A. Dosil Suárez (On behalf of **the LHCb collaboration**)

2012 Nuclear Science Symposium, Medical Imaging Conference & Workshop on Room-Temperature Semiconductor X-Ray and Gamma-Ray Detectors 29th October - 3rd November, 2012 Anaheim, California

Álvaro Dosil Suárez

The LHCb experiment

The Upgrade

Test beam

Schedule

Conclusions

Outline

1 The LHCb experiment

2 The Upgrade

3 Test beam

4 Schedule

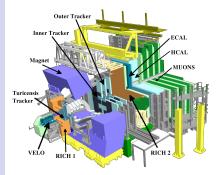
5 Conclusions

Álvaro Dosil Suárez

The LHCb experiment

The Upgrade

Test beam

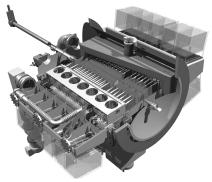

Schedule

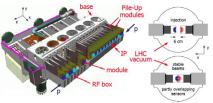
Conclusions

The LHCb experiment

LHCb is a forward spectrometer designed to study flavor physics exploiting the enormous production cross sections of heavy hadrons at the LHC

- Excellent vertex, momentum and particle identification
- Design luminosity lower than the LHC can deliver.
 - → Built for $\mathcal{L} = 2 \times 10^{32} \text{cm}^{-2} \text{s}^{-1}$ at 25 ns spacing, with an average of μ =0.4 interactions per bunch crossing
 - \rightarrow Running at a $\mathcal{L} = 4 \times 10^{32} \text{ cm}^{-2} \text{s}^{-1}$ at 50 ns spacing with μ =1.4
 - $\rightarrow\,$ Has recorded 1.1 fb $^{-1}$ in 2011 and 1.63 fb $^{-1}$ so far in 2012
- Running at higher luminosity does not improve hadronic event yield due to trigger bottleneck


Álvaro Dosil Suárez

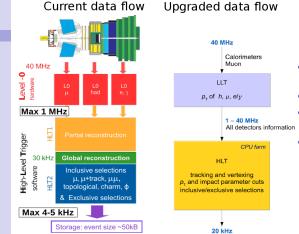

The LHCb experiment

- The Upgrade
- Test beam
- Schedule
- Conclusions

The Vertex Locator (VELO)

- Silicon strip detector surrounding the interaction point
- 88 silicon n⁺-on-n sensors, 300 μ m thick, R- ϕ design
- · Located only 8 mm from the beams
- Enclosed into a separated vacuum box (RF Foil)
- · Halves are separated for beams injection
- 1 MHz trigger rate
- Bi-phase CO₂ cooling system

Álvaro Dosil Suárez


The LHCb experiment The Upgrade

Test beam

Schedule

Conclusions

LHCb upgrade

• Remove Hardware trigger. Use software-only trigger

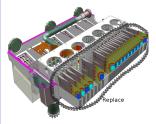
- 1 to 40 MHz trigger rate
- Output rate from 5 to 20 kHz
- Increase luminosity to $\geq 2 \times 10^{33} \text{cm}^{-2} \text{s}^{-1}$

Apart from the increase in luminosity and trigger rate, we expect an increment of approx. a factor 10 and 20 in the muonic and hadronic channels yield respectively.

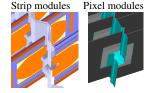
Álvaro Dosil Suárez

The LHCb experiment

The Upgrade


- Test beam
- Schedule
- Conclusions

VELO upgrade


Requirements and challenges

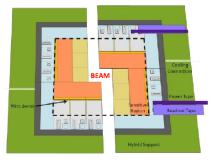
- Data-driven readout at 40 MHz. >2 Tbit/s from whole VELO
- Radiation tolerance. Higly non-uniform radiation: $4.8 \times r^{-1.9}$ hits event⁻¹cm⁻²
- Keep/improve performance
- Increase granularity to allow operation at $\mathcal{L} \geq 2 \times 10^{33} \text{cm}^{-2} \text{s}^{-1}$

- Sensors, electronics, modules and RF foil need to be replaced.
- Vacuum tank, cooling plant and motion system will be re-used.

- Two options under investigation:
 - \rightarrow Pixel detector based on TimePix family of chips
 - $\rightarrow~$ Strip detector following similar philosophy to existing design

Álvaro Dosil Suárez

The LHCb experiment


The Upgrade

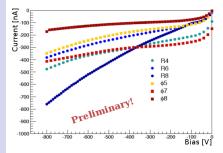
- Test beam
- Schedule
- Conclusions

Pixel option

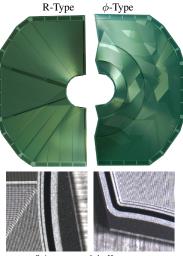
- based on Velopix ASIC (successor of Timepix3) 55 μm x 55 μm pixel size, 256 x 256 matrix
 - → simultaneous measurement of time-over-threshold (ToT) and time-of-arrival (ToA)
 - \rightarrow peaking time < 25 ns, timewalk < 25 ns
 - \rightarrow hit rate up to 500 MHz. (Above 12 Gbit/s)
 - \rightarrow submission planned for early 2014
- L-shaped half modules with two blocks of 6 chips
- Closest pixel is at ≤7.5 mm from the beam center
- sensor R&D focussing on planar Si sensors
- alternative sensor technologies:
 - \rightarrow 3D sensors
 - → diamond sensors

Álvaro Dosil Suárez

The LHCb experiment


The Upgrade

- Test beam
- Schedule


Conclusions

Strip option

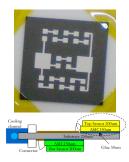
- conceptually similar to existing detector $(\mathbf{R}/\phi \text{ geometry})$
- increased number of strips, reduced pitch and strip length, lighter (200 μ m)
- improved routing line layout
- variable pitch designed for ≈ same occupancy per strip
- To be tested in coming test beams
- new strip chip being developed (synergy with other LHCb silicon detectors)
 - $\rightarrow\,$ on-chip common mode suppression, zero suppression, and clustering

Strip sensors made by Hamamatsu

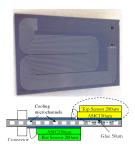
Álvaro Dosil Suárez

The LHCb experiment

The Upgrade


- Test beam
- Schedule
- Conclusions

Cooling


Metallised diamond substrate

- Thermally is highly conductive
- · Electrically is highly resistive
- Traces for chip IO deposited with thermally activated silver paste

Microchannel cooling option

- Build $\sim 200 \ \mu m \times 70 \ \mu m$ channels etched onto silicon
- The layout can be customized according to cooling needs
- Same coefficient of expansion than ASIC
- Several prototypes already produced and working in lab environment

Aim to re-use current CO2 cooling plant

Álvaro Dosil Suárez

The LHCb experiment

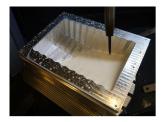
The Upgrade

- Test beam
- Schedule
- Conclusions

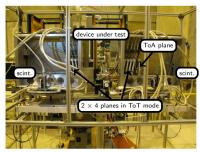
RF foil

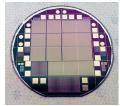
The RF foil is a de facto beam pipe

Severe requirements:


- Vacuum tight ($< 10^{-9}$ mbar l/s)
- Radiation hard
- Low mass but rigid to prevent deflection onto the sensors or pinhole leaks
- Good electrical conductivity to mirror beam currents and shield against RF noise pick-up in FE electronics
- Thermally stable and conductive (heat load from the beam)

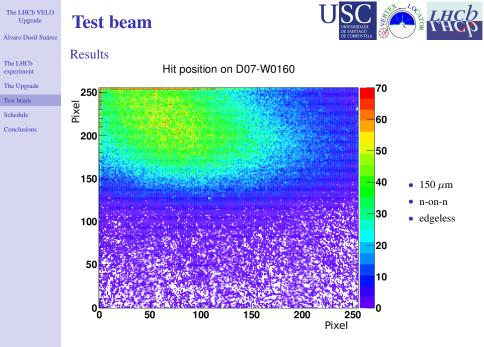
Material and fabrication:


- Mill foil from solid Al alloy block
- By 5-axis milling head
- Achieve 200-350 μm thickness
- More flexibility to change shape than made by pressing method


- Álvaro Dosil Suárez
- The LHCb experiment
- The Upgrade
- Test beam
- Schedule
- Conclusions

Test beam TimePix telescope

- Constructed for LHCb upgrade
- Timepix assemblies (with 300 μm sensors) used as telescope planes (8 ToT + 1 ToA)
- device under test can be moved/rotated and cooled (portable CO₂ cooling plant)
- Resolution at the DUT plane $\leq 2\mu$ m (with 180 GeV/c π beam)
- Track time-stamping with
 - $\rightarrow~pprox$ 1 ns resolution
 - $ightarrow \, pprox$ 3-12 kHz track rate
- available to external users within the framework of AIDA WP 9.3



Sensor wafer with variable guard ring designs (Tiles 2-1 and 3-1. CNM)

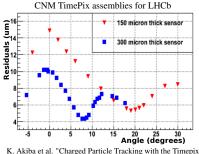
Focus on

- sensor performance after irradiation (Medipix3 assemblies)
- evaluation of guard-ring designs, edge efficiencies
- prototype strip module

Álvaro Dosil Suárez

The LHCb experiment

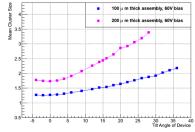
The Upgrade


Test beam

Schedule

Conclusions

Test beam



X. Akiba et al. "Charged Particle Tracking with the Timepix ASIC", Nucl. Instr. and Meth. A. NIMA53849, doi: 10.1016/j.nima.2011.09.021.

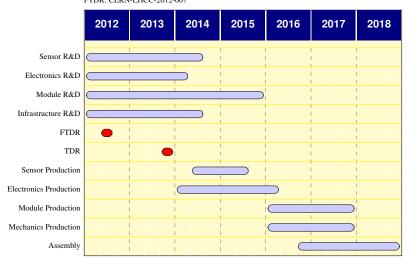
VTT edgeless Timepix assemblies for LHCb

Cluster width distribution for edgeless sensors

Schedule

Álvaro Dosil Suárez

The LHCb experiment


The Upgrade

Test beam

Schedule

Conclusions

LoI: CERN-LHCC-2011-001 FTDR: CERN-LHCC-2012-007

... to be installed in LHC Long Shutdown 2, in 2018-2019

Álvaro Dosil Suárez

The LHCb experiment The Upgrade

Test beam

Schedule

Conclusions

Conclusions

The requirements for the LHCb VELO upgrade are very demanding:

- Luminosity will be increased by a factor ≥ 10
- Trigger readout will be increased by a factor of 40
- Keep or improve the performance of the current VELO

R&D effort is underway:

- · For modules, pixel and strip detector options are being developed in parallel
- Cooling solutions like metallised diamond or microchannel also being investigated
- Material budget reduction in elements placed in the acceptance (modules, RF-Foil)
- Intense testbeam program to study: sensor technologies, radiation hardness, cooling schemes and readout electronics

Installation during long shutdown 2 in 2018

Have a magical day!

Work on going...