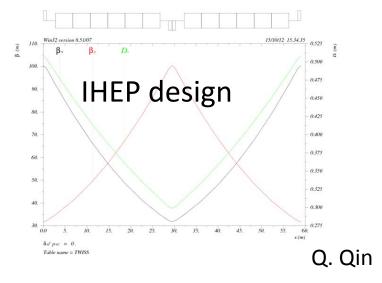

(V. Telnov, K. Yokoya, M. Zanetti)

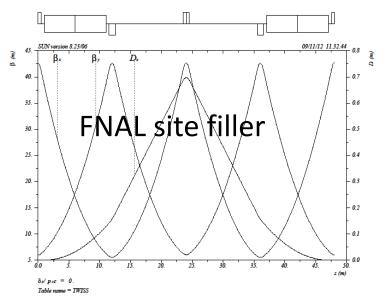
circular HFs – beamstrahlung


- simulation w 360M macroparticles
- τ varies exponentially w energy acceptance η

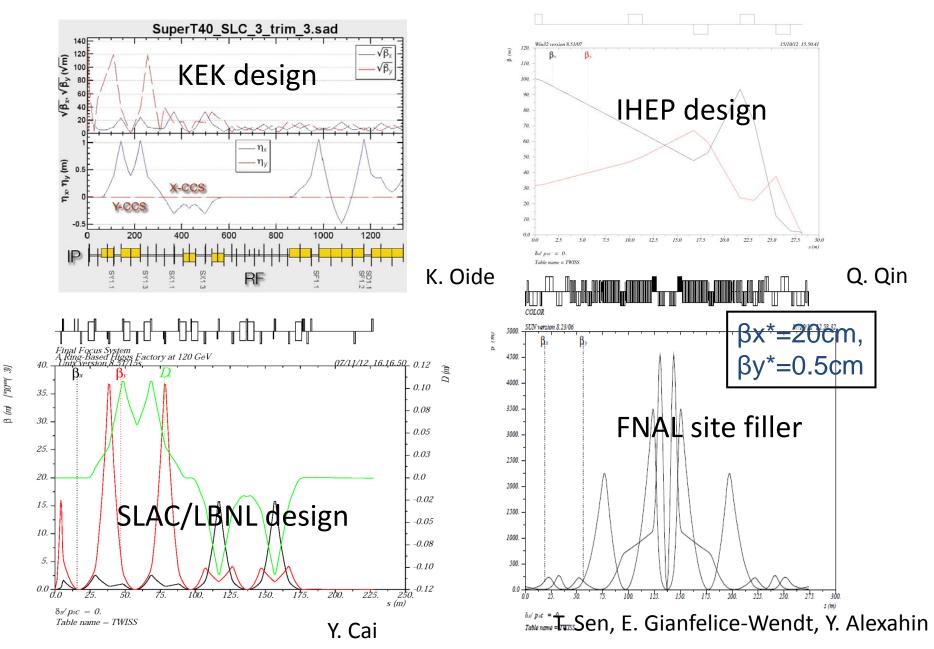
TLEP at 240 GeV: LEP3 & II post-collision *E* tail \rightarrow lifetime τ luminosities

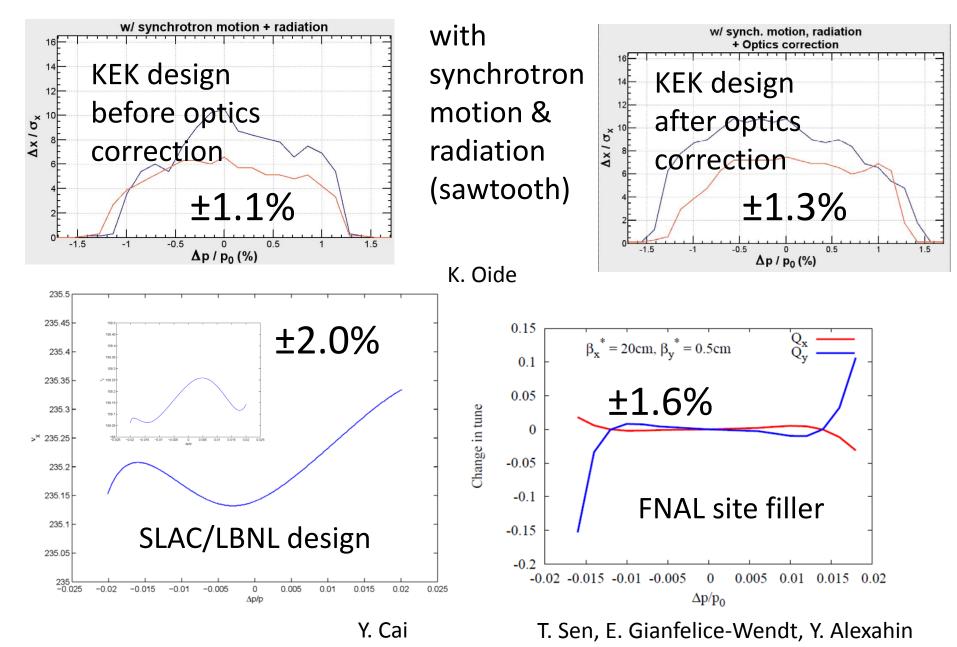

LEP3 & ILC: luminosity *E* spectrum



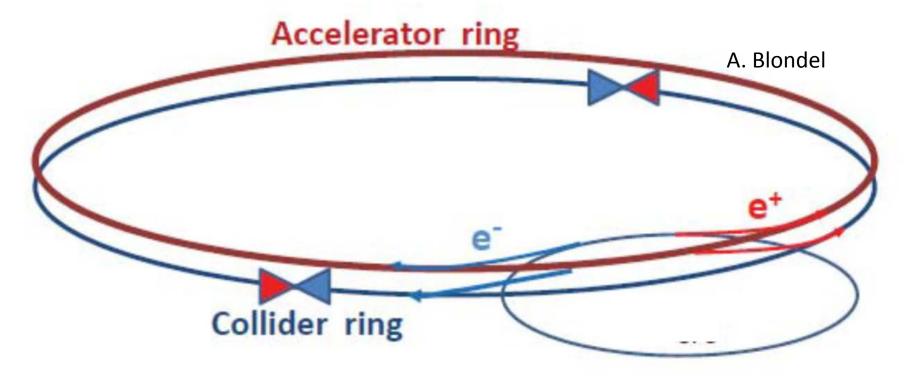

circular HFs – arc lattice

K. Oide





T. Sen, E. Gianfelice-Wendt, Y. Alexahin

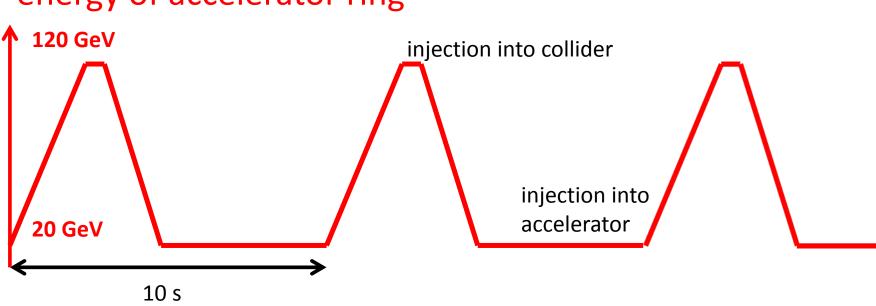

circular HFs – final-focus design

circular HFs - momentum acceptance

circular HFs – top-up injection double ring with top-up injection supports short lifetime & high luminosity

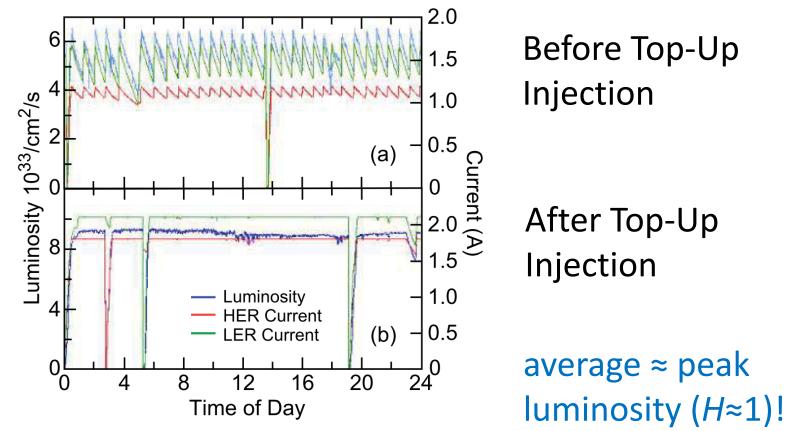
top-up experience: PEP-II, KEKB, light sources

top-up injection: schematic cycle


beam current in collider (15 min. beam lifetime)

energy of accelerator ring

不

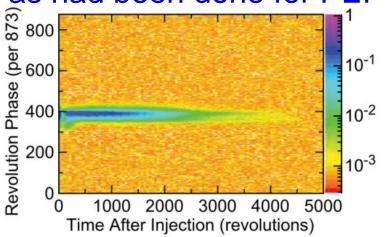

100%

99%

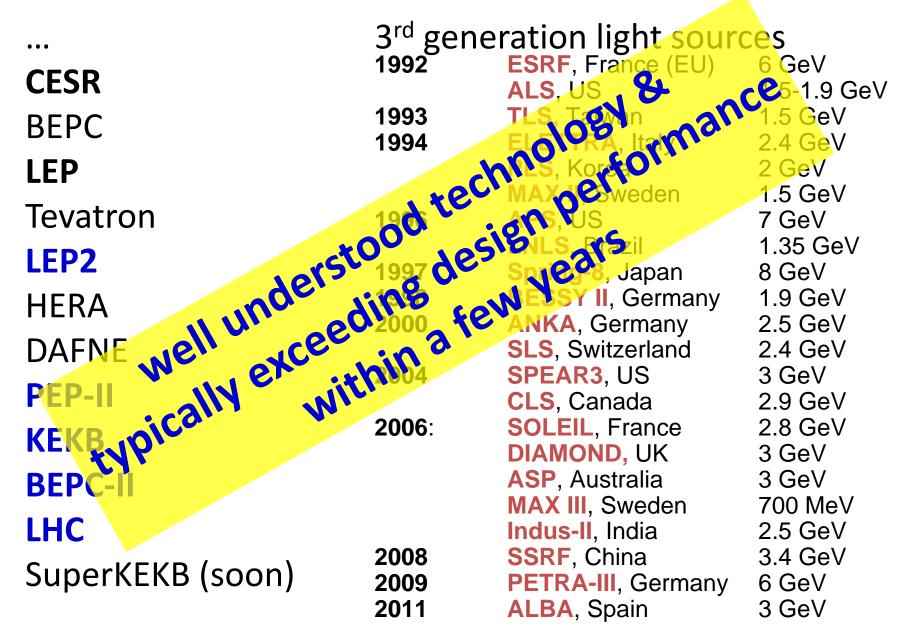
almost constant current

top-up injection at PEP-II/BaBar

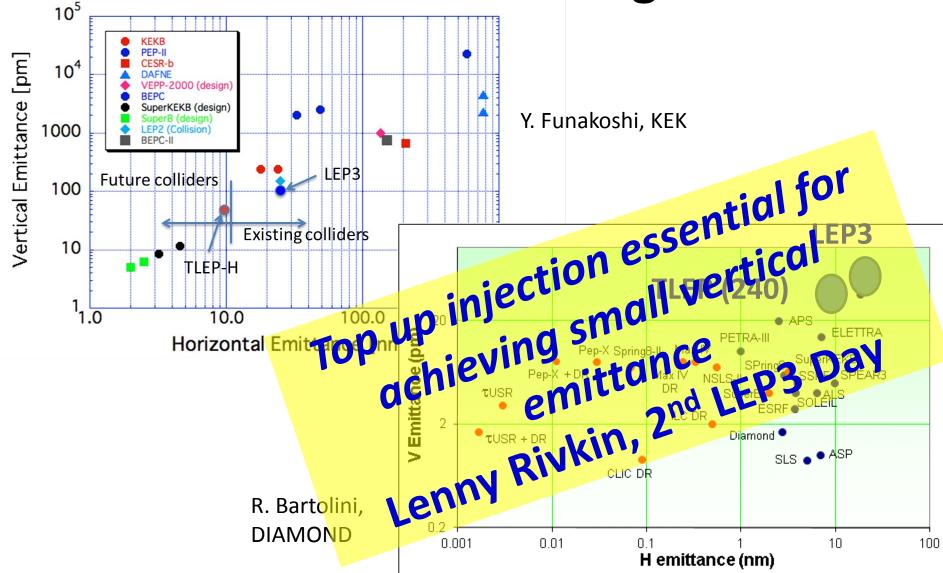
J. Seeman


PEP-II: Luminosity and beam currents for a 24-hour period (a) before and (b) after the implementation of trickle injection.

top-up injection: feasibility


HF 2012 conclusions (John Seeman, SLAC):

- Top-up injection will work for a Circular Higgs Factory.
- A full energy injector is needed.
- A synchrotron injector will work the best, but is more than is needed (60 Hz!).
- A rapidly ramped storage ring is likely adequate (4 sec).
- The detectors will need to mask out the buckets with damping injected bunches during data taking as had been done for PEP-II/BaBar:

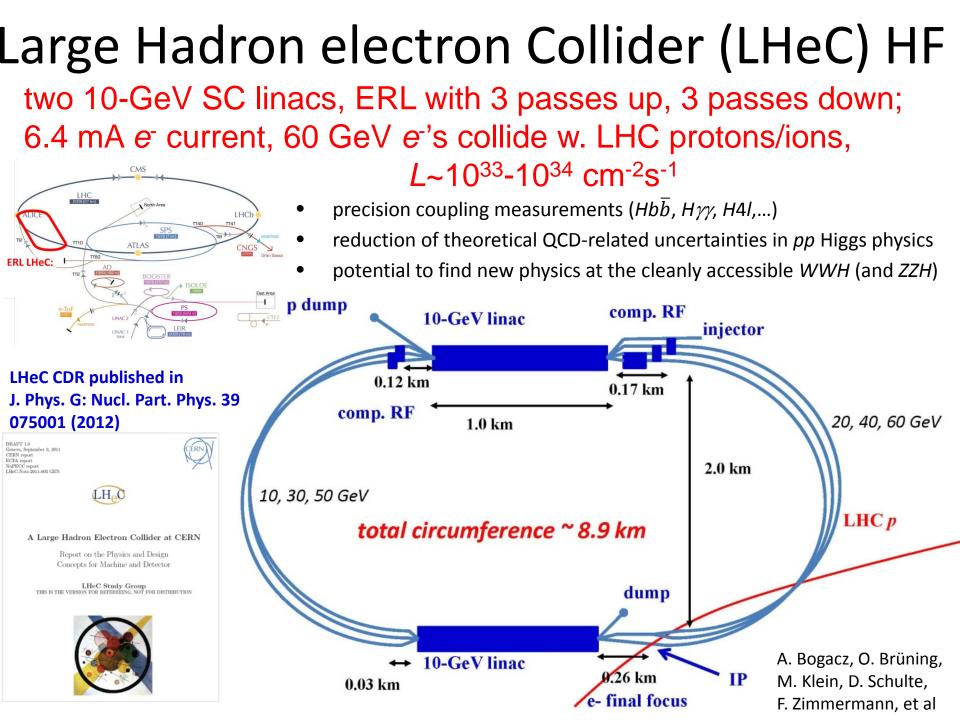

<u>BaBar trigger masking:</u> Mask all of ring a few tens of turns. Mask injected bunch area for 1250 turns or about 0.9 msec.

Circular Collider & SR Experience

Emittances in Circular Colliders & Modern Light Sources

circular HFs: synchrotonradiation heat load

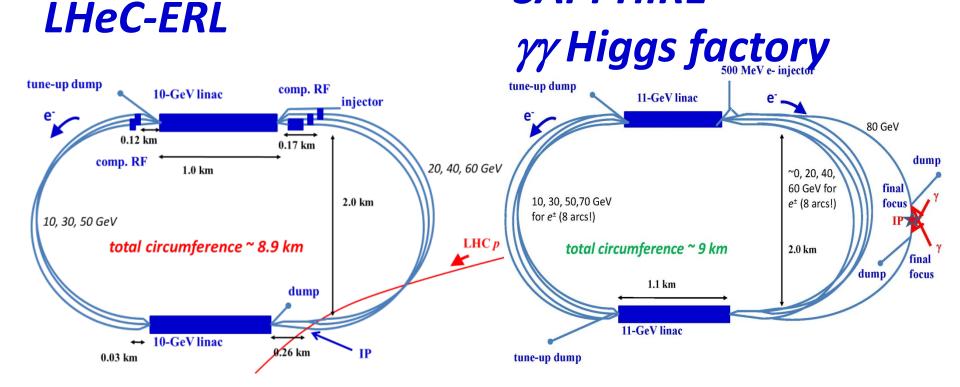
	PEPII	SPEAR3	LEP3	TLEP-Z	TLEP-H	TLEP-t
E (GeV)	9	3	120	45.5	120	175
I (A)	3	0.5	0.0072	1.18	0.0243	0.0054
rho (m)	165	7.86	2625	9000	9000	9000
Linear Power (W/cm)	101.8	92.3	30.5	8.8	8.8	8.8


LEP3 and TLEP have 3-10 times less SR heat load per meter than PEP-II or SPEAR! (though higher photon energy)

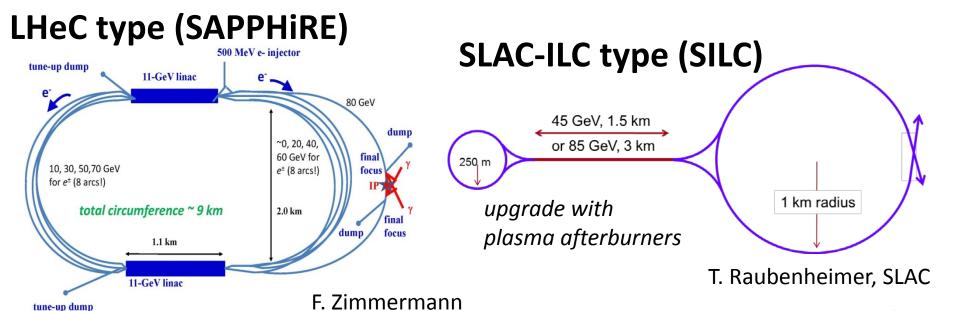
N. Kurita, U. Wienands, SLAC

circular Higgs Factories - R&D items

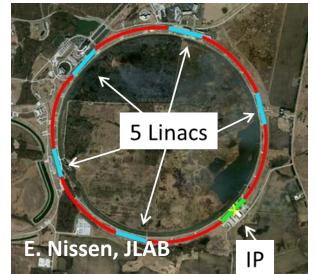
- choice of RF frequency: 1.3 GHz (ILC) or 700 MHz (ESS)? & RF coupler
- SR handling and radiation shielding (LEP experience)
- beam-beam interaction for large Q_s and significant hourglass effect
- IR design with even larger momentum acceptance
- integration in LHC tunnel (LEP3)
- Pretzel scheme for TERA-Z operation

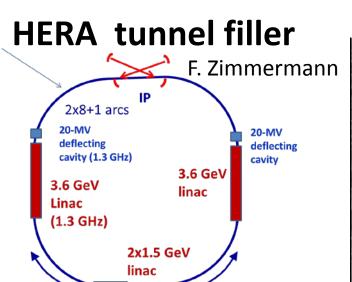

LHeC Higgs Factory

yy Higgs Factories


Reconfiguring *LHeC* → *SAPPHiRE*

SAPPHIRE*




*Small Accelerator for Photon-Photon Higgs production using Recirculating Electrons

$\gamma\gamma$ HFs – additional examples

Tevatron tunnel filler

γγ Higgs Factories - R&D items

- γγ interaction region
- Iarge high-finesse optical cavity
- high repetition rate laser
- and/or FEL in unusual regime
- separation scheme for beams
 - circulating in opposite directions
- polarized low-emittance e⁻ gun
- detector

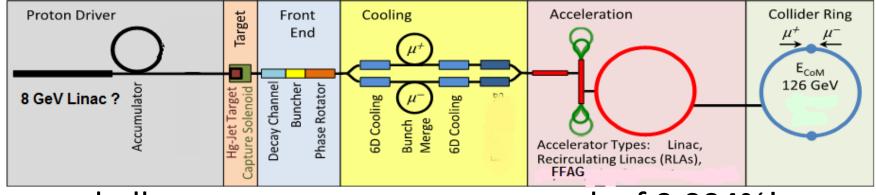
μ Collider Higgs Factory

μ collider HF

D. Neuffer, FNAL

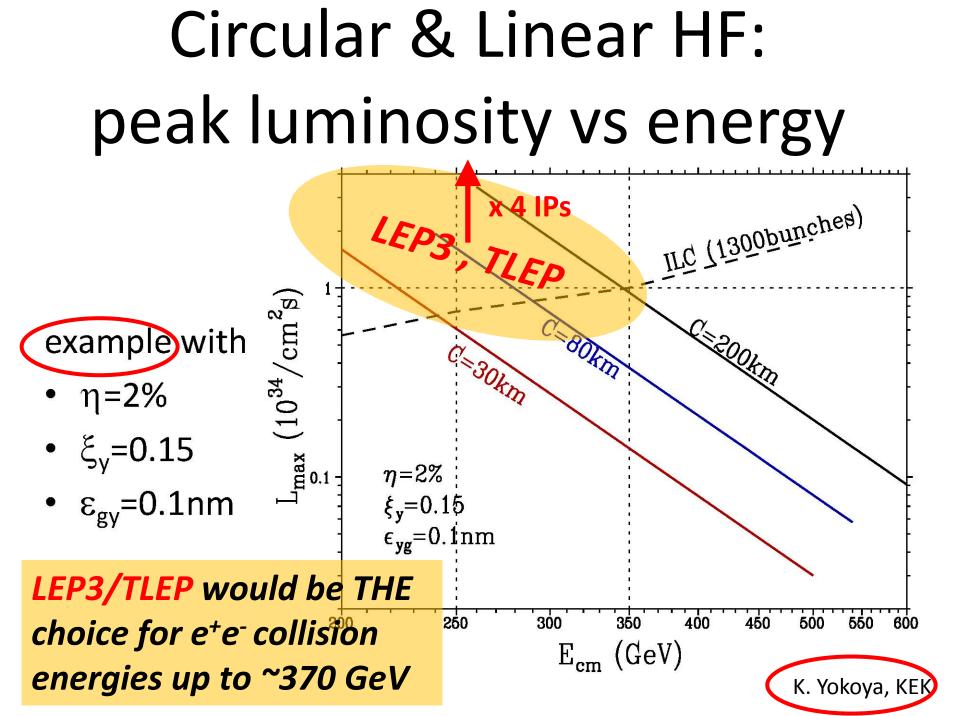
Parameter	Symbol	Value
Collision Beam Energy	$E_{\mu+}, E_{\mu}$	63GeV
Luminosity	L _o	10 ³¹
Number of μ bunches	n _B	1
μ⁺/⁻/ bunch	N	10 ¹²
Transverse emittance		0.0004m
Longitudinal emittance	ε _{LN}	0.002m
Energy spread	δΕ	4MeV
Collision β*	β*	0.05 m
Beam size at collision	σχ.ν	0.02cm
Beam size (arcs)		1.0cm
Beam size IR quad		5.4cm
Storage turns	N _t	1000
Proton Beam Power	P	4 MW
Bunch frequency		60 Hz
Protons per bunch		5×10 ¹³
Proton beam energy	Ep	8 GeV
Transverse emittance Longitudinal emittance Energy spread Collision β* Beam size at collision Beam size (arcs) Beam size (R quad Storage turns Proton Beam Power Bunch frequency Protons per bunch	δΕ β* σ _{x,y} σ _{max} Ν _t Ρ _p Γ _p	0.0004m 0.002m 4MeV 0.05 m 0.02cm 1.0cm 5.4cm 1000 4 MW 60 Hz 5×10 ¹³

> 8 GeV, 4MW *p* source (Project-X upgrade)


15 Hz, 4 bunches 5×10¹³/bunch

$\succ \pi \rightarrow \mu$ collection, bunching, cooling

 $\epsilon_{\perp,N}$ =400 π mm-mrad, $\epsilon_{\parallel,N}$ = 2 π mm, 10¹² μ / bunch


Accelerate, Collider ring

- δE = 4 MeV, C=300m
- for energy measurement, $\delta E_{error} \rightarrow 0.1 \text{ MeV}$

one challenge: rms momentum spread of 0.004%!

Comparison, Conclusions, & Outlook

vertical rms IP spot sizes in nm

in regular font: achieved

in italics: design values

LEP2	3500	0 *
KEKB	940	β _γ *: 5 cm→
SLC	500	1 mm
LEP3	320	
TLEP-H	220	
ATF2, FFTB	150? (<i>35</i>), 65	LEP3/TLEP will learn
ATF2, FFTB SuperKEKB	150? (<i>35</i>), 65 <i>50</i>	will learn from ATF2 &
		will learn
SuperKEKB	50	will learn from ATF2 &

HF Accelerator Quality (My Opinion)

	Linear C.	Circular C.	LHeC	Muon C.	γ–γ C .
maturity	\odot		00	8	8
size	8	8	\odot	\odot	\odot
cost	8	😊 - 😐	©	8	\odot
power					
#IPs	1	4	1	1	1
com. time	10 yr	2 yr	2 yr	10 yr	5 yr
H factor	0.2 (SLC)	0.5 (1/2 PEP-II)	0.2?	0.1?	0.1?
Higgs/IP/yr	7 k [10 k]	20-100 k	5 k	5 k	10 k
expanda- bility	1-3TeV e⁺e⁻, γγ C.	100 TeV <i>pp</i>	γγ C.	10 TeV μμ	LC later

inspired by S. Henderson, FNAL

possible long-term strategy **TLEP (80 km**, *e*⁺*e*⁻, up to ~350 GeV c.m.) PSB PS (0.6 km) SPS (6.9 km) LHC (26.7 km) LEP3 (*e*⁺*e*⁻, 240 GeV c.m.) **SHE-LHC** (pp, up to 100 TeV c.m.)

also: *e*[±] (200 GeV) – *p* (7 & 50 TeV) collisions

≥50 years of e^+e^- , pp, ep/A physics at highest energies

quoting Nick Walker, ILC-GDE,

having the tunnel is everything!

near-term outlook

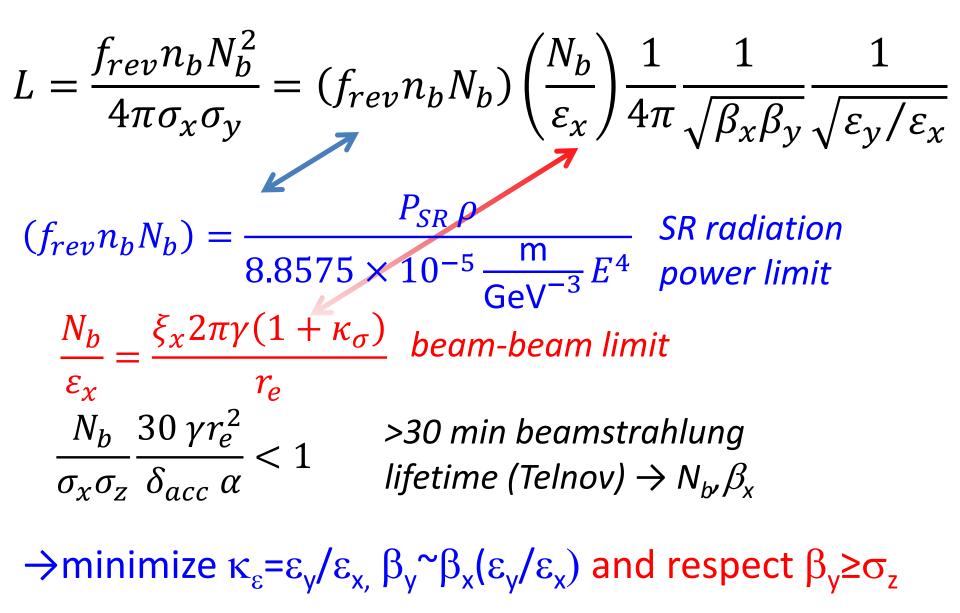
ICFA HF2012 Organizing Committee (OC) will write workshop report including comparison tables & Executive Summary

Target readers:

- Joint ICFA Lab Directors meeting (February 21-22, 2013 at TRIUMF)
- US Snowmass 2013 conference
- European Strategy Updates meeting (January 21-22, 2013)
- HEP roadmap study in Asia (Japan and China)
- World HEP and accelerator communities

HF2012 OC recommends these studies should continue!

HF accelerator R&D at CERN?



Mikhail S. Gorbachev

If what you have done yesterday still looks big to you, you haven't done much today.

back-up slides

luminosity formulae & constraints

LEP3/TLEP parameters -1 $\frac{\text{soon at SuperKEKB:}}{\beta_x^*=0.03 \text{ m}, \beta_Y^*=0.03 \text{ cm}}$

	LEP2	LHeC	LEP3	TLEP-Z	TLEP-H	TLEP-t
beam energy Eb [GeV]	104.5	60	120	45.5	120	175
circumference [km]	26.7	26.7	26.7	80	80	80
beam current [mA]	4	100	7.2	1180	24.3	5.4
#bunches/beam	4	2808	4	2625	80	12
#e-/beam [10 ¹²]	2.3	56	4.0	2000	40.5	9.0
horizontal emittance [nm]	48	5	25	30.8	9.4	20
vertical emittance [nm]	0.25	2.5	0.10	0.15	0.05	0.1
bending radius [km]	3.1	2.6	2.6	9.0	9.0	9.0
partition number J_{ϵ}	1.1	1.5	1.5	1.0	1.0	1.0
momentum comp. α_{c} [10 ⁻⁵]	18.5	8.1	8.1	9.0	1.0	1.0
SR power/beam [MW]	11	44	50	50	50	50
β* _x [m]	1.5	0.18	0.2	0.2	0.2	0.2
β* _v [cm]	5	10	0.1	0.1	0.1	0.1
σ* _x [μm]	270	30	71	78	43	63
σ* _v [μm]	3.5	16	0.32	0.39	0.22	0.32
hourglass F _{hg}	0.98	0.99	0.59	0.71	0.75	0.65
ΔE ^{SR} loss/turn [GeV]	3.41	0.44	6.99	0.04	2.1	9.3
SuperKEKB:ε _v /ε _x =0.25%						

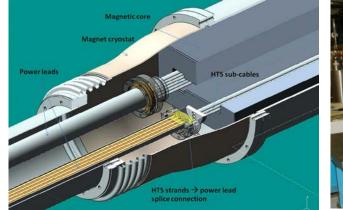


LEP2 was not beam-

•						
	LEP2	LHeC	LEP3	TLEP-Z	TLEP-H	TLEP-t
V _{RF,tot} [GV]	3.64	0.5	12.0	2.0	6.0	12.0
δ _{max,RF} [%]	0.77	0.65	5.7	4.0	9.4	4.9
ξ _x /IP	0.025	N/A	0.09	0.12	0.10	0.05
ξ _ν /ΙΡ	0.065	N/A	0.08	0.12	0.10	0.05
f _s [kHz]	1.6	0.65	2.19	1.29	0.44	0.43
E _{acc} [MV/m]	7.5	11.9	20	20	20	20
eff. RF length [m]	485	42	600	100	300	600
f _{RF} [MHz]	352	721	700	700	700	700
δ ^{SR} _{rms} [%]	0.22	0.12	0.23	0.06	0.15	0.22
σ ^{SR} _{z,rms} [cm]	1.61	0.69	0.31	0.19	0.17	0.25
$L/IP[10^{32} cm^{-2} s^{-1}]$	1.25	N/A	94	10335	490	65
number of IPs	4	1	/	/	/	/
Rad.Bhabha b.lifetime [min]	360	N/A	18	74	32	54
Υ _{BS} [10 ⁻⁴]	0.2	0.05	9	4	15	15
n _y /collision	0.08	0.16	0.60	0.41	0.50	0.51
$\Delta \delta^{BS}$ /collision [MeV]	0.1	0.02	31	3.6	42	61
$\Delta \delta^{\text{BS}}_{\text{rms}}$ /collision [MeV]	0.3	0.07	44	6.2	65	95

LEP data for 94.5 - 101 GeV consistently suggest a beam-beam limit of ~0.115 (R.Assmann, K. C.)

S. Henderson's Livingston Chart: Luminosity



Stuart Henderson, Higgs Factory Workshop, Nov. 14, 2012

Circular HF HiTech option transmission-line HTS/LTS magnets

SC magnets require typically 10 x less space than NC magnet of the same field and gap; the magnet weight is very significantly reduced.

HTS prototype dipole at FNAL Test: B _{max} = 0.5 T, I_{max} = 27 kA, dB/dt _{max} = 10 T/s , T _{max} ~ 25 K

schematic HTS/LTS LEP3 magnet

H. Piekarz,

1st EuCARD LEP3 Day

acceleration time ~0.1 s, total cycle ~1 s; fast SC magnets might support 1 minute lifetime in collider ring!