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ABSTRACT

One of the dominant backgrounds in new physics searches at the Large Hadron
Collider comes from the leptonic decays of Standard Model W and Z bosons recoiling
off jets associated with the underlying event. The ratio of the W+jets and Z+jets
cross sections, R, is predicted with high precision due to the similar masses and
production mechanisms of the W and Z bosons. Any significant departures of R,
from predicted values would be an indication of new physics. This thesis studies a
strategy to enhance the sensitivity of R,, to a specific type of signal. A measurement
of the ratio R,, is presented, and its sensitivity to pair production of top quarks and
leptoquarks is studied. Using a set of topology-discriminating variables, based upon
calorimeter topoclusters, the sensitivity of R, to top quark and leptoquark signals is

enhanced using multivariate analysis techniques.
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Chapter 1

Introduction

1.1 The Standard Model

The Standard Model (SM) of particles physics embodies our current understanding of
all known elementary particles and their interactions. The SM is a theoretical frame-
work that combines quantum chromodynamics (QCD) and the electroweak model
into an internally consistent theory that incorporates the electromagnetic, weak and
strong interactions. Over the past few decades the SM has been enormously successful
in predicting experimental results. It has successfully predicted the existence of the
weak neutral current, charm and top quarks as well as the W and Z bosons [1]. Ad-
ditionally the consistency between theory and experiments tests radiative corrections
and renormalization theory. Indeed, when combined with general relativity the SM
accounts for almost all natural phenomena observed. The only remaining untested
prediction of the SM is the cause of electroweak symmetry breaking; that is the pro-
posed Higgs mechanism that gives mass to all fermions as well as the W and Z bosons
has yet to be confirmed. However, despite all of the SM’s triumphs, it has a number
of known limitations, such as having 20 arbitrary parameters, not correctly account-
ing for neutrino oscillations, lacking of a viable dark matter candidate and failing
to incorporate a quantum theory of gravitation. The SM’s unprecedented accuracy
juxtaposed to its known limitations implies that it may be part of, or incorporated
into, a more comprehensive theory. Many theories beyond the Standard Model (BSM)
have been developed to address these flaws and omissions. The main program of ex-
perimental high energy particle physics is to develop and conduct experiments that
test both the SM and BSM theories.



’ Particle Type \ Name \ Label \ Spin \ Charge \ Mass ‘
down d —3 3.5-6.0 MeV
up u §1 1.5-%? MeV
strange S 1 —z 10475, MeV
Quarks char1g1;1 c 2 §3 1.27i83;§){ MeV
bottom b —1 4.2070: 57 GeV
top t 2 171.2 4 2.1 GeV
electron e —1 511 keV
e-neutrino Ve 0 <2eV
muon 1 -1 106 MeV
Leptons p-neutrino Z 2 0 <2eV
tau T —1 1.77 GeV
T-neutrino v, 0 < 2eV
gluons g 0 0
photon 0 0
Gauge Bosons W-boson V\;jE ! +1 80.4 GeV
Z-boson A 0 91.2 GeV
Scalar Boson | Higgs Boson | HY 0 0 > 114 GeV

Table 1.1: Elementary particles of the Standard Model. Masses taken from [2]

1.1.1 Matter particles and force mediators

The fundamental particles that furnish the Standard Model are distinguished by the
symmetries they observe. The most familiar presentation of the SM is given in Table
1.1 where particles are listed by their mass eigenstates — the eigenvalue of which is
a readily measured observable. In addition to mass, particles are often identified by
their quantum numbers that correspond to internal symmetries, such as electric charge
or spin. For example, quarks and gluons carry a color charge, which is analogous to
electric charge but with three distinct charges that are associated with the strong
interaction. Quarks and leptons also carry weak isospin, with two distinct charges
which are conserved in weak interactions. In addition particles may be distinguished
by their space-time symmetries, e.g. each of the listed particles is also associated with
an antiparticle partner, which carries the same quantum numbers, but have opposite
charge(s) unless neutral.

In the mass basis there are 12 fermions (spin = ;) and 5 bosons (spin = 0, 1) for
a total of 17 fundamental particles that — with the exception of gravity — compose

all known fields and matter in the universe. The gauge bosons are often described



as force carriers as they mediate interactions between particles. Photons mediate the
electromagnetic interaction creating both attractive and repulsive forces between all
particles that carry electric charge. Similarly the W and Z bosons mediate the weak
interaction between particles that carry weak isospin while gluons mediate the strong
interaction between particles that carry color charge. While photons are electrically
neutral, the W and Z bosons as well as gluons, carry their own respective charges
allowing for self-interactions. Fig. 1.1 illustrates how the gauge bosons interact with
SM particles. Fermions, on the other hand, compose all known matter. Due to a
phenomenon called color confinement quarks are perpetually bound to one another
forming composite color-neutral particles called hadrons. The most common hadrons,
protons and neutrons, are formed from the quark subset {u,d}. Exchange of gluons
between protons and neutrons keeps nuclei bound together. FElectrons then tend
to form bound states with nuclei through the electromagnetic interaction through
exchange of photons between the electron and nucleus. Thus this small subset of
fermions, {e, u,d} — three out of the known 12 — form the atoms and all the elements
of the periodic table.

The Higgs boson plays a special role in the SM, it couples to particles with varying
strength endowing them with a unique mass. Its existence would complete the SM
explaining why photons and gluons are massless while the W and Z bosons are so

heavy.

1.1.2 Gauge theories

The Standard Model is based upon the generalized theoretical framework of Quantum
Field Theory (QFT) in which particles are treated as excitations of quantum oscilla-
tors of a corresponding field. Just as in classical field theory one can frame QFT using
the Lagrangian formulation guided by the principle of least action. A gauge theory
is a type of field theory in which the Lagrangian is invariant under transformations
between possibles gauges. These gauge transformations are continuous transforma-
tions localized in space-time that together form a Lie group, which is referred to as
the symmetry group of the theory.

The Standard Model and many of its extensions are gauge theories based on
SU(N) symmetries. These are the groups of Special (determinate equals unity)
Unitary (each element has an inverse) N x N matrices. Naturally these N x N

matrices operate on /N component vectors or spinors, which are said to belong to the



Leptons Quarks
e u T u, c, t
Voo Vo Vi d, s, b

Photon Gluons

Higgs Boson

Figure 1.1: Standard Model particles and their interactions. Taken from [3].

group’s fundamental representation. In this representation the full set of matrices that
furnish SU(N) can be constructed from a set of N2 — 1, N x N traceless hermitian
matrices called generators. Thus the generators form a basis of SU(N) spanning a
N2 — 1 dimensional space in which the group elements live in.

One could argue that the fact that SU(N) gauge theories are local in space-time is
the most important aspect of the symmetry. Since all gauge theories are guaranteed
to be renormalizable as a consequence of this locality [4]. And Noether’s theorem [5]
also tells us that there is a conserved charge that is attributed to every continuous
symmetry group. This charge is mediated by the gauge fields (or in the quantized
theory gauge bosons) allowing them to couple with fermions and spin-0 fields. All
modern quantum field theories are based on some symmetry group that exhibits local
gauge invariance as it seems to capture, or indeed require, the essence of particle
interactions.

In a SU(N) local gauge group the elements can be represented as unitary operators
that are functions of space-time, U(x). In gauge theories a spin = 0 or % field, ¥ (z),

transforms under the operation of U(z) as [1]

(2) = ¥(2) = U)p(x) = $(z)e7T,



where 7(x) is a vector of arbitrary functions of space-time and T are the Lie generators
of the symmetry group. In this equation tensor indices are suppressed, however
it should be understood that spin—% fields are represented as multiplets of Dirac
spinors, spin-0 fields as multiplets of scalars and generators as hermitian matrices.
Lagrangians that correspond to physical theories require kinetic terms involving the
derivative operator 0". For a typical Lagrangian this term would break the gauge
invariance since it operates on d(z) in the exponential. To enforce gauge invariance
one is required to add additional terms to the Lagrangian to cancel these symmetry
breaking terms. It is conventional to absorb these extra terms into a redefinition of

O called the gauge covariant derivative:
0ag0" — Dy = 8,0" +igQ" - T,

where o and (8 are multiplet indices of the fundamental representation, ¢ is an ar-
bitrary gauge coupling and @“ are real vector gauge fields; one per Lie generator.
These are spin = 0 massless® fields that when quantized can be identified with the
gauge bosons of the theory. Hence by postulating gauge invariance of the Lagrangian
we find the existence of gauge bosons is required. Indeed even gauge boson couplings
to fermions are specified by the gauge symmetry.

For example, Quantum Electrodynamics (QED) is a gauge theory based upon a
U(1) gauge group, often written as U(1)gy to distinguish it, where the quanta of
the vector potential field A* are identified as photons. The conserved charge is the
familiar electric charge, which is mediated by the photon. The photon couples to
other charged particles creating a conserved current. QED is the simplest example
of a gauge theory since it is derived from the trivial Lie group U(1). The SM has
a more complex group structure it is the group product of the SU(3) color group
and the SU(2) x U(1) weak isospin and hyperchage group. Hence QCD and the
electroweak model are combined to form the SM based on the SU(3) x SU(2) x U(1)

gauge symmetry.

1.1.3 Quantum Chromodynamics

Quantum Chromodynamics is the modern theory of the strong interaction based

on the SU(3) symmetry group. In QCD each of the different quark flavours, ¢ =

!They are massless since m@Q,Q" terms are not gauge invariant since Q,, transforms as Q. —

Qu - 6#’)/(56).



u,d, s, c,b,t, carry an additional quantum number called color, which is the conserved
charge that results from the gauging of the SU(3) symmetry group. The quark fields
transform as a color triplet under the fundamental representation of SU(3), where
each quark flavour is described by a three component field ¢, with a = 1,2, 3 being
the color index. To distinguish the SU(3) color gauge group from other possible
SU(3) groups it is labeled with a subscript “C”, SU(3)¢. Since every particle of the
SM has an antiparticle twin with opposite charge there exists an anticolor current as
well. A state with one color index and one anticolor index of the same type will be
color neutral. This is analogous to electromagnetism where a proton with anti-electric
charge (positive) and a electron with electric charge (negative) form a neutral bound
state. However in addition to this neutral state one could have the three different
color charges combined in a single state which would also be color neutral. It is
because of this that the name color was chosen, as when one combines light beams
of the three primary colors a colorless white light is produced. This is why the three
possible values of o are often labeled as red, green and blue.

SU(3)c gauge invariance of the QCD Lagrangian requires the introduction of the

covariant derivative acting on the quark fields
10s < =
Dig = 000" — 78 op - GY,

where a and ( are color indices and g, is the strong coupling constant. X are the
Gell-Mann matrices which form a representation of the SU(3) generators.

There are eight generators of SU(3)¢ and hence eight gauge bosons, é“, associated
with QCD. These gauge bosons are the gluons, which carry two color indices, one color
and one anti-color. This allows gluons to exchange color between quarks, mixing color
indices. It also allows gluons to couple to one another lending to a rich and intricate

phenomenology.

1.1.4 Electroweak model and spontaneous symmetry break-
ing

The Electroweak model is a gauge theory that unifies the electromagnetic and weak

interaction based on the U(1) x SU(2) symmetry group. The conserved quantum

numbers are weak isospin from gauging SU(2) and hypercharge from gauging U(1).

Electric charge is given as a combination of weak isospin and hypercharge, thus uni-



fying the two interactions. Weak isospin current can transmute charged leptons into
their associated neutrinos or different flavours of quarks into one another. Clearly
to describe such an interaction the mass eigenstate basis is inconvenient. This type
of weak interaction invites one to interpret leptons and their associated neutrinos as
components of a single field, where say the electron and e-neutrino would transform
together as a doublet, analogous to how quarks transform as a color triplet in QCD.
A similar treatment needs to be applied to quark fields, however, they transmute be-
tween generations requiring quark states to be in a linear combination of one another.
In addition SU(2) transformations of the weak interaction are particular about the
handedness of the field they operate on. So fermions are introduced into the elec-
troweak model as “left-handed” (L) doublets and “right-handed” (R) singlets, where
left and right handed fields are defined as ¥ = %(1 — v5)1p and Y = %(1 + v5)
[6]. Therefore the fermions of the electroweak interaction are ¥F = (I;, ), (¢*, ¢/4)*

u

and Yf = 1 ¢F, ¢/® where [ labels charged leptons, v neutrinos, ¢

up-type quarks”
{u,c,t} and ¢¢ is a linear combination of down-type {s,d,b} quark states. i runs
over the three lepton generations and quark flavours. There are no right-handed neu-
trino states here as in the electroweak model neutrinos are taken to be massless. The
SU(2) symmetry only acts on left-handed fields, giving it the subscript “L”, SU(2),
while U(1) acts on both left-handed and right-handed fields with hypercharge denoted
U(1)y . The resulting covariant derivative for the SU(2), x U(1)y symmetry group
is .
D'y = 50p0" — gy SasY B — ZgTwaaﬁ W,

where gy and gy are coupling constants and Y and & are representations of the
generators of U(1)y and SU(2), respectively. W, = (W, W2, W) and B, are the
necessary gauge fields that need to be introduced to make the Lagrangian gauge
invariant.

As stated earlier gauge bosons need to be massless for gauge invariance. However
the W and Z bosons are observed to be massive particles. In fact, due to SU(2) trans-
formations only acting on left-handed states, none of the fermion fields are allowed
mass terms in the Lagrangian 2. This implies that the SU(2); x U(1)y symmetry
is in fact not obeyed, or at least not at the low energy levels from which we ob-
serve nature. This observation is made consistent with the electroweak model by

postulating that the SU(2); x U(1)y symmetry is spontaneously broken at a larger

2Since myprp = m(pPap® + pFpl) is clearly not invariant under SU(2)p,



energy scale. The simplest instrument that achieves this is the Higgs mechanism,
which is introduced into the SM through a scalar spin-0 field that transforms as a
doublet under SU(2) x U(1)y. This field, ®, known as the Higgs field, introduces
a potential, V = V(|®]?) into the Lagrangian. If, in the quantized theory, |®|? has
a non-vanishing vacuum expectation value a preferred direction in weak isospin plus
hypercharge space is selected breaking the SU(2)., x U(1)y symmetry to the U(1)gym
symmetry of QED. The Higgs boson couples with the W and Z bosons as well as
fermions to create mass terms in the Lagrangian. The different couplings between
the Higgs field and the fermions determine the mass of the particle. The breaking
of SU(2), x U(1)y induces a mixing of the W# and B* gauge fields in their mass
eigenstates. The result is one massless electrically-neutral gauge field, A, made from
the linear combination WB sin Oy + B, cos Oy, one massive electrically-neutral gauge
field Z) made from the linear combination W} cosfy — By, sinfy and two massive
electrically-charged gauge fields W; and W . The quanta of these four gauge fields
correspond to the observed gauge bosons of the SM. Strictly speaking the SM Higgs
boson does not couple to neutrinos (or any left handed particles) and therefore can-
not explain observed neutrino oscillations, as this requires neutrinos to have non-zero
mass eigenstates. However minimal extensions to the SM, such as adding right handed
neutrinos (Dirac mass) or combining left-handed neutrino with their complex conju-
gate (Majorana mass), allow the Higgs boson to couple to neutrinos giving them a

non-zero mass.

1.2 Structure of hadrons

As stated above hadrons are composite particles composed of quarks held together
by color charge which is exchanged between quarks by gluons. Gluons are appropri-
ately named as they hold quarks in color-charge-neutral, or colorless, bound states.
For example, color interactions between three quarks will form a color singlet baryon
bound state by contraction of the anti-symmetric tensor €,5,q%¢°q” [7]. This state
is colorless since the anti-symmetric tensor € ensures that all three indices are dif-
ferent, resulting in a color-neutral state. The other possible color singlet sates are
the antibaryon state, e"‘mq}((jg(jﬂﬂ and the quark-antiquark meson state, ¢*¢,. Since
gluons carry color charge themselves they can couple to one another, theoretically
creating color-neutral bound states called “glueballs” — however such states have yet

to be confirmed in nature. The quarks that make up color neutral configurations of



baryon and meson states are called valence quarks. In addition to valence quarks a
fluctuating sea of virtual gluons and neutral qq pairs engulf the valence quarks within
a hadron. These virtual partons are often ignored as they do not affect the quantum
numbers of the hadron. However, in high energy collisions it is possible to scatter
valance quarks off of virtual partons.

This sea of virtual gluons also plays a role in the unexpected strength of the strong
force. Since gluons are massless one may expect that the force required to separate
two quarks would scale as the inverse squared force law as with photons. However
gluons, unlike photons, carry color charge themselves allowing exchanging gluons to
induce a vacuum polarization in the virtual gluon sea surrounding valence quarks.
This creates a string of gluons holding quarks together as if connected by a spring.
Hence as the distance between quarks increases so does the strong force holding them
together. This phenomena is called color confinement.

As aresult of color confinement the strong force scales linearly with distance. Thus
when scattering quarks in a hadron the quarks will resist separating from the hadron.
Instead it is energetically favourable for the system to create new quark-antiquark
pairs which may split to form a new bound state with the scattered quark creating a
new hadron. This allows the string of gluons connecting the scattering quark and the
incident quark to be broken into two. With high energy scattering this process can
continue where the broken strings of gluons lead to a jet of hadrons. This process is
often referred to as fragmentation or hadronization. At hadron colliders it is these

jets that are observed rather than quarks directly.

1.2.1 Hadron scattering and parton distribution functions

Here we consider the scattering process of two incident hadrons A and B that produce

an elementary particle ¢ (¢ = quark, lepton or W/Z boson) plus anything else X,
A+ B —c+ X.

This is the process that one may observe at a hadron collider; however usually it is
the subprocess of the hadron constituents, that is the partons, that one is interested
in studying. Labelling the scattered partons from A and B as a and b respectively
this process is

a+b—=c+ X.
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The momentum of the individual partons a and b will not be known. In hadron collider
experiments all one knows is the momentum of the hadrons being collided and that
this must be equal to the sum of the momenta of its parton constituents. However if
the parton momentum density distribution, often called the parton density function
(PDF), in the hadron is known one can integrate over all possible momenta. This leads
to the convention of calculating cross sections with a parton’s fractional momentum
x = p(parton)/p(hadron), where only the component of momentum along the beam
axis is considered. The PDF of parton a of hadron A, f,/4, is given as a function
of the momentum fraction of a, x,, and the momentum transfer of the process, Q).
The cross section o(AB — ¢X) may be obtained by multiplying the subprocess cross
section o(ab — ¢X) by dagfoja(®q, Q%) and day fo/5(zp, @), summing over parton
and antipartion types a, b, integrating over z, and x;, and then averaging over the

colors of a and b [4]. Thus the hadron process cross section is given by
1 1
0(AB — cX) = KZ C'ab/ dﬂfa/ Awy[ faya(a, Q) foy5(xp, Q%)+ (A < B)lo(ab — cX),
b 0 0

where Cy;, are color averaging factors and K is a constant that may be necessary for
perturbative corrections (K-factor).

It is not possible to calculate PDFs perturbatively due to non-perturbative QCD
binding effects, instead they must be measured in the laboratory. PDF's for various
values of Q% are extracted from large datasets from various groups worldwide. Some

such datasets and collaborations are:
e CTEQ [8], The CTEQ Collaboration;
e MRST [9], A. D. Martin, R. G. Roberts, W. J. Stirling, and R. S. Thorne;

GRYV [10], M. Glck, E. Reya, and A. Vogt;

GJR [11], M. Glck, P. Jimenez-Delgado, and E. Reya;
e NNPDF [12], the NNPDF Collaboration.

The function used to fit the PDF and the number of free parameters will depend
upon the value of Q2. In general, the total number of free parameters is quite large.
For example the CTEQ6.6 PDF from the CTEQ Collaboration uses a total of 22 free

parameters [13].
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1.3 The Leptoquark as an indicator of beyond the
Standard Model physics

The Standard Model, despite all of its success, cannot be the final theory of ele-
mentary particles and their interactions. For example, it fails to explain the striking
similarities between quarks and leptons, such as the same number of generations,
identical spins, and charge quantization in multiples of e/3. These similarities mo-
tivate BSM theories that predict the existence of leptoquarks (LQ), particles that
couple both to leptons and quarks that carry color charge. Leptoquarks are predicted

by a number of different theories which can be roughly categorized as follows:

e Models that seek grand unification [14] [15]. The SU(3)cxSU((2),xU(1)y
gauge structure of the SM could easily arise from spontaneous symmetry break-
ing of a larger simple gauge structure such as SU(5), SO(10) or Eg [1]. In
these models leptons and quarks are placed in the same multiplets of the
group’s fundamental representation. Leptoquarks in these theories are asso-
ciated with gauge bosons that mediate GUT interactions between leptons and
quarks. Leptoquarks are also predicted in Pati-Salam unified theories based
on the SU(4). x SU(2);, x SU(2)r gauge structure, where leptons are identi-
fied as quarks of a fourth color. In such theories leptoquarks are introduced as
spin-0 bosons that couple to the fermions. All these grand unifying symmetries
would have to be broken at high energies to escape current detection at particle

colliders.

e Models that contain quark and lepton sub-structure [16]. The similar-
ities between quarks and leptons can alternatively be explained by postulating
that both are composed of more fundamental particles often referred to as “pre-
ons”. Preons are confined within quarks and leptons in an analogous way to
how quarks are confined in hadrons through color confinement called hypercolor
confinement. Such models may be consistent with GUTs in their gauge group
structure and thus contain the same types of leptoquarks, the only difference

being that they are composite particles.

e Models of dynamical electroweak symmetry breaking [17]. The cause
of electroweak symmetry breaking has yet to be identified. Possible alterna-

tives to the Higgs mechanism are so called “technicolor” theories, where a new
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strong gauge is introduce in analogy to QCD. The conserved charge is called
technicolor, which is carried by technifermions. Technicolor acts between tech-
nifermions to create bound states called technihadrons. One of the possible
technipions can be associated with the Goldstone boson from electroweak sym-
metry breaking. Thus the dynamics of the technifermions is responsible for the
spontaneous symmetry breaking of SU(2), x U(1)y. In these theories color-
triplet technipions are identified as leptoquarks which have Higgs like couplings,
meaning they decay preferentially to third and second generations of quarks and

leptons.

e R-parity violating supersymmetry models [18]. In supersymmetry the
Poincaré group is extended to give each boson and fermion of the SM a “su-
perpartner” with a spin differing by % A discrete symmetry called R-parity is
given to all particles, where SM particles have R=1 while their superpartners
are assigned R = —1. If R-parity is conserved then superpartners cannot decay
into SM particles. However in R-parity violating models such decays are possi-
ble allowing scalar quarks (squarks) to have Yukawa couplings to leptons. This

squark-lepton interaction is associated with scalar leptoquarks.

Event though leptoquarks are predicted in many different ways — as gauge or scalar
bosons, composite particles and technipions — they all share the same decay channels
(although the branching fractions may differ among theories), namely LG — lg. Thus
in terms of detection at particle colliders it is not necessary to make distinctions
between the different types of leptoquarks. Detection of a leptoquark or a leptoquark
pair (LQLQ) would be a clear indication of BSM physics.
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Chapter 2

The W /Z+jets production cross

section ratio R,

2.1 W/Z+jets ratio R, definition

The cross section ratio R, of W — uv + n jets over Z — pup + n jets is presented here
as a cumulative distribution given as a function of an appropriate kinematic variable

threshold kr
R _ BTW%;U/ : UW+njets(kT > .I)
" BrZ—),uu : 0Z+njets(kT > :E)

, (2.1)

where x is a discrete value of kp. If the same data sets are used in the W-jets and
Z+jets analysis the luminosity, along with its associated uncertainty, will cancel in
the ratio. In this case R, reduces to the ratio of the true number of W-jets to Z+jets

events
- NW*)MV%’ﬂjetS(kT > l’)

R, = )
Ny ppsnjers(kp > x)

(2.2)

To find the number of W+jets and Z+jets events produced requires a carful study of
detector acceptance and efficiencies in each channel; such a study is beyond the scope
of this thesis. Instead in the following analysis R, is approximated by measuring the
observed number of events in each channel.

There are a number of choices for kr, for example k7 could be defined as the sum

jets

of the transverse momentum of the jets kr = > pJ*" or the sum of the transverse

momentum of all final state objects kp = 3_ pJ¢™* + 37 pieP + Efiss. The exact definition
of kr may depend upon the analysis being conducted.

The advantages of measuring R,, as a function of threshold kr are the increased
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statistics in the lower kp bins as well as reducing the statistical and systematic un-
certainty due to kr bin migration, which would affect the distribution differential in
k. Thus, one should interpret R, as successive cross section ratio measurements in
kinematic regions of increasing k7 and decreasing phase space volume. Defining R,
as such — that is, a function of threshold kr — creates statistical correlation between
bins in the distribution of R,, an effect of which is that large statistical fluctuation
in a single bin will affect all preceding bins in a similar way.

One could define R, just as easily in the electron channel, which would follow a
very similar analysis. The motivation for choosing the muon channel in the following
analysis is that muons deposit little energy in the calorimeters. This is convenient for
the analysis since it makes use of calorimetry based variables designed to measure the
energy flow of hadronic activity. An electron, which would deposit all of its energy

in the calorimeter, would skew these variables in an undesirable way.

2.2 R, measurement motivation

The main motivation for measuring R,,, rather than looking at each process individu-
ally, is the cancellation of many systematic uncertainties associated with the recoiling
jets. These systematic uncertainties come from both theoretical models as well as
experimental measurements. To a large extent theoretical uncertainties due to gener-
ator choices of renormalization and factorization scale, parton distribution functions,
fragmentation and hadronization models will cancel. Also, to at least some degree,
experimental uncertainties such as jet and cluster energy scale, jet and cluster reso-
lution, pile-up contribution and luminosity will cancel in the ratio. Thus R,, provides
for a more precise measurement than W+jets or Z+jets individually.

Since W-jets and Z+jets are important and often irreducible backgrounds to
many new physics searches, R, itself is sensitive to many of the same new physics
signals. R, is sensitive to certain particle final sates, namely any excess of muons,
neutrinos and/or jets above SM predictions. New physics models such as Super-
symmetry, Leptoquark and Technicolor models predict such an excess of final state
particles [1]. However R, is not dependent upon any parameters specific to these
models such as the parent particle invariant mass. This independence from model
specific parameters means a measurement of R, can be used as a basis for a model-
independent new physics search. Although, one should note, the sensitivity of R,

to new physics signals is reduced if the signal contributes events that pass both the
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W+jets and Z+jets selection, as cancellation in the ratio can occur.

If such an excess of final state particles were observed it would be seen as a upward
or downward deviation in R, away from SM prediction. This deviation would have
to be observed in the higher, unexplored, k7 region to be in agreement with previous
measurements of vector boson in association with jets cross section measurements.
Such an excess over SM predictions would not in itself tell us much about the type
of new physics being observed. To understand the nature of the new physics signal
R,, could be examined in a number of discriminating phase spaces based on event
topologies. For example, it is known that most supersymmetric models have a more
spherical event shape topology in the transverse plane (due to a resulting cascade of
decay particles) than most SM processes [19]. Thus Transverse Sphericity and Thrust
could be used as a discriminating variables, where making a cut on these variables
would increase the sensitivity of R,, to supersymmetric models. Then as more cuts are
made on additional discriminating variables the phase space volume in which R, is
defined will shrink and the dependence of the search on a specific model will increase.
This can be seen as an evolution from a model-independent search to a model-specific
search. As an alternative to a set of cuts on discriminating variables one could use
the discriminating variables as inputs to a multivariate method to create a single

optimized discriminant specific to a particular model.

2.3 Event topology discriminating variables

This section presents a set of five topology-discriminating variables that have been
designed to measure the geometric distribution and energy flow of final state par-
ticles from a collision event. These variables, often referred to as event shape vari-
ables, can be calculated using cells, topoclusters or jets. In searches for signatures
with large jet multiplicities such variables can be conveniently calculated using jets.
However the signatures that contribute to R, may have as little as one or two as-
sociated jets, in which case such jet-base variables are not well defined. Instead all
topology-discriminating variables discussed below are calculated using topoclusters,
as described in Section 3.3.2, which roughly correspond to the final state particles from
a collision event. To avoid a bias from boosts all of the event shape variables defined
below are boost invariant with respect to boosts along the beam axis (longitudinal

direction).
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2.3.1 Transverse sphericity Sr

Transverse sphericity, S, which is also known as circularity, is a measure of the
isotropy of the event in the transverse plane. Sr is defined between 0 and 1 inclusive,
0 < Sr < 1, where 0 corresponds to a back-to-back, or “pencil-like”, di-jet event
and 1 corresponds to a completely isotropic event. S can be a useful discriminating
variable for distinguishing unusual event topologies, especially those that result from
a cascade of decaying particles such as in supersymmetric models [19]. Transverse

sphericity is defined as
2)2

BEVEDW

where A\; and )\, are the eigenvalues of the 2 x 2 sphericity tensor

T AL > A

clusters

Syi= Y pin}
k
with ¢, 7 = 2,y and k running over all selected topoclusters in the event.

2.3.2 Maximum transverse Fox-Wolfram moment C,,,,

The Fox-Wolfram moments make up a complete set of rotationally invariant observ-
ables that characterize the energy distribution of an event. These moments can be
defined in the transverse plane to be made boost invariant. The Transverse Fox-

Wolfram moments, (', are defined by

clusters

C = MCOSZ i — 0l
l ZZJ: (ZPT)Q [(¢ ¢J)]

where in the following analysis [ is calculated as an integer from 1 to 10 and ¢ and
j run over all topoclusters selected in the event. The C} presented here are modified
slightly from the definitions given in [20]. As C; are defined here the cosines are
weighed by the sum of the transverse momentum, > pr, rather than the total energy
of the event; which is neither boost invariant nor well modelled by MC.

C; measures the rotational symmetry of an event in the transverse plane. For a
back-to-back di-jet topology Cj will equal 1 for even [ and 0 for odd [. For a 3 jet
event with a perfect 3-fold rotational symmetry in the the transverse plane C; will

equal 1 for [ = 3n, where n is an integer, and 0 for all other integer values of [. In
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general for a [-fold rotationally symmetric event in the transverse plane Cjy,, = 1.
For values of [ that severely break this symmetry Cj.,, =~ 0.

The maximum Transverse Fox-Wolfram moment, C,,,., is simply taken to be
Craz = mlaX(Cl).

Thus C,,.. = 1 if the event exhibits a [-fold rotational symmetry, where here 1 <
[ <10. In general C,,,, measure how ‘close’ an event is to having a [-fold rotational
symmetry. Events with a large momentum imbalance in the transverse plane will

have small values of C,,,4:.

2.3.3 Transverse thrust

The transverse thrust axis is defined as the dominant direction of energy flow in ¢.
Transverse thrust then gives a measure of how much of the event, projected into the

transverse plane, lies along this axis. The transverse thrust in an event is defined as

S ok
(1—max—2k i - pr >,

Thrust = oy
nto ) |pr

T™—2

where k£ runs over all selected topoclusters, ny is the transverse thrust axis unit
vector and pr is the topocluster momentum vector in the transverse plane. Here the
transverse thrust has been shifted and scaled to lie between 0 and 1, 0 < Thrust < 1,
where 0 corresponds to back-to-back di-jet events and 1 to events that have no defined
transverse thrust axis because they are distributed isotropically in the transverse
plane. In the limit of a perfectly isotropic or back-to-back event Sp and Thrust will
have identical values: 1 and 0 respectively. Thus one can expect a fair amount of

correlation between these two variables.

2.3.4 AR moment

The AR moment measures how distributed the pr of an event is in ¢-n space. The
AR moment is defined by
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where

ARy = /(6 — 6)? + (i — y)?
and n is the the number of selected topoclusters in the event. AR;; measures the
distance between two points in ¢-n space. For an event where all of the pr of the event
is confined to a single point in ¢-n space AR = 0. For a back-to-back di-jet event
with maximal values of n (|n|= 4.5) AR takes on its maximum value AR = 2.38. For
an event that is uniformly distributed in ¢-n space AR =~ 1.83.

Unlike the previous topology-discriminating variables AR is a 3-dimensional vari-
able and is not restricted to the transverse plane. However AR is still invariant to
longitudinal boosts when the momentum of the clusters is much greater than their
mass, |p| > m. In this case n &~ y, where y is the rapidity in the longitudinal direc-
tion. Rapidities transform under addition with collinear boosts, i.e. y — y + € for a
longitudinal boost of €. Hence AR;; — AR;;(n; + € — [n; + €]) = AR;; for |p;| > m;

and |p;| > m; under such boosts.

2.3.5 Jet multiplicity N,

Njets is simply the jet multiplicity or the number of reconstructed jets in an event.
Section 3.3.3 describes the anti-kr algorithm that is used to calculated jets from
topoclusters. Njes is usually interpreted to correspond to the number of partons
created in a collision event. However, on the particle level, N, can be interpreted
as the number of high-py groups of particles with similar trajectories. In both cases
Njets clearly can be used to discriminate topologies, but only in the latter sense can

Njets be classified as an event shape variable as defined above.

2.4 Analysis strategy

In this section an outline of the following analysis is presented. The analysis is
designed to use the precision measurement R, as a new physics search. It is demon-
strated that the sensitivity of the search to a specific model can be improved upon
by combining discriminating variables into an optimized multivariate discriminant.
Making a cut on this discriminant is shown to enhance the sensitivity of the search

to the specific physics signals.

e Apply preselection to data and Monte Carlo.
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o For data only use lumi-blocks that pass the electroweak working group’s
good run list requirements, ensuring that the relevant ATLAS sub-detectors

and systems were in stable operating conditions.

o Use the L1 trigger Liyyio on data and Monte Carlo to only select events

with at least one high pr (> 10 GeV) muon.
Apply corrections to Monte Carlo simulations.

o Perform necessary corrections on simulated data so that it reliably repro-

duces observed data.

o Use data-driven methods when possible.
Perform event selection on data and Monte Carlo.

o Identify the relevant, well reconstructed signal events while rejecting back-

grounds and poorly reconstructed events.

o Reject soft and poorly reconstructed detector objects.
Obtain a set of topology-discriminating variables.

o Variables should offer good separation between signal and background.

o Variables should be largely uncorrelated with one another.
Use topology-discriminating variables as inputs into a multivariate classifier.

o Train classifier with simulated data after relevant corrections have been

applied.

o Choose classifier method that offers the most discrimination power.

Choose kp such that signal and background are best separated into distinct

phase spaces.
Calculate observable R,, in signal phase space with selected events.

Optimize a cut on the classifier response such that signal in R,, shows greatest

enhancement with respect to background.
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Chapter 3

The ATLAS Experiment

3.1 The Large Hadron Collider at CERN

The Large Hadron Collider (LHC) is currently the most powerful particle accelerator
in the world. It is designed to collide beams of hadrons — protons or lead ions —
at unprecedented energies; to open up a new era of discoveries at the energy and
luminosity frontier. The LHC is installed 100 m below the Franco-Swiss border in a
27 km long tunnel that was formerly occupied by the LEP accelerator at the European
Organization for Nuclear Research (CERN)?. The LHC is designed to accelerate two
counter-rotating beams of protons with energies of up to 7 TeV and a peak luminosity
of 103 cm~2s7!. Even with the LHC currently operating at half the design energy
with an instantaneous luminosity of about 2.5x10% cm™2s~! [21] it continues to set
world records.

Protons are accelerated through a succession of smaller accelerators before being
injected into the LHC where they are boosted to a terminal velocity of 99.9999991%
the speed of light [22]. Acceleration of hadrons in the LHC is achieved through
the use of radio frequency accelerator cavities that are tuned to a frequency and
field orientation that gives the protons a push forward through each cavity. This
accelerating scheme necessitates that the proton beam is broken up into a series of
bunches — currently 1380 per beam [21]. Proton bunches are directed and focused

around the beam though a series of dipole and quadrupole magnets.

3 As the story is told, when the name of CERN was to be changed from Conseil Furopéen pour la
Recherche Nucléaire to Organisation Furopéenne pour la Recherche Nucléaire the acronym was to
become the awkward OERN. However Heisenberg suggested to the former director of CERN, Lew
Kowarski, that the acronym could “still be CERN even if the name is not.”
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Figure 3.1: Schematic layout of the Large Hadron Collider. Figure from [23]

There are four main interaction points around the ring where the proton beams are
squeezed and bunches are directed into one another. Four independent detectors are
installed at these interaction points to record the resulting proton-proton collisions as
show in Fig. 3.1. ALICE and LHCDb are specialized experiments devoted to the study
of heavy ion collisions and CP violation respectively. CMS and ATLAS are often
referred to as “discovery machines” as they are general purpose experiments designed

to be sensitive to a wide variety of known and undetected particles signatures.

3.2 The ATLAS Detector

The unprecedented energy and luminosity of the LHC provides for a rich physics
potential of discoveries and precision measurements. With the LHC SM parameters

can be measured at world leading accuracies and the discovery reach for new physical
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phenomena is unrivalled. The ATLAS (A Toroidal LHC ApparatusS) detector is one
the two (CMS being the other) general purpose detectors designed to exploit the full
discovery potential of the LHC. The benchmark goal of the ATLAS collaboration is to
discover the origin of spontaneous symmetry breaking in the electroweak sector of the
SM. Since there are a number of possible mechanisms by which the electroweak gauge
symmetry may be broken the ATLAS detector needs to be capable of measuring the
broadest possible range of signals. For ATLAS to be capable of discerning such a
wide range of new and possibly unexpected physics signals certain performance goals
must be achieved [24]:

e Excellent calorimetry for electron and photon energy measurements and iden-

tification with full coverage for jet and EJ** reconstruction,
e Good muon momentum resolution, especially for high-pr muons,
e Efficient particle tracking for high luminosity measurements,
e Full ¢ acceptance and large 1 coverage for all detector systems,

e High efficiency triggering at low-pr thresholds.

In order to achieve these requirements, ATLAS is composed of a number of sub-
detector systems that operate largely independently of one another. Fig. 3.2 displays
an overview of the ATLAS detector with its labeled sub-detectors and components.

The main sub-detectors and components of ATLAS can be divided into four systems:

e Inner Detector for measuring the trajectories and vertices of charged particles,

e Calorimeter for energy measurements and particle identification of electro-

magnetic and hadronic particles,
e Muon spectrometer for measuring the tracks of muons,

e Magnet system for bending the trajectories of charged particles providing

momentum and charge measurements,

e Trigger/DAQ for quickly sorting through events, saving ones that are deemed
to contain interesting physics based on a predefined set of selection criteria for

offline analysis.

A brief overview of these systems, and their sub-systems, is provided in this section.

For a more detailed description of these systems one is referred to [25].
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3.2.1 Detector geometry, coordinate systems and nomencla-

ture

The geometry, coordinate system and nomenclature used to describe the ATLAS de-
tector and reconstructed detector objects is briefly described here. The geometry
of the ATLAS detector is cylindrical with the origin defined to be the nominal in-
teraction point (IP), where the counter-rotating proton beams are directed into one
another. In Cartesian coordinates the z-axis, also referred to as the longitudinal
direction, is defined to lie along the beam axis, while the z-y plane, often referred
to as the transverse plane, is normal to the beam axis. The positive x-direction is
defined to point towards the centre of the LHC ring from the IP while the positive
y-direction points upward towards the surface of the earth. In cylindrical coordinates
the azimuthal angle ¢ is defined in the transverse plane, measured around the z-axis
while a radius coordinate, R, defines the radial distance from the z-axis. In spherical
coordinates the additional angle 6 is defined as the polar angle measured from the
z-axis.

The longitudinal momentum of scattered particles at hadron colliders has a rel-
atively large associated uncertainty and can vary significantly from event to event.
This uncertainty is due to the fact that the initial momentum of the incident par-
tons is unknown and that the ATLAS detector has a limited polar acceptance. The
longitudinal rapidity of a particle, defined as y = 1/2In[(E + p.)/(E — p.)], is often
used at hadron colliders since rapidities are additive under Lorentz boosts; hence
the difference between two rapidities is boost invariant. The pseudorapidity, 1, ap-
proximates rapidity in the massless limit and is defined with only the polar angle
0: n = —Intan(f/2). For high momentum particles where m < |p| this is a good
approximation, and for this reason 7 has been adopted by ATLAS as the polar coor-
dinate instead of 0. It is also often useful to use the distance AR in ¢-n space between
two points (¢1,71) and (¢a, 7o) which is defined as AR = /(1 — n2)2 + (¢1 — ¢2)2.

The kinematic variables often used to describe particles such as momentum, p,

energy, F, and mass, m, are more conveniently defined in the transverse plane due
to the aforementioned uncertainties. For example, the transverse momentum, pr, is
simply the p projected into the transverse plane and the transverse energy, Er, is
defined by the projection EFr = E'sinfl. Ep can again be projected along either the
r-axis or y-axis in the transverse plane to define the components of the transverse

energy vector, Ex. By conservation of energy-momentum the vector sum running
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over all scattered particle’s Ex should be zero. However not all particles can be
reconstructed with the ATLAS detector (e.g. neutrinos) and thus the measured sum
Et may not be zero. The magnitude of the sum of measured Et is referred to as
the missing transverse energy, EF** which is associated with scattered particles that

escape detection.

3.2.2 Inner Detector

The ATLAS Inner Detector (ID) is designed to measure particle tracks from both
primary and secondary vertices with excellent py resolution within a pseudorapidity
range of |n| < 2.5. Fig. 3.3 shows a cut-away diagram of the ID with labeled sub-
detectors and components. The ID has a cylindrical structure of length 3.51 m and
a radius of 1.15 m and is composed of three independent sub-detectors. From the
beamline outwards, these detectors are: a high-resolution silicon pixel detector with
3 layers, a silicon microstrip semiconductor tracker (SCT) detector with 4 double lay-
ers and a transition radiation tracker (TRT) composed of many layers of straw tubes
filled with a Xe-based gas mixture. These three sub-detectors are placed in a central
solenoid, which extends over a length of 5.3 m with a radius of 1.25 m and gener-
ates a 2 T magnetic field. For a more detailed discussion of the ATLAS ID see [27] [28].

B End-cap semiconductor tracker

Figure 3.3: Cut-away diagram of the ATLAS Inner Detector with labeled sub-
detectors and components. Image taken from [26]
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Pixel detector

The Pixel Detector is the innermost sub-detector of the ID. It is composed of 3
“barrel” layers that wrap around the beampipe in concentric cylinders situated with
radii, R, of 50.5 mm, 88.5 mm and 122.5 mm from the normal beam position and 3
layers of “end-caps” covering the ends of the barrels situated 494 mm, 580 mm and
650 mm from the collision point z = 0. The barrel and end-cap layers are covered by
13-31 million and 2.2 million identical silicon pixel sensors respectively. Each pixel
sensor has an individual readout channel — approximately 80.1 million in total. The
pixel layers can be segmented into R¢ and z units, where all pixels are identical and
have a size in R¢ x z of 50 x400 pum?. The intrinsic accuracies for each pixel sensor
are 10 pm (R¢) and 115 pm (2) in the barrel and 10 ym (R¢) and 115 pm (R) in
the end-caps. A typical track will transverse all three of these layers, leaving a hit in
each. The pixel detector provides for the highest granularity around the vertex region
to give the most precise measurements of the tracks and vertex positions possible.

For a more detailed description of the pixel detector see [29].

SCT

The Semiconductor Tracker is similar to the pixel detector in that they are both made
from similar silicon sensors. The SCT is made from pair of single-sided silicon micro-
strip sensor connected end-to-end. Two of such pairs glued back-to-back form modules
126mm long. The total number of modules in the SCT is 4088 with approximately 6.3
million readouts. The two layers of silicon strips are designed to be slightly off parallel
so that the z-coordinate of a particle transversing both layers can be measured by
the slight difference in its R measurement. The intrinsic accuracies of the strips per
module are 17 pm (R¢) and 580 pm (z) in the barrel and 17 pym (R¢) and 580 um (R)
in the end-caps. Like the pixel detector the SCT is wrapped around the beampipe in
4 concentric cylinders with 9 end-cap disks at each end. The barrel layers are situated
at R-coordinates 284 mm, 355 mm, 427 mm and 498 mm, while the 9 end-cap disks
have a |z| position of 854-2720 mm. For a more detailed description of the SCT see
[30] [31].

TRT

The Transition Radiation Tracker is the largest of the ID sub-detectors, mounted
around the pixel and SCT detectors. The TRT is built from straw tubes of length
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144 cm and of diameter 4 mm that run parallel to the beampipe in the barrel region.
End-caps are composed of 37 cm long straws that extend radially outward in a disk
at the end of the TRT barrel. There are 73 straw planes in the barrel that cover a
radial region of 554< R <1082 mm and 160 in the end-caps covering a radial region of
617< R <1106 mm. The TRT can only provide R¢ measurements with an intrinsic
accuracy of 130 um per straw. Typically a particle track transversing the TRT will
leave 36 hits. For a more detailed description of the TRT see [32].

3.2.3 Calorimetry

High-energy electrons and photons form a cascade of particles when incident upon
dense materials. This cascade, referred to as a shower, is the result of pair produc-
tion of electron-positron pairs from photons as well as bremsstrahlung from charged
particles. Such electromagnetic showers are characterized by their radiation length,
X, and transverse profiles. An analogous type of showering occurs when high-energy
hadrons, such as nucleons, pions and kaons, are incident upon dense material. The
mechanism involved in hadronic showers is partially electromagnetic, since the parti-
cles are often charged, but also involves interactions with nuclei via the strong force,
where inelastic hadron-nuclear interactions produce particle multiplication. The AT-
LAS calorimeter exploits particle showers by stopping these particles in a dense mate-
rial sampling the energy of the shower and hence the incident particle. Additionally,
by studying the penetration depth and shower spread the type of incident particle
can often be identified.

The ATLAS calorimeter is used to measure the energy of electrons, photons and
jets as well as the total missing transverse energy, E7** in an event. It is also one
of the central systems used for triggering. The calorimeter can be separated into
three parts, the electromagnetic (EM) calorimeter, the hadronic calorimeter and the
forward calorimeter, which together cover a range of |n| <4.9. Over the pseudorapidity
range of |n| <2.5, which matches that of the ID, the EM calorimeter has a fine
granularity for precision measurements of electrons and photons. The rest of the

calorimeter has a courser granularity, but is sufficient for measuring jets and E7s,

Electromagnetic Calorimetry

The EM liquid argon (LAr) calorimeter consists of 1.5 mm thick triangular-wave

sheets of lead stacked upon one another immersed in a bath of liquid argon. When
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Figure 3.4: Cut-away view of the ATLAS calorimeter system with labeled sub-
detectors ad components. Image taken from [26]

high-energy electrons and photons traverse these lead sheets they induce EM showers,
converting their kinetic energies into lower energy shower electrons and photons.
These shower electrons pass through the lead into 4 mm LAr filled gaps between
sheets. When traversing the LAr the electrons knock out valence electrons from the
LAr atoms the traversing electron encounters leaving a trail of electron-ion pairs in
its wake. An electric field causes the displaced electrons to drift to readout electrode
cells placed in the middle of the LAr gap. This motion of drifting electrons creates a
current in an external circuit connected to the calorimeter. The number of produced
shower electrons is proportional to the energy of the incident particle and thus the
measured current from the calorimeter.

The EM calorimeter is divided into a barrel region, covering a pseudorapidity of
In| < 1.475, and two end-caps covering a pseudorapidity of 1.375 < |n| < 3.2. The
triangular-wave shape of the electrodes allows for continuous azimuthal coverage with
minimal density variations. The total thickness of the EM calorimeter is greater than
22 Xy in the barrel region and 24 X in the end-caps — providing good resolution
for high-energy jets. Electrons are identified by information from both the ID and
shower shape. The high granularity of the EM calorimeter allows for reconstruction
of the direction of the shower, allowing for discrimination of electrons and photons

from secondary decays. A full description and technical specifications of the EM
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calorimeter can be found in [33].

Hadronic Calorimeter

The hadronic tile calorimeter surrounds the EM calorimeter, absorbing the energies
of hadrons that escape it. The energy of particles such as protons, neutrons, pions
and kaons is transformed into showers of hadrons when passing through steel ab-
sorbers that face radially normal to the beam line. These absorbers are separated by
scintillating plastic tiles which emit light in an amount proportional to the incident
particles. Wave-length shifting fibre readouts that line the edges of the tiles feed
these light signals into photomultiplier tubes that convert them into a current, via
the photoelectric effect, which is measured through an external circuit connected to
the calorimeter.

At large pseudorapidities, radiation from the proton beam becomes increasingly
intense. The scintillating tiles can be damaged by excessive radiation exposure. For
this reason, the hadronic end-caps are made from a similar sampling material as the
EM calorimeters. The main differences being that the lead plates are replaced by 2.5
cm thick copper plates and the argon gap region in between the plates is increased
to 8 mm.

The barrel and extended barrel regions of the hadronic calorimeter cover a pseu-
dorapidity of |n| < 1.7, while the hadronic end-caps cover the barrel ends, which
extend over a pseudorapidity of 1.5 < |n| < 3.2. A full description and technical

specifications of the hadronic calorimeter can be found in [34].

Forward Calorimeter

The forward calorimeters are designed to absorb and measure the energies of particles
with pseudorapidities in the range of 3.1 < |n| < 4.9. In order to absorb intense beam
radiation, the forward calorimeters have a LAr active material where the gap between
absorption plates is reduced to < 2 mm. The forward calorimeter is split into three
45 cm thick modules: one electromagnetic module and two hadronic modules. For
the electromagnetic modules copper is used as the absorbing element while tungsten
is used in the two hadronic modules, which is better suited for shorter absorption

lengths. A full description of the forward calorimeters can be found in [35].



30

3.2.4 Muon Spectrometer

Muons are unique in that with sufficient energy they will escape both the EM and
hadronic calorimeters since they have relatively large masses (about x200 the elec-
tron) and do not interact via the strong force. Since the power radiated by charged
particles due to acceleration orthogonal (synchrotron radiation) and collinear (bremsstrahlung)
to the particle’s direction of motion scale as m~* and m~°, muons, unlike electrons,
lose little energy through this mechanism. Instead high-momentum muons lose en-
ergy primarily through ionization. For this reason the muon spectrometer is made
up of multiple gas filled chambers in which passing muons leave an ionization trail of
electron-ion pairs. The free electrons drift to the closest anode under the influence of
an applied electric field. This flow of electrons creates a current in an external circuit
connected to the muon spectrometer.

Like the other sub-detectors the muon spectrometer is divided up into a barrel
region and end-cap regions. In the barrel region there are three layers of muon
chambers consisting of monitor drift tube (MDT') chambers for precision tracking and
resistive plate chambers (RPC) for triggering. The muon chamber layers are arranged
in the form of a cylinder surrounding the calorimeter covering a pseudorapidity of
In| < 1. There are also three layers of muon chambers in the end-cap region, which
are arranged vertically in disks. The end-caps are made up of MDT chambers as well
as thin gap chambers (TGC) which are used for triggering. At large pseudorapidities,
with considerably higher particle flux, cathode strip chambers (CSC) are used for
tracking, which offer greater radiation tolerances. The combined components of the
muon spectrometer cover a pseudorapidity of || < 2.7 with the exception of a 300

mm gap at n = 0, needed for the passage of services for interior detector systems.

3.2.5 Magnet systems

Charged particles in a magnetic field are subject to the magnetic force component
of the Lorentz force, causing them to accelerate in a direction perpendicular to the
magnetic field and their direction of motion. For a constant magnetic field charged
particles will be pulled from their paths into a helix of a constant radius proportional
to their momentum. By inducing a large magnetic field of known field strength and
by measuring a particle’s radius of curvature, the Lorentz force can be exploited
to make a momentum measurement. Additionally, particle charge can be measured

by noting the direction of curvature, allowing discrimination between particles and
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Figure 3.5: Cut-away view of the ATLAS muon spectrometer with labeled sub-
detectors ad components. Image taken from [26]

antiparticles.

The ATLAS detector employs two magnet systems to measure the momentum
and charge of reconstructed particles: a solenoid surrounding the ID and a system of
three large toroids within the muon spectrometer. The central solenoid uses super-
conducting electromagnets to induce a 2 T magnetic field within the ID. The toroid
system is composed of a barrel and two end-caps. There are eight barrel region
toroidal coils that are arranged in a cylinder with an 8-fold symmetry around the
calorimeter producing a magnetic field of 0.5 T for the barrel muon detectors. End-cap
toroids are installed on both sides of the barrel toroid system producing a 1 T magnetic
field within the detectors end-cap regions. Combined the magnet system provides a
magnetic field of strength greater than 50 mT over a volume of approximately 12000

m?. More details on the ATLAS magnet systems can be found in [36].

3.2.6 Trigger and data acquisition

Interesting processes produced by the LHC will typically have small cross sections,
making them rare to observe. However, the collision rate at the LHC is high enough

to produce these types of events in statistically meaningful quantities, but with ex-
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tremely large background noise. Fast electronics and software are implemented to
quickly sort through events keeping ones that are deemed to contain interesting
physics, based on a predefined set of selection criteria, while discarding others.

The ATLAS trigger and data acquisition system (DAQ) is based on three levels
of online selection: L1, L2 and the event filter. The trigger applies selection criteria
at each level with increasing refinement while the DAQ receives and buffers the event
data. Fig. 3.6 gives a conceptual overview of the trigger and DAQ system with
labeled trigger levels and bunch crossing rates. The L1 trigger reduces the LHC
bunch crossing rate (40 MHz at design luminosity) to 75 kHz by searching for high
pr leptons, photons, jets as well as large missing and total transverse energy. The L1
trigger uses information at reduced granularity from the RPC and TGC to identify
high-pr muons while electrons, photons, jets, 7-leptons, missing and total transverse
energy are identified using the calorimeter. The selection criteria in the L1 trigger
is often based on a pr threshold, e.g. muon pr > 10 GeV but can also require any
combination of detector objects. The L1 trigger identifies Regions-of-Interests (Rols)
which are physical regions in ¢-n space where a triggered on object maybe located.
The Rol data includes information on the types of features identified and the criteria
passed. If the event is selected by the L1 trigger the Rol data is read out from front-
end electronics in readout divers (RODs) and then into readout buffers (ROBs) that
feed event data to the L2 trigger. The L2 trigger is seeded by the L1 Rol data at
full granularity and precision. The L2 triggers apply tighter selection criteria on the
event data to reduce the trigger rate to approximately 3.5 kHz. If the event passes
the L2 trigger all of the event data is transferred by the DAQ to the event filter — the
last stage of event selection. The event filter reduces the event rate to roughly 200
Hz using algorithms similar to those used in offline environments. Events selected by
the event filter are moved to permanent storage at the CERN computer centre where
a typical event will occupy 1.3 MB of data. More information on the ATLAS trigger
and DAQ systems can be found in [37].

3.3 Object reconstruction

In this section a brief outline is given on how detector level objects, such as muons,
clusters and jets, are reconstructed. For a more detailed description of object recon-

struction see [24].
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Figure 3.6: Block diagram of the ATLAS trigger and DAQ system.

3.3.1 Muon reconstruction

Muons are reconstructed from a combination of ID and muon spectrometer tracks.
The ID provides good measurements of muon tracks at low and intermediate mo-
menta, while the muon spectrometer gives more accurate measurements at momenta
over 30 GeV [24]. The central solenoid and toroidal magnets bend the trajectories of
transversing muons to allow for momentum measurements. Muon tracks are found
by combining track segments, which are defined as straight lines in a single MDT or
CSC station. Track candidates are built from segments found in the outer and middle
stations of the muon spectrometer and extrapolated back through the magnetic field.
When segments are found within the proximity of the track extrapolation they are
added to the track candidate. The final track fitting algorithm takes into account the
geometry and composition of the material transversed as well as magnetic field inho-
mogeneities. Using parameters found in the inner stations the track candidates found
in the muon spectrometer are propagated back to the interaction point, correcting for

energy loss in the calorimeter. ID tracks are matched with these propagated tracks



34

to form the combined tracks from which muon momenta is determined.

3.3.2 Topological cell clusters

Topological cell clusters attempt to reconstruct particle final states based on their
3-dimensional energy deposits in the calorimeter [24]. The cell clustering algorithm is
a successive recombination algorithm, where cells that have an energy over a specific
threshold are combined into a topocluster, often simply referred to as a cluster, through
an iterative process. Cells with an absolute energy threshold above four standard
deviations of the total noise, |E.y| > 40, (electronics and pile-up) act as seeds for
the clustering procedure. Cells neighbouring these seeds are collected together with
the seed cell into a cluster. Then if any of the neighbouring cells have an absolute
energy above two standard deviations, |E..;| > 20, they are taken as secondary seeds,
where again neighbouring cells are collected and added into the cluster. This process
continues until all cluster perimeter cells have a |E..;| < 20. At which point collected
cell four-momenta are added together in a weighted sum, where the weights are found
by calibration on the electromagnetic scale. The final four-momentum defines the final

cluster four-momentum.

3.3.3 Jet reconstruction

As discussed in Section 1.2 partons are not observed directly due to color confinement,
instead collimated sprays of hadrons called jets are observed. Jets are the result of
the hadronization and fragmentation process from the hard scattered partons. To
make accurate predictions from the parton-level to the hadron-level a well defined
jet-finding procedure is essential.

The anti-k; jet finding algorithm is a common jet finding procedure and is em-
ployed in the following analysis to reconstruct jets from topoclusters. The algorithm

in its simplest from, i.e. not optimized for computation, can be defined as in [38]:

. . ARZ, . ..

1. The “kp distance”, di; = min(1/pg,, 1/p7,;)—52, between clusters i and j is
calculated along with the distance between cluster ¢ and the beam axis d;p =
1/p%,. Here R is a parameter of the anti-k; algorithm that sets the size of the

search cone.

2. The minimum of all d;; and d;p is found. If d,.y is a d;; then clusters ¢ and

j are merged, summing their four-momentum. If d;p is the minimum distance
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then the ith cluster is taken to be the reconstructed jet.
3. Steps 1 and 2 are repeated until all topoclusters are exhausted.

The ATLAS experiment has adopted the FastJet algorithm, which exploits geometric

relations between clusters to reduce computation time.

3.4 Data samples

This section describes the data samples used in the following analysis. All datasets
used are in D3PD format. D3PDs are (non-flat) n-tuples optimized for ROOT which

contain reconstructed physics objects.

3.4.1 Run periods A-I

The data used for this analysis in both the W+jets and Z+jets channels was collected
over the period from March 30, 2010 to October 29, 2010. The data collected dur-
ing this period corresponds to run periods A through I, which constitutes the 2010
dataset. The total integrated luminosity of the 2010 data sample in the muon chan-
nel is 32.6 pb~t. All data recored in this channel is triggered on the L1_MU10 trigger,
which requires a muon pr threshold of 10 GeV. In a some of the 2010 runs the rate at
which events passed this trigger was higher than what the DAQ had been allotted to
record. To deal with this in a controlled way a fixed fraction of events that passed the
L1_MU10 trigger were discarded, a practice called prescaling. Thus when calculating
the integrated luminosity for the L1 _MU10 trigger one has to take this prescaling into
account. In the following analysis this is done by using the ATLAS iLumiCalc tool
[39] where the integrated luminosity is corrected for prescaling. All luminosities are
scaled by a factor of 0.9626 as recommended by [40]. There is a 3.4% uncertainty
associated with the luminosity measurement, however this uncertainty completely
cancels in R,. Only runs where all parts of the detector are in stable operation are
used. This is assured by using a common W and Z analysis good run list (GRL)
that excludes data taking periods that may contain unstable operation conditions in
the relevant detector components. The same GRL has been used in both the W+jets

and Z+jets channel to ensure proper cancelation of the luminosity in calculation of R,,.
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’ Run Period \ Run Range \ Number of Good LBs \ Int. Luminosity (pb~!) ‘

A-E 152166 — 161948 13357 1.238
F 162347 — 162882 2329 1.677
G 165591 — 166383 2194 2.597
H 166466 — 166964 1057 6.869
I 167575 — 167844 1283 18.20

Table 3.1: ATLAS runs used in analysis, with number of good lumi-blocks and their
integrated luminosity

3.4.2 Monte Carlo simulation samples

Events simulated by Monte Carlo (MC) generators are an essential tool for any anal-
ysis in high energy physics. MC generators are used to make comparisons between
data and predictions, obtain background estimates and efficiencies, understand de-
tector performance and estimate feasibility of future analyses.

The MC data sets used in the following analysis are official, fully simulated, AT-
LAS datasets generated with a centre of mass energy of 7 TeV. Tables 3.3 and 3.4
list the simulated datasets used, with and without pile-up corrections respectively.
The W/Z+jets production in the muon channel (W — uv and Z — pp) is mod-
elled using the ALPGEN [41] MC generator. Jet production is generated for up to
five partons using the CTEQG6L1 [42] parton distribution function (PDF). The ALP-
GEN generator is interfaced with HERWIG [43] for showering and fragmentation,
whereas JIMMY [44] is used to simulate the underlying event. The PYTHIA [45]
event generator — which is equipped to simulate fragmentation and the underlying
event — is used to model W— 7v, Z— 77 and QCD multi-jet backgrounds as well as
LQLQ — pvrqq signatures. PYTHIA utilizes a modified leading-order PDF, MRST
LO*. tt production is simulated with JIMMY interfaced to HERWIG and combined
with next-to-leading-order calculations with MC@QNLO [46] using the CTEQ6.6 PDF.
The radiation of photons from leptons is simulated with PHOTOS [47] and decay of
7-leptons is handled by TAUOLA [48].

Samples simulated with pile-up in Table 3.3 are generated with minimum bias
interactions on top of the hard scattering process. The number of minimum bias
interactions follows a poisson distribution with a mean of approximately two [49]. In
Section 4.2.2 a reweighing procedure that matches the number of primary vertices in
an event between MC and data is discussed. These samples are used when compar-

ing MC to data while samples listed in Table 3.4 are used for purely MC analyses.
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Process Approx. | ox Br (nb)
W — pv + jets | NNLO 10.46
W — 7v + jets | NNLO 10.46
Z — pp + jets | NNLO 1.069
Z — 17 + jets | NNLO 1.069
tt NLO 0.16

Table 3.2: Cross sections estimated to NLO and NNLO approximation, used to scale
MC samples listed in Table 3.3 and Table 3.4. Values are taken from [51]

Simulated data is scaled to cross sections listed in sample Tables 3.3 and 3.4, with
the exceptions of the processes listed in Table 3.2 where they have been calculated to
next-to-leading-order (NLO) and next-to-next-to-leading-order (NNLO).

On top of the simulation of scattering and hadronization it is also necessary to
simulate the ATLAS detector’s response to the final state particles for comparison
of MC to data. Simulation of the passage of particles through detector matter is
performed with GEANT4 [50] for all MC samples. The results of this simulation are
then passed through a simulation of the trigger and object reconstruction using the

same algorithms that are applied to data.
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Chapter 4

Event selection and analysis

4.1 Preselection

The purpose of preselection is to reject events that do not pass certain data quality
requirements. This selection is done at the event level, such that the entire event
is rejected if it does not pass preselection. Preselection is the loosest of the offline
selections, designed to quickly filter out uninteresting events. The preselection criteria

used in the proceeding analysis is described in more detail below.

e Good run list: Lumi-blocks must pass certain data quality requirements to
be placed on the good run list (GRL). The detector components relevant to
the measurement (trigger, calorimetry, muon detector, inner detector, solenoid
and toroid magnets) must be in stable operation and the LHC beam must be
fully ramped and also in stable operating conditions. This corresponds to an
ATLAS data quality tag of “Ready”. Lumi-blocks that have been flagged due
to anomalously high levels of calorimeter noise are also excluded from the good

run list.

e Primary vertex: All events are required to have at least one reconstructed
primary vertex to reduce the non-collision background. A vertex must have at

least 3 reconstructed tracks to be considered a primary vertex.

e Trigger: The L1 MU10 trigger is required for all events. This means that only

events with at least one reconstructed muon with pr > 10 GeV are selected.

e Bad jet cleaning: Certain types of calorimeter noise, such as noise bursts,

are not modelled in Monte Carlo simulations. Lumi-blocks that suffer greatly
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from this type of noise are excluded in the GRL. However, rejecting events with
“bad” jets, as defined in [52], reduces this background on the event level. Only

a small fraction of events are removed by this requirement, 0.05%.

4.2 Monte Carlo correction procedures

There are several quantities relevant to the proceeding analysis that are not properly
simulated in MC and need to be corrected before event selection (although not pre-
selection) can be performed. Since MC values for these quantities are unreliable a
data-driven method is required; i.e. the correction to MC needs to be estimated from
data. The need for these corrections arise from: uncertainties in theoretical calcula-
tions, quantities that scale with instantaneous luminosity, unknown detector object
misclassification rates and detector resolution effects. Inevitably any correction for
these effects will add some systematic uncertainty to the final measurement; however,
a comprehensive study of these systematic uncertainties is beyond the scope of this
thesis. In the case of one jet the systematic uncertainties on R; have already been
studied in detail [53].

4.2.1 QCD background estimation

The main backgrounds in the W — ur channel consist of QCD multi-jets and leptonic
decays of vector bosons (W — 7v, Z — pp and Z — 77). At larger jet multiplicities
(and higher 37 pA") ¢ production dominates the background. For the QCD multi-
jet background the main mechanisms that produce a hard muon that passes the
muon selection are the decays of heavy flavour mesons (c¢ and bb) in jets. Smaller
contributions to this background include pion and kaon decays and hadrons faking
muons. In simulation very few of these events have the required EF*** to pass the
W selection cuts and none of these events pass the Z invariant mass selection cut.
However the QCD multi-jet cross section is large enough that this small fraction
constitutes a non-negligible background in the W+jets channel.

For the QCD multi-jet background muon-filtered PYTHIA di-jet samples are used
as listed in Table 3.3. Since the cross sections quoted for these samples have a
large uncertainty and prompt fake muons are not simulated reliably a data-driven
method is used to estimate the contribution of the QCD multi-jet background in the
W-tjets signal region. Anti-W selection cuts (E7* <25 GeV and mr <40 GeV)
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’ Jet Multiplicity \ 0 jets \ 1jet | 2jets | 3jets \ 4 jets \ >5 jets ‘
W-+Jets note 0.560 | 0.623 | 0.519 - -
Eiss 0.487 | 0.591 | 0.565 | 0.606 | 0.727 | 0.873
my 0.494 | 0.592 | 0.560 | 0.613 | 0.845 | 0.888
Average 0.4905 | 0.5915 | 0.5625 | 0.6095 | 0.786 | 0.8805

Table 4.1: Scale factors applied to QCD multi-jet background to estimate contri-
bution in signal regions calculated in each jet multiplicity bin. Scale factors for jet
multiplicity bins 0-2 are compared to the scale factors found in the W+jets cross
section note.

define a control region where QCD multi-jets are the dominant processes. With this
control region QCD multi-jet scaling factors are found by fitting the QCD multi-jet
contribution to data while keeping signal and all other backgrounds fixed. The fit is
performed by minimizing the y? of the data and MC E%*** and mr distributions in 20
bins for jet multiplicities 0-5. The results of the fit are summarized in table 4.1. These
scaling factors are compared to those found in the W-jets cross section measurement
note [51] with 1.3 pb™! of integrated luminosity for Ef**¢ distributions. The W-jets
note uses a similar data-driven method to determine their scaling factors, however
the control region does not make the anti-W selection cuts. Instead two templates
are fitted, QCD multi-jet and leptonic backgrounds with signal, using the ROOT
method TFractionFitter where the QCD multi-jet scaling factors are extracted from
this fit. The two sets of QCD multi-jet scaling factors are consistent considering
that the results of the fit depend on the control region chosen and the binning of
the distributions to some degree. The fitting method used in this analysis is chosen
because it is simpler and is not done with any of the events that are used to calculate
and compare the final measurement of R, to MC predictions.

The average of the scaling factors found for the EX*** and mr distributions is used
to estimate the QCD background in the W+jets signal region. Fig. 4.1 displays the
E7ss and my distributions before and after the QCD multi-jet scaling factors are

applied.

4.2.2 Re-weighting pile-up events in Monte Carlo

All MC distributions that are compared to data include in-time pile-up simulation.
This means that the expected number of primary vertices in a collision is much

closer to the average number of vertices seen in the full 2010 data set. However
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Figure 4.1: E7%¢ and my distributions before (left) and after (right) applying scaling
factors to QCD multi-jet background. All other MC samples are scaled to 32.6 pb~!

using the cross sections give in Table 3.3.
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Number of vertices 1 2 3 4 5
Vertex weight factor | 1.632 | 1.096 | 0.8384 | 0.6904 | 0.6006
Number of vertices 6 7 8 9 10
Vertex weight factor | 0.5213 | 0.4708 | 0.3056 | 0.2265 | 0.1140

Table 4.2: Vertex weight factors used to match the number of in-time pile-up events
between data and MC.

pile-up changes as a function of instantaneous luminosity and can be quite different
depending on the run period being considered. For this reason MC samples need
to be weighted so that the distributions of the number of primary vertices matches
that in data. The procedure used to calculate these vertex weight factors is that
recommended by the ATLAS Standard Model Working Group [54].

e Select a data sample from a given stream

e Require that the runs and luminosity blocks in this data sample satisfy the

common WZ & EWK good run list requirement
e Require that the event pass a given lepton trigger for a given data taking period
e Apply standard pre-selection to remove potential non-collision background events

e Compute the weights for each data taking period by calculating the primary

vertex ratio with data to Monte Carlo distributions
o a vertex must be reconstructed with at least 3 tracks

e Obtain the final set of weights (one for each number of primary vertices in the
events) by taking the luminosity weighted average of the different weights in
different data periods

The vertex weight factors are found after preseclection and muon selections, as
described in Sections 4.1 and 4.3.1, but not before W, Z or jet selection. Table 4.2
shows the results of this procedure for 2010 run periods A-I. Fig. 4.2 compares the
distributions of the number of primary vertices in the W+jets and Z+jets channels
before and after the vertex weight factors have been applied. These weights are used
for all MC samples in the proceeding analysis whenever MC is being compared to
data.
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Figure 4.3: Z boson invariant mass distribution before and after invariant mass reso-
lution smearing with jet multiplicities 0-3.

4.2.3 7 invariant mass resolution correction

The MC Z boson invariant mass, my, distribution requires a resolution correction
to match data due to limited muon pr resolution. The correction procedure is often
referred to as smearing as it has the affect of increasing the width of the distribution
that it is being applied to. In the proceeding analysis a simple smearing scheme is
adopted which is applied to the m  distribution itself, rather than smearing the muon
pr distributions and then reconstructing the Z boson invariant mass. In either case, it
is the m distribution that is being used to determine the level of smearing necessary.

The smeared my distribution, mgjneared

, is obtained by applying a linear transfor-
mation to the original distribution that matches the standard deviation of the MC
omce, sample to data, g4

mirere = amy + b, (4.1)

where a = oy /0data and b = —E[mz](1 — a). a is a scaling factor which smears
the distribution while b translates the distribution back to its original mean. a is
calculated in a 20 GeV window centred around the m; mean to best match the peaks
of the distributions. Since a is calculated in a window the smearing function needs
to be applied iteratively because after each iteration a number of the smeared values
will fall outside this window. This smearing procedure is applied until the value of a
converges between iterations. Fig. 4.3 shows the my distributions before and after
the smearing procedure is applied. It is found that best agreement between data
and MC is achieved with 24% smearing on the my distribution, which reduces the

acceptance of the Z boson selection cuts by 4%.
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4.3 W/Z+Jets event selection

The selection process is designed to identify the relevant, well reconstructed signal
events while rejecting backgrounds and poorly reconstructed events. Each recon-
structed object in the detector (such as a jet, muon or EM***) is identified by passing
a number of requirements specific to that object. Signal and background processes
are simulated with MC. The luminosity of the simulated data is scaled to that of the
collected data with the exception of the QCD multi-jet background which is scaled
using the method outlined in Section 4.2.1. The efficiency of a selection cut is esti-
mated by making the same selection with simulated data for a specific process. To
compare results with Standard Model expectation all selection is done on data as well
as MC with the exception of jet cleaning, since jet events that fail this requirement

are not modelled in simulation.

4.3.1 Muon selection

Muon selection is performed on all muon candidates passing the trigger. The purpose
of these selection requirements is to reject fake or poorly reconstructed muons while
preferentially selecting hard muons that result from the decay of a heavy parent

particle. These selection criteria are described in more detail below.

e Combined tracks: A muon candidate must be reconstructed with the com-
bination of inner detector and muon spectrometer tracks. This reconstruction

corresponds to the STACO collection of muons.

e Primary vertex: To check the consistency of a muon track with the selected
primary vertex the absolute difference between the primary vertex z-coordinate
and that of the muon’s track extrapolated to the beam line must be less than

10 mm (|2, — 2| < 10 mm).

e Detector hits: To ensure that the reconstructed track corresponds to a muon
there are requirements on the number of sub-detector readings or “hits”. In the
inner detector muon tracks are required to have at least two hits in the pixel
detector and at least six in the SCT detector. For tracks with |n| <2.0 at least
one hit in the TRT detector is also required.

e Spectrometer pf: The transverse momentum of the muon candidate in the

muon spectrometer, p°, must be greater than 10 GeV to reduce the contribu-
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tion of muons arising from 7/K decay.

e Consistent tracks: To ensure consistency between the inner detector and
muon spectrometer tracks the absolute difference between a muon candidate’s
transverse momentum reconstructed in the muon spectrometer and the inner
detector, pI”, must be less than 0.5pIP (|ptP — pMS|/plP < 0.5).

e Impact parameter: To reduce non-collision backgrounds muons are required
to have an impact parameter consistent with the area of the beam. The absolute
value of the impact parameter, dy, of the muon track relative to the primary

vertex must be less than 0.1 mm (|dy| <0.1lmm).

e Track isolation: To reduce multi-jet background muon candidate tracks are
required to be isolated. This requires that the sum of the transverse momentum
of all inner detector tracks within a cone of AR < 2.0 of the muon be less than
1.8 GeV.

e Muon p7: In this analysis only muons that originate from heavy parent par-
ticles, such as vector bosons, are of interest. Thus the muon’s combined (inner

detector and muon spectrometer) transverse momentum, p4., is required to be
at least 20 GeV (pf. > 20 GeV).

e Pseudorapidity: For good reconstruction muon candidates are required to be
in the detector’s fiducial volume. Muon candidates must have an absolute value

of pseudorapidity less than 2.4 (|n#| <2.4).

Table 4.3 lists the number of events in data that pass these selection cuts along
with their efficiencies as estimated from MC. Agreement between data and MC for
the muon variables Y p% and m,, can be seen in Fig. 4.4. All of the signal and
background samples listed in Table 3.3 are included. In both of these distributions a

clear peak is seen at approximately 90 GeV corresponding to the Z boson mass.

4.3.2 Jet selection

Jet selection is designed to remove hadronic background and select only well recon-
structed jets that come from the hard process. This includes removing jets that could
arise from pile-up as well as jets faked by muons. All jets are reconstructed using

the anti-k7 algorithm as described in Section 3.3.3. A jet’s initial four-momentum is
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Selection cut Data 2010 Signal MC (%)
Number of events Marginal Eff. (%) | Absolute Eff. Marginal Eff.

Total with GRL 1.78356€8 — — —
Primary vertex 1.57287e8 88.18 99.76 99.76
Trigger 4.62437e7 29.40 63.14 63.29
Combined muons 2.33025e7 50.39 61.30 96.86
|24 — 2py| < 10 mm 2.27113e7 97.46 61.02 99.54
Detector hits 2.15095e7 94.71 60.41 99.00
py® > 10 GeV 7.47567€6 34.76 58.98 97.63
1”7 —pr"°1/p1” < 0.5 7.42537¢6 99.33 58.66 99.46
|do| < 0.1 mm 5.61934e6 75.68 58.52 99.76
Track isolation 2.97599e6 52.96 57.67 98.54
P > 20 GeV 289422 9.725 49.55 85.92
Int| < 2.4 284755 98.39 48.60 98.08

Table 4.3: Number of events passing muon selection cuts with efficiency in percent of
the cuts on W — pv + jets and Z — pp + jets ALPGEN Monte Carlo simulations.
Marginal efficiency is given by the ratio of the number of events that passed the
selection cut to the number that passed the previous cut while absolute efficiency
efficiency is given by the number of events that passed the selection cut to the total
number of events as calculated in MC.

Events
Events

. + Data 2010
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Figure 4.4: Muon kinematic variables: (left) the sum of the pr of the reconstructed
muons in an event, (right) the invariant mass distribution of two reconstructed muons.
Points correspond to data, colored histograms MC.
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taken to be the sum of its corresponding topoclusters taken at EM scale. Before jet
selection the four-momentum is calibrated using the jet energy scale (JES) correction
obtained from the Jet/EtMiss working group using a numerical inversion method [55].

More detail on the selection criteria is given below.

e Jet pr: To reduce multi-jet background jet candidates are required to have a

transverse momentum greater than 20 GeV (p)" > 20 GeV).

e Pseudorapidity: Jet candidates are required to have a absolute pseudorapidity
value less than 2.8 (|n7¢| <2.8).

e Ugly jets: All “ugly” jets as defined in [55] are removed as jet candidates. An
Ugly jet is defined as having a TileGap3 energy fraction greater than 0.5 or an
energy fraction in dead cells receiving a large correction ( BCH.CORR_CELL>0.5).
Ugly jets are not modelled in Monte Carlo simulations hence this selection is

only made on data.

e Pile-up: Some extra jets may be counted due to additional proton-proton
interactions in the same bunch crossing (in-time pile-up). To remove jets due
to pile-up the absolute value of the jet vertex fraction (JVF), a measure of the
probability that the jet originated from the primary vertex, is required to be
greater than 0.75 (JJVF| >0.75) as recommended in [56] [57].

e Jet-muon overlap: To ensure muons do not fake jets, all jet candidates must
be isolated from the selected muon(s). Specifically, all jet candidates with a
AR with respect to the muon (AR(u, jet) = \/(n* — niet)2 + (¢pH — ¢t)2) less
than 0.5 are excluded (AR(u, jet) >0.5).

Table 4.4 lists the number of events in data that pass these selection cuts along
with their efficiencies. Fig. 4.5 displays jet multiplicities, S p/*"*, leading jet pp and
second leading jet pr for all jets that pass this selection criteria. Agreement between
data and MC is quite reasonable. The largest source of background to the W/Z-+Jets
signal is the QCD multi-jet background in the lower pr region while tf dominates the
higher pr regions.

4.3.3 W-Hjet selection

Selection in the W channel is designed to identify W bosons based on the decay

signature of one muon and a large missing transverse energy associated with a neu-
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Selection cut

Number of Jets

Data 2010

Marginal Eff. (%)

Signal MC (%)
Absolute Eff. Marginal Eff.

Preselection/muon cuts 1.37217¢6 — — —

pt > 20 GeV 216171 15.75 8.68 —
In’¢| < 2.8 193603 89.56 7.86 90.55

Ugly jets 193548 99.97 — —
JVF < 0.75 185294 95.74 6.72 85.50
Jet-muon overlap 152245 82.16 6.34 94.35

Table 4.4: Number of events passing jet selection cuts with efficiency in percent of
the cuts on W — puv + jets and Z — pup + jets ALPGEN Monte Carlo simulations.
Marginal efficiency is given by the ratio of the number of events that passed the
selection cut to the number that passed the previous cut while absolute efficiency
efficiency is given by the number of events that passed the selection cut to the total
number of events as calculated in MC.
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event.
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Selection cut Data 2010 Signal MC (%)
Number of events Marginal Eff. (%) | Absolute Eff. Marginal Eff.

One p 272760 95.79 46.58 95.84
Egﬂm'ss > 25 GeV 139634 51.19 38.67 83.02
mp > 40 GeV 135796 97.25 38.34 99.15
Njets > 1 29295 21.57 7.626 19.89
Njets > 2 7593 25.92 1.929 25.30
Njets > 3 2404 31.66 0.4759 24.67

Table 4.5: Number of events passing W boson selection cuts with efficiency in percent
of the cuts on W — pv + jets ALPGEN Monte Carlo simulations. Marginal efficiency
is given by the ratio of the number of events that passed the selection cut to the
number that passed the previous cut while absolute efficiency efficiency is given by
the number of events that passed the selection cut to the total number of events as

calculated in MC.

trino. This channel can be decomposed into sub-channels based on associated jet

multiplicities. Details on W+jet selection are given below.

e Single muon: To veto Z bosons with a large missing energy W boson candi-

dates require exactly one muon passing the muon selection criteria.

Missing Ep: Neutrinos cannot be measured directly with the ATLAS detector.
Their presence in an event is inferred by a large missing transverse energy,
Ess. Thus W boson candidates are required to have a missing transverse
energy greater than 25 GeV (B > 25 GeV).

Transverse mass: Since the momentum of the neutrino is only reconstructed
in the transverse plane (EM%*) it is not possible to reconstruct the invariant
mass of the W boson. Instead the invariant mass of the W boson projected
onto the transverse plane is reconstructed. Here the transverse mass is defined

as

mp = \/ 2 (1 — coslgr — gmiss)), (4.2)

where ¢* and ¢™** are the ¢-coordinates of the reconstructed muon and missing
transverse energy vector respectively. W boson candidates are required to have

a transverse mass greater than 40 GeV (mp > 40 GeV).

Table 4.5 lists the number of events that pass the W-jets selection in data as well

as the efficiencies of these selection cuts. Fig. 4.6 and Fig.4.7 shows the E7** and myp
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Selection cut Data 2010 Signal MC (%)
Number of events Marginal Eff. (%) | Absolute Eff. Marginal Eff.
e 11942 - 34.51 -

T1< my <121 GeV 10755 90.06 31.75 92.00
Njets > 1 2538 23.60 7.307 23.01
Njets > 2 754 29.71 1.916 26.22
Njets > 3 200 26.53 0.4977 25.98

Table 4.6: Number of events passing Z boson selection cuts with efficiency in percent
of the cuts on Z — pp + jets ALPGEN Monte Carlo simulations. Marginal efficiency
is given by the ratio of the number of events that passed the selection cut to the
number that passed the previous cut while absolute efficiency efficiency is given by
the number of events that passed the selection cut to the total number of events as
calculated in MC.

distributions before and after the E7*$ and mq selection cuts with jet multiplicities
0-3. The multi-jet QCD background clearly dominates in the EX%$ < 25 GeV region.
With these two cuts 98.6% of the multi-jet QCD background in the W channel is
eliminated. Overall agreement between data and MC is good. MC over estimates
data in the 0 jet bin around the E** and my distribution peaks in the signal region.
this discrepancy is not understood however it is also seen in the W+jets cross section

note [51] with 1.3 nb™! of integrated luminosity.

4.3.4 Z-+jets selection

Selection in the Z channel is designed to identify Z bosons based on the decay signature
of two oppositely charge muons. The invariant mass of the two muons is reconstructed
and required to be consistent with the mass of the Z boson. This channel can be
decomposed into sub-channels based on associated jet multiplicities. Details on the

selection are given below.

e Opposite-charge p: Since the Z boson is neutral, the two muons associated
with its decay must be oppositely charged. Therefore Z boson candidates require

two muons, both passing the muon selection criteria, with opposite charge.

e Invariant mass: The Z boson has a distinct invariant mass peak at 91.2 GeV.
For this reason the invariant mass of a Z boson candidate must fall within a 40
GeV window centred around 91 GeV ( 71 GeV < my <111 GeV).
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Figure 4.6: Missing transverse energy distributions before (left) and after (right)
E7s5 and my selection cuts with jet multiplicities 0-3.
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Figure 4.8: Z boson invariant mass distribution with jet multiplicites 0-3. Results are
shown after smear procedure outlined in Section 4.2.3

Table 4.6 list the number of events in data that pass the Z channel selection cuts.
Fig.4.8 shows the Z boson invariant mass distribution reconstructed from the muons,
My, with jet multiplicities 0-3. These distributions are shown after the smearing

procedure outlined in Section 4.2.3 is applied.

4.4 R, analysis

This section presents R,, as a function of kp threshold measured with the 2010 data
set. Fig. 4.9 shows R, calculated as a function of the sum of the pr of the jets.
Prediction curve (red dashed line) is calculated as the sum of the MC samples listed
in Table 3.3 after corrections and selection of Sections 4.2 and 4.3. The error bars
on data are purely statistical and therefore underestimate the total uncertainty. The
sharp increase in the size of the error bars with increasing k indicate limited statistics

in the Z-+jets measurement.
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Figure 4.9: W/Z+jets ratio R, presented as a function of kr = ijTEt for jet mul-
tiplicities 1-4. Points correspond to data and dashed line MC with all backgrounds
and signals as listed in Table 3.3. Error bars are purely statistical.

MC prediction agrees reasonably well with data. For larger values of jet multi-
plicity, such as n > 4, R,, displays a systematic shift to larger values. This effect is
due to the tf background in the W+jets channel, which is not found in the Z-+jets
channel. This extra background in the numerator of R, is the cause of this upward
shift. The discrepancy between data and prediction seen in R3 and Ry is not fully
understood. Omne possible source of this discrepancy could be poor modelling due
to the uncertainty associated with leading-order parton density function calculations
used in ALPGEN signal samples. This possibility is supported by the observation
that the discrepancy between data and MC systematically increases with the number

of jets, which corresponds to the number of partons on the generator level.
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Chapter 5

Multivariate analysis

5.1 Machine learning algorithms

In general, machine learning involves a program that is capable of changing its struc-
ture or manipulating data in such a manner that its expected future performance
improves [58]. Learning algorithms of this type are useful in pattern recognition, or
classification, and prediction of complex systems. The multi-dimensional cuts and
neural network multivariate methods discussed below are examples of such machine
learning algorithms. These algorithms need to be calculated from some set of inputs
and evaluated based on specified criteria before a response can be determined. The
learning paradigm used by these multivariate methods is known as supervised learning
since the algorithm learns from a set of training examples, each of which is made up
of inputs and a desired output(s) or target. The supervised learning algorithm uses
the training examples to infer a function that maps the inputs to the target. This
function is found by minimizing the error, or extremizing the cost function, between
the model output and the target. This is done by continuously adjusting the function
parameters through an iterative process called training. The resulting function that
maps the inputs to the target with the least ‘cost’, as defined by the cost function,
is called the classifier. The difference between this type of learning and “unsuper-
vised” learning is that the cost function will implicitly contain prior knowledge of
the problem in order to evaluate the correct mapping, i.e. the desired result must
already be known beforehand. Applications in high energy physics usually involve
training a classifier on simulated data with a signal and background target of 1 and

0 respectively. Some classifiers, such as a Fisher discriminant, are optimized for in-
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put variables that have mostly linear correlations while others, like artificial neural
networks, perform better on variables with non-linear correlations . In the following
analysis the topology-discriminating variables are used as inputs to a classifier, the

response of which is used as a discriminant.

5.1.1 Multi-dimensional cuts

The simplest and most common classifier is a set of rectangular cuts that maximizes
signal efficiency and background rejection. This classifier returns a binary response;
an event is classified as either signal or background. In the following analysis the
optimal set of cuts on the input variables is found for a given signal efficiency using
a Monte Carlo sampling method. Training consists of generating a large sample of
random cuts on the input variables, where signal efficiencies and background rejections
are calculated for each set of cuts with the training sample. Signal efficiencies are
finely binned and their respective background rejections are compared for each bin.
The set of cuts that has the largest background rejection for a given efficiency bin is

retained while the others are rejected.

5.1.2 Artificial Neural Networks

Generally speaking an Artificial Neural Network (ANN) is a collection of intercon-
nected nodes which each produce a certain response from a given set of input signals
[59]. Originally ANN’s were designed as a model of biological neural networks, which
is where they inherit their name. However, most modern ANN’s, which are usually
referred to simply as neural networks, are used as non-linear statistical data mod-
elling tools for classification and regression problems. By far the most common of
these types of neural networks are multi-layer perceptrons (MLP). MLP’s consist of
multiple layers of nodes called neurons in a directed graph that maps a set of input
data onto a single (classification) or set (regression) of outputs. The neurons are
associated with a neuron response function that maps the inputs of that neuron to
an output, where these outputs act as inputs for the next neuron layer. Each layer of
neurons is fully connected by weights that determine the strength of the connection
between neurons. There is no limit to the number of layers in a MLP; however there
must be at least two layers (input and an output layer). All other layers are referred
to as hidden layers since their states are usually not know to the user. MLP’s use

a supervised learning paradigm called backpropagation for training that utilizes the



60

Input Layer Hidden Layer Output Layer

Figure 5.1: Network diagram of a multilayer perceptron with one hidden layer, taken
from [60].

method of steepest decent for minimization of the cost function. Fig. 5.1 show a

network diagram for a MLP with one hidden layer.

Neuron response function

The neuron response function, «, of neuron j in a given layer [ maps the neuron
inputs ¢ onto the neuron output y](-l). The response function can be decomposed into

a R" — R synapse function (3,
(1
B=> "y w?, (5.1)

1)
ij

function v(5)

where w; . are the inter-neuron connection weights, and a R +— R neuron activation

7(B) = tanh(p3). (5.2)

Equations 5.1 and 5.2 make up one choice of a possible neuron response function,

a = y(B), for other possibilities see [59]. With the neuron response function defined

the neuron output y(-l)

;’ can be given in terms of the inter-neuron connection weights
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and the responses from the neurons in the previous layer

l - -
v’ = %(6) = tanh (Z b ”) ,

where [ is a hidden layer. For the input and output layers the activation function is

usually taken to be a linear function of .

Backpropagation

Backpropagation uses the method of steepest decent to adjust the inter-neuron con-
nection weights such that the cost function is minimized. Here the cost function,
®, which measures agreement between the neural network response, yann, and the
desired target value ¥4, is defined by

1
o = E(yANN - ytarg)z-

The learning is said to be done online as the cost function is evaluated for each
training event, rather than evaluating it as the sum over all events. ® is minimized
by starting with a random set of weights, w, and then adjusted by moving a small

distance in w-space in the direction where ® decreases most rapidly
W — W — SVJ,CD,

where ¢ is a real positive value that determines the step size. The weights are adjusted
by starting with the last hidden layer propagating the results backwards to the first;
hence the term backpropagation. This process of adjusting the weight is continued
through to the weights connecting the first hidden layer to the input layer. Once all
weights have been adjusted the cost function is evaluated again and the process is

repeated until ¢ is minimized.

Single hidden layer MLP network architecture

This section demonstrates how neural networks can be used to solve classification
problems in high energy physics. Given a simulated sample of signal and background
events and a set of discriminating variables x; a MLP neural network can be trained

to separate data into signal and background events. In theory there is no limit to
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the number of hidden layers a MLP can have; in practice computation time makes
only a few hidden layers practical. Computationally it is usually more efficient to
increase the number of neurons instead of layers. In fact any continuous function
can be approximated using a single hidden layer MLP given a sufficient number of
neurons [59]. In the following analysis only single hidden layer MLP’s are used where
the number of neurons in the hidden layer is chosen to be 5 plus the number of input
variables. Bias nodes, with weights w(()lj) and o = 1, in the first two layers add a
constant offset to the neuron response function allowing it to be shifted left-or-right
making the MLP more flexible. Fig. 5.1 is an example of such a network with four
input variables.

For a MLP with n input variables and a neuron response function a = 3 for the

input and output layers the neural network response y4nyy is given by

n+5 n+5 n
YANN = w(()21) + Z y§2)wﬁ) = w((fl) + Z tanh (wé? + Z xlwfjl)> wﬁ). (5.3)
j=1 j=1 i=1

In the first iteration y ny is calculated with a random set of weights. Then the

2)

weights are adjusted using the backpropagation method. Weights w](-1 are adjusted

by an amount
0P
Awﬁ) = _fﬂ = —{(YANN — Ytarg) 'yy('Q)’
ow:;
71

where y4,4 is taken to be 0 for background and 1 for signal events. After this the

(1)

second set of weights w;;” are adjusted by the amount

0o

Aw' = —£
8wg)

j

2 2
= —E(Ynn — Yearg)Wls - (1= (y$)?) - @,

where the relation tanh’z = 1 — tanh?x is used. The new weights, @ + Aw, are
used to recalculate y,yn with Equation 5.3 and & is re-evaluated. Then process is
repeated until ¢ converges between iterations, where the converged value is taken to

be the minimum.

Variable ranking

After training of the MLP neural network it may be informative to rank the input
variables based on some measure of their importance in forming the neural network

response. One such measure is the sum of the squared weights of the inter-neuron
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connections between the input layer and the first hidden layer. [;, the importance of

the 7th input variable is defined as

n

I = Z (wg))Q ’ (5.4)

j=1

where p; is the sample mean of the input variable z;.

5.1.3 Fisher discriminant

A Fisher discriminant is a linear combination of input variables that maximizes the
separation in F-space of two output targets for input variables with linear correlations
only. Fisher discriminants can be thought of as linear neural networks with zero
hidden layers — although, strictly speaking, they do not meet the definition of a
machine learning algorithm given in Section 5.1. The Fisher discriminant F' is given

by [61]

n
F = U)0+ E W;x;,
i=1

where w; are the weights for the connections between the input layer and output
layer of neurons. The cost function is given by the separation, S, between signal and

background in F-space defined by

S B\2
5= i (o 59

(B) (B)

where ,uf; and of; are the mean and standard deviation of the Fisher outputs
for a signal (background) sample. For two distributions defined in exclusive non-
overlapping domains S = 1 and for identical distributions S = 0. It can be shown

[62] that S is maximized by the choice of weights

n

wi =Y (V3 + VOG5 — i),

j=1

B) is the mean of the input variable x;

where V5) is the covariance matrix and ,uf(
for the signal (background) sample.
By only taking into account linear correlations between input variables it is pos-

sible to extremize the cost function analytically; hence no iterations or learning is
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necessary. This leads to a much shorter computation time compared to a MLP neu-
ral network or multi-dimensional cuts.

In Chapter 6 the performance of the above classifiers is evaluated in two separate
applications. The set of topology-discriminating variables are used as inputs and the

classifiers are trained and tested on two separate sets of simulated data.
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Chapter 6
Signal extraction

In this section the analysis strategy outlined in Section 2.4 is applied to the mea-
surement of R, in two parallel analyses. The first analysis enhances a tt signal in
R, <4 relative to the remaining SM background using the 2010 data set. The sec-
ond analysis enhances a LQLQ signal in R,, with respect to a SM background using
MC simulation. In Section 6.1 a common set of topology-discriminating variables
are chosen to be used as inputs to multivariate classifiers for both analyses. Then
in Sections 6.2 and 6.3 multivariate classifiers are trained using MC simulation and
their respective responses are evaluated based on discriminating power. The kine-
matic threshold variable kr is chosen such that signal and background are found in
distinct phase spaces. A single cut is then made on the chosen classifiers response
and R, is calculating in the remaining k; phase space. The result is then compared

to R, before the cut to determine if the signal has been enhanced.

6.1 Topology-discriminating variables

The set of topology-discriminating variables used in both the ¢t and LQLQ analysis
are: Njets, AR moment, Cqp, St and Transverse Thrust, which are defined in Sec-
tion 2.3. Fig. 6.1 displays these variables calculated with the 2010 data set, shown
after preselection, muon selection and jet selection as well as MC corrections from
Section 4. Variable distributions are simulated well in MC, showing good agreement
between data and MC for all variables. However variable distribution shapes may be
sensitive to other considerations that affect the topoclusters in an event from which

the variables are calculated. Two such things to consider are pile-up, as discussed in
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Figure 6.1: Topology-discriminating variable distributions: Nje;s , AR moment, Cqq,
St and Transverse Thrust. Points correspond to 2010 data and coloured histograms
to MC scaled to 2010 data integrated luminosity. Preselection, muon selection and jet
selection as well as MC corrections from Section 4 have been applied to distributions.
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the Appendix, and the total transverse momentum measured in the calorimeter.

clust

6.1.1 Sensitivity of topology-discriminating variables to ) p%

As the total energy of an event increases the relative production rates of the different
processes can change. For example the relative production rate of ¢ will increase with
increasing total energy while the QCD multi-jet background will decrease. This can
have significant effects on the shape of the topology-discriminating variable distribu-
tions. Fig 6.2 illustrates this with the AR moment distributions shown in increasing
bins of Y psust. The shape, mean value and width of the AR moment distribution
dramatically changes with increasing > p$“s!. This suggests that the separation and
discriminating power of the AR moment is dependent upon the _ p$ts region that it
is calculated in. This effect is common to all of the topology-discriminating variables
and for irreducible backgrounds, and is ultimately unavoidable since it is the relative
contributions from different process topologies that causes it. Similar figures for the
other four variables can be found in Appendix A.2. When these variables are used as
inputs to a multivariate classifier this effect could result in less-than-optimal discrim-
inating power of the classifier response in certain > p$**! regions. In the next section
a binned MLP neural network classifier is discussed where multiple neural networks

are computed in distinct Y pst“s? regions to accommodate this effect.

6.2 tt analysis

With an integrated luminosity of 32.6 pb~! the reach of any new physics search would
be too limited to detect any beyond-Standard-Model (BSM) processes. However, the
analysis strategy and signal-extraction techniques that are being developed in this
thesis can be tested by analysing a known SM process that can act as a proxy to a
BSM process. For this purpose top quark pair production in the 2010 data set is used
as a proxy for leptoquark pair production (LQLQ). Both processes involve production
of two massive particles at, or near, threshold that rapidly decay in both leptonic and
hadronic channels. The decay products contribute to the irreducible background in
R, in the W+jets channel. The current exclusion limit placed on second generation
leptoquarks puts the leptoquark mass at over 2.4 times that of the top quark’s [63].
Thus, the decay products of the leptoquark would be found in a higher kr region

than those of the top quark. However the topology of the two processes is similar,
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Figure 6.2: AR distribution calculated in increasing bins of >~ pdst. For further
details see caption of Fig. 6.1.

which allows the two analyses to be conducted in an analogous way.

In this section an analysis with the 2010 data set is presented where the sensitivity
of R, <4 to tt production is enhanced relative to background using the set of topology-
discriminating variables discussed in the last section. After W+jets selection W—
puv is the dominant process with contributions from W— tv, Z— up, Z— 77, tt
and diboson production (WW, ZZ, WZ). In this section three different optimized
multivariate discriminants are constructed with the topology-discriminating variables
as inputs by taking tf as the signal to be extracted from remaining background. The
analysis is restricted to 1-4 jets since the denominator of R,>5, Z + n > 5 jets, is
too statistically limited. The analysis is conducted after all corrections and selection

outlined in Section 4.2 and Section 4.3.
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Variable | Njes AR Cpae  Sr Thrust
Separation | 0.517 0.433 0.314 0.177 0.149

Table 6.1: Separation of topology-based discriminating variables between t¢ signal
and SM-tt background in descending order of separation.

Correlation Matrix (signal) Correlation Matrix (background)

Linear correlation coefficients in %

Linear correlation coefficients in %

AR

Thrust Thrust

Thr Usy S 4R Cma,, N Thrys, " S 4R Cma)( Yoo

Figure 6.3: Linear correlation matrices for topology-based discriminating variables
for ¢t signal (left) and SM-tt background (right).

6.2.1 Multivariate analysis with tf signal

The shapes of the multivariate input variables are compared in Fig 6.4 where signal
and background have been normalized to equal area. Using equation 5.5 the sepa-
ration between signal and background for each variable is calculated and shown in
Table 6.1. In general the variables with the largest separation will provide the most
discriminating power for any given multivariate classifier. It is also important that
the input variables are largely uncorrelated since highly correlated variables will not
add any additional information for the classifier. The linear correlation matrices for
signal and background are show in Fig 6.3. N, is seen to provide the most separa-
tion and the least correlation among the variables, which would suggest that it the
most powerful discriminating variable among the set.

To enhance the sensitivity of R,<4 to t¢ production three different multivariate
classifiers are calculated with the set of topology-discriminating variables as inputs:

multidimensional cuts, fisher discriminant and a MLP neural network. There are
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Figure 6.4: Comparison of topology-based discriminating variables distributions for
tt signal (blue) and SM-tt background (red). Signal and background have been nor-
malized to equal area.

Rank >_pi" bin
<200 GeV  200-400 GeV  400-600 GeV  600-800 GeV  >800 GeV
1 Cmam Cmaa: Cmax N. jets N. jets
2 AR AR AR St St
3 Nijets Thrust Thrust Craz AR
4 Thrust Njets Nijets AR Crnaz
5) ST ST ST Thrust Thrust

Table 6.2: Topology-discriminating variables ranked in order of most important (1)

to least important (5) in construction of MLP neural network in different Y pgiust

bins.

many other classifiers that are often used in high energy physics that could be tested
as well. However, these three classifiers are among the most common and are chosen to
be representative of the three classes: classical selection cuts, linear discriminants and
non-linear discriminants. The classifiers are trained and evaluated with the ROOT
native C++ library TMVA [60]. In training half of the simulated events are used
for training and the other half for testing and evaluation. Fig. 6.5 compares the
background rejection vs signal efficiency curves for the classifier outputs. Out of the

three classifiers the neural network offers the best background rejections for a given
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Figure 6.5: Comparison of background rejection vs signal efficiency curves for the
classifier outputs multidimensional cuts, Fisher discriminant and MLP neural net-

work. MC simulation is trained with ¢t as signal and SM-tt as background using
TMVA

signal efficiency with the Fisher discriminant only slightly under performing it. The
signal-background separation for the Fisher discriminant and neural network are 0.716
and 0.718 respectively. In contrast multidimensional cuts significantly under-performs
both of these classifiers for signal efficiencies greater than 0.8.

The performance of the neural network can be improved upon by calculating mul-

clust

tiple classifiers in bins of > p$“*. In Section 6.1.1 the dependence of the topology-

discriminating variable distributions on >~ pgst is discussed and it is seen that these

variables can have dramatically different distributions in different >~ pstst regions.
This could lead to different signal-background separation for a given variable depend-
ing upon the Y pd*s region it is calculated in. In order to optimize discrimination of
the neural network classifier a binned MLP neural network is trained in five separate
>~ pstust bins, which correspond to a rough-grained classification of distinct ) pgiust
regions. Table 6.2 ranks the importance of each variable in construction of the neural
network output in a given > pd! bins as calculated with Equation 5.4. The order
of ranking for the variables is different in all but two bins, which demonstrates the
need for a binned classifier for optimal separation. In Fig. 6.5 the binned MLP neural
network can be seen to out perform its unbinned counter-part making it the most

powerful classifier. The signal-background separation for the output of the binned
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neural network is 0.738. This is a significant improvement in separation over any
of the individual topology-discriminating variables since Njes, which offers the most

separation in the set, only give a separation of 0.517.

6.2.2 tt signal enhanced R, <4

R, <4 is presented in this section where the kinematic threshold variable is taken
to be the sum of the transverse momentum of the jets in the event, ky = ij; ts,
This choice of kr offers good kinematic discrimination since the top quark decays
predominantly in the hadronic channel. Fig. 6.6 compares R, <4 with and without
a cut on the binned neural network response. The green curve corresponds to SM
prediction without a ¢t signal while the red curves corresponds to SM prediction (with
tt signal). The cut on the binned neural network is applied to the numerator of R,,<4,
or in the W— uv + jets channel while no cuts are applied to the denominator since
the tt signal is not present in the Z— pu + jets channel. The cut on the binned
neural network enhances the significance (S/v/S + B) of the tf signal in R,<4 from
1.59 to 4.54, or by a factor of 2.86. This shows significant improvement on the original
sensitivity of the R, <4 search, making a more compelling argument for the existence

of top quark pair production.

v W = P S A U I I
c C e R Data 2010 i E R,.4With NN response = 0.35
14 E n<4 ] [\4 2.2F
B R, ., Prediction E et 2"9 E"’“Z‘ 2010 HH 1
E < . _ E ; ,,,,,,,, <4 Prediction ;
12f- R, ., Without t t 3 1-2; R, <4 Without t T +ﬁ * E
uth, 3 14F +H+ 3
E ++H’+ﬂ + 3 125 +++ =
o T 3 " -FE e ++ |
10p 1= ++-' E
of 08 # 3
E b 0.6F P E
8} 04? o** _ -1 _ i
E | | | [\Ldt: 3‘»2.6pb"1@ \E - 7T?V E 02;..»-*7" | | YrLdt_\ 32.6’:\)b @ \\E ) TTeVE
5020 60 80 100 120 140 160 180 200 %040 60 80 100 120 140 160 180 200
ets jets
35 3o

Figure 6.6: R, with (right) and without (left) binned neural network response cut.
Points correspond to 2010 data dashed curves correspond to MC SM prediction with
(red) and without (green) t¢ signal.
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Figure 6.7: Topology-based variables: Njes , AR moment, Cy,q,, S7 and Transverse
Thrust. Dashed lines correspond to leptoquark pair production signal with varying
leptoquark mass and coloured histograms to SM background. Signal and background
are normalized to unity.
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Variable | Njes AR Chee Thrust Sy
Separation | 0.614 0.595 0.552 0.285 0.239

Table 6.3: Separation of topology-based discriminating variables between LQLQ sig-
nal and SM background in decending order of separation.

Correlation Matrix (signal) Correlation Matrix (background)

Linear correlation coefficients in % Linear correlation coefficients in %

Neis

max

AR

Thrust

Th'ust S 4R G N

Figure 6.8: Linear correlation matrices for topology-based discriminating variables
for LQLQ) signal (left) and SM background (right).

6.3 Leptoquark analysis

In this section an analysis to enhance a LQLQ — uvqq signal over SM background
in R, is presented. Current limits on second generation leptoquark searches exclude
leptoquarks with Standard Model coupling below 422 GeV [63]. In this analysis three
different values for leptoquark mass, mq, are studied: mrg = 600 GeV, mrqo = 800
GeV and mpg = 1200 GeV. MC data sets used with production cross sections are
given in table 3.4. The small cross sections for leptoquark production requires a large
integrated luminosity to extract a signal from the SM background. For this reason

distributions are scaled to an integrated luminosity of 30 fb~!.

6.3.1 Leptoquark multivariate analysis

Shapes of the multivariate input variables are compared in Fig. 6.7 where distribu-
tions have been normalized to unity. MC samples used for both background and signal

can be found in Table 3.4. As one might expect leptoquark distributions show similar
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trends to t¢ distributions. However leptoquark distributions benefit from greater sep-
aration, as can be seen in Table 6.3. Additionally Fig. 6.8 shows the linear correlation
matrices for leptoquark signal and SM background. From these figures Nj.s and AR
can be seen to have the most separation and least correlation. In contrast to this
Thrust and St appear to be have the least separation and the highest correlation.

Just as in the ¢t analysis three distinct classifiers are trained and compared along
with a binned MLP neural network. Classifiers are trained on the mpg = 800 GeV
sample but responses are evaluated on all three LQLQ samples. Fig. 6.9 compares
the background rejection vs signal efficiency of the responses of the four multivariate
methods. The ordering of discrimination power is the same as in the ¢t analysis
with multidimensional cuts giving the least discrimination and the binned neural
network giving the most. In this case there is a very significant improvement in
signal efficiency for a given background rejection for the binned neural network over
its unbinned counterpart. This would suggest that the separation of the set of input
variables, and their relative ranking in importance, differs significantly in some of
the Y p$“st bins. Table 6.4 shows the relative rankings of the input variables in
importance as defined by equation 5.4. In the > chl“St < 200 bin Njes and AR are
ranked the highest while in the higher > ps“ bins St is ranked higher and AR drops
to one of the lowest ranked variables. It is due to this shift in relative importance of
the input variables in the construction of the neural network that binning gives such a
significant improvement in discrimination power. A possible explanation for this shift
is that t# becomes the dominant background as one goes to higher >~ psf“st regions,
which, as we’ve seen in the previous section, has a distinct topology from W+jets.
Thus the background from which the LQLQ signal needs to be discriminated from is
quite different in the ¢¢ dominated bins. The binned neural network gives a signal-
to-background separation of 0.893 where, in comparison, N, gives a separation of
0.614.

6.3.2 LQLQ signal enhanced R,

R, is presented in this section where the kinematic threshold is taken to be the

sum of the transverse momentum of the leading and second leading jet, the missing

~ leading—jet

transverse energy and the leading muon’s transverse momentum, kr = pp"*"9 7" +
d—jet ; : : : e

py I 4 Errss 4 pli o This choice of kr offers excellent kinematic discrimination

since the leptoquark decay channel being studied here is LQLQ — uvqq, where, at the



<200 GeV  200-400 GeV  400-600 GeV  600-800 GeV >800 GeV
1 Njets Njets ST ST ST
2 AR ST Njets Njets Njets
3 Crnaz Crnaz Craz Crnaz Thrust
4 Thrust AR Thrust Thrust AR
5 St Thrust AR AR Crnaz
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Table 6.4: classifier input variables ranked in order of most important (1) to least
important (5) in construction of MLP neural network in different Y p“s! bins.

1 T Y L B B

0.98

0.96

0.94

Background rejection

0.92

— Binned MLP neural network
—— MLP neural network

Fisher discriminant
— Multidimensional cuts

0.9

0.88

0.5 0.6 0.7 0.8 0.9 1
Signal efficiency

0.86

:b||||||||||||||||||||||||||

Figure 6.9: Comparison of background rejection vs signal efficiency curves for the
classifier outputs multidimensional cuts, Fisher discriminant and MLP neural net-
work. MC simulation is trained with LQL() as signal and SM as background using
TMVA

detector level, the two quarks correspond to the two hardest jets in the event and the
E7s% to the undetected neutrino. Since the leptoquark samples used have production
cross sections that are 10°-10° times smaller than W-jets, SM background needs to
be largely eliminated to resolve the LQLQ signal. For this purpose the transverse
mass, mr, cut made in the W+jets selection is increased to mp > 200 GeV to reject
SM background. Fig. 6.10 shows R, before and after a cut on the binned neural
network response for the numerator, Ny, of R,, where MC has been scaled to an

integrated luminosity of 30 fb™! to make the leptoquark signal discernible. Dashed



7

lines correspond to SM plus a leptoquark signal with the three different choices of
mrg while the points correspond to SM prediction alone. Since leptoquarks must
have large masses compared to SM particles signal resolution in R,, is optimal in
the kr range of 500-700 GeV, where Z+jets is still statistically significant. Table 6.5
shows the significance (S/+v/S + B) for the three leptoquark samples, before and after
the binned neural network cut, where signal and background have been calculated
after W+jets selection. The cut offers substantial improvement on the sensitivity of
the R, search from which the significance is enhanced by a factor of 7.99, 15.6 and
24.3 for mpg = 600, 800 and 1200 GeV signals respectively.

LQLQ sample mass (GeV) | Before NN cut | After NN cut
mzg =600 0.148 118
mrgo =800 1.38e-2 0.216
mrg =1200 2.32e-4 5.65e-3

Table 6.5: LQLQ significance before and after NN cut. Signal and background are
calculated after W+jets selection

c L B B B B B L B B B B c L B B B B B L B B B B

e [ R,without NN cut _E e 0'01; R, with NN response > 0.87
09 o  swmprediction ] = e SMPrediction
r SM with LQLQ signal (m, =600 GeV) 9 0.009 SM with LQLQ signal (m_=600 GeV)
C SM w!lh LQLQ S!gnal (mmzsoo GeV) + B 0.008 E SM with LQLQ signal (mLQ=800 Gev)
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Figure 6.10: R, with (right) and without (left) binned neural network response cut.
Points correspond to SM prediction and dashed lines to SM with LQLQ signal. MC
has been scaled to an integrated luminosity of 30 fb=1.
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6.4 Effects of signal enhancement on systematic

uncertainties

Even though systematic uncertainties have not been studied in this analysis it is worth
considering what types of effects the signal enhancement will have on the precision
with which R,, can be measured. As discussed in Section 2.2 to extract any signal in
R, requires an excess over the expected events in the numerator or denominator of R,,;
which would be measured as an upward or downward deviation in R, as a function of
k7. Methodology aside, enhancement of any signal in R,, will mean making selection
cuts in either the numerator or denominator placing them in different phase spaces.
In this case it is not clear to what extent cancellation of the systematic uncertainties
listed in Section 2.2 will occur; however an overall decrease in cancellation is expected.

In general, one would not expect much in the way of cancellation of generator
uncertainties, as the signal may be derived from a very different process than the
W /Z+jets background. Thus PDFs, hadronization models and renormalization and
factorization scale may vary. Indeed, different types of generators used by the ATLAS
Collaboration specialize in simulating specific physical processes.

Jet energy scale and resolution uncertainties can cause bin migration in the nu-
merator or denominator of R,. If R, is constant as a function of k7 bin migration
will only affect the measurement by a linear transformation in kr, which would not
create any signal-like effects in R,,. However to enhance a signal in R,, requires back-
ground in the numerator or denominator to be removed. This leads to an upward or
downward deviation in R,,, where bin migration could possibly enhance or partially
remove this signal.

Uncertainties related to corrections that are applied as a constant scaling factor to
all datasets, such as the luminosity scaling, will still cancel in R,,. Also uncertainties
associated with quantities that are uncorrelated with the classifier, i.e. have similar
distributions both before and after the cut, will still be expected to cancel.

By imposing cuts on R,, which are designed to enhance a specific signal, the
analysis moves from a model-independent search to a model-dependent search. In
doing so the precision in which R,, can be measured is traded for signal significance.
This thesis has explored the extent to which R, can be made model-dependent;
however, in such an extreme case R, would not be expected to be more sensitive

than a dedicated search.
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Chapter 7
Conclusion

In this thesis a measurement of R, is presented and its usefulness as a probe for new
physics signals is explored. As a demonstration of the method, pair production of
top quarks and leptoquarks is enhanced in R,, using optimized discriminants derived
from a set of topology-discriminating variables.

A measurement of R, as a function of total jet pr in the 1,2,3 and 4 jet multi-
plicity bins was made using 32.6 pb~! of collected ATLAS data from the 2010 runs.
The measurement agrees reasonably well with prediction for all four jet multiplicities
despite the fact that systematic uncertainties have not been evaluated.

A common set of topology-discriminating variables is chosen, based on signal-
background separation and minimal correlation. Performance of the multi-dimensional
cuts, fisher and neural network classifiers are evaluated and compared. The neural
network outperforms the other two classifiers for both analyses and is even further
improved by determining multiple responses, calculated in one of five non-overlapping
sum pr cluster regions. An optimal cut on the binned neural network response in the
tt and LQL(Q analysis enhanced signal significance by a factor of 2.86 and 7.99-24.3
(depending on leptoquark mass) respectively. However, the improved signal sensi-
tivity in R, comes at the price of reduced precision. Since a comprehensive study
of systematic uncertainties is beyond the scope of this thesis it is not clear to what

extent the precision in which R, can be measured is degraded.
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Appendix A

Appendix

A.1 Sensitivity of topology-discriminating variables
to pile-up

In-time pile-up refers to the situation where there are multiple proton-to-proton in-
teractions in a single bunch crossing, causing the event to have multiple primary
vertices. The number of primary vertices per bunch crossing is Poisson-distributed
with a mean determined by the beam parameters. The amount of pile-up in an event
can be estimated by the number of reconstructed primary vertices. However, it should
be noted that heavier particles that decay inside the inner detector, such as 7 leptons,
can also have vertices that are reconstructed as primary vertices; thus the number of
primary vertices can differ from the number of proton-to-proton interactions. Pile-up
in an event can have a significant impact on the shape of the topology-discriminating
variables. The number of topoclusters in an event will increase with pile-up adding
to the number of topoclusters used to calculate the variable. If the extra topoclus-
ters are mostly contained in a certain fiducial region the topology of the event can
be dramatically altered. Certain variables are more sensitive to pile-up effects than
others, especially those that are a function of the relative position of topoclusters to
one another (or are a function of A¢ and/or An) such as AR and C,,,,. Fig. A.l
displays how the AR moment distribution changes as a function of the number of
primary vertices, Ny, . Similar figures for variables Njes, Crrgz, ST and Thrust can
be found in this appendix. In the limit of infinite pile-up all signal would lost under
the pile-up energy deposits in the calorimeter. Thus pile-up has the effect of reducing

the discriminating power of the topology-discriminating variables. To model pile-up
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accurately in MC it is important to use the vertex weight factors found in Table 4.2

when comparing data to MC.

A.2 Additional figures for sensitivity of topology-

discriminating variables to > p$“! and pileup
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Figure A.1: AR distribution calculated in increasing bins of number of primary ver-
tices (N ). For further details see caption of Fig. 6.1.
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Figure A.2: N, distribution calculated in bins of number of primary vertices (N ).
For further details see caption of Fig. 6.1.
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Figure A.3: Thrust distribution calculated in bins of number of primary vertices
(Nyie). For further details see caption of Fig.
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Figure A.4: C,,,, distribution calculated in bins of number of primary vertices (V).

For further details see caption of Fig. 6.1.
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For further
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Figure A.7: Thrust distribution calculated in bins of number of increasing >~ pgest.

For further details see caption of Fig. 6.1.
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For further
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