EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH Proposal to the ISOLDE and Neutron Time-of-Flight Committee

(Following HIE-ISOLDE Letter of Intent I - 102)

Solving the shape conundrum in ⁷⁰**Se**

October 3, 2012

J.N. Orce¹, D.G. Jenkins², N. Erasmus¹, N.A. Khumalo¹, C. Mehl¹, S. Ngqoloda¹, B. Singh¹, S. Triambak¹, C.J. Barton², R. Wadsworth², N. Warr³, D. Muecher³, E. Clément⁴, M. Huyse⁵, R. Raabe⁵, P. Van Duppen⁵, A. Ekström⁶, J. Cederkäll⁶, J. Ljungvall⁷, P. Butler⁸, L. Gaffney⁸, D. Joss⁸, G. O'Neill⁸, R. Page⁸, T. Grahn⁹, P.T. Greenlees^{9,10}, J. Pakarinen^{9,10}, P. Rahkila^{9,10}, E. Rapisarda¹¹, F. Wenander¹¹, D Voulot¹¹

Department of Physics, University of the Western Cape, South Africa Department of Physics, University of York, York, United Kingdom ³Institut für Kernphysik, Universität zu Köln, Köln, Germany *GANIL, Caen, France Instituut voor Kern- en Stralingsfysica, KU Leuven, Belgium Physics Department, University of Lund, Sweden CSNSM Orsay, France Department of Physics, University of Liverpool, United Kingdom* ⁹Department of Physics, University of Jyväskylä, Finland *Helsinki institute of Physics, Finland Physics Department, CERN, Switzerland*

> **Spokesperson:** [Nico Orce] [jnorce@uwc.ac.za] **Co-Spokeperson:** [David Jenkins] [david.jenkins@york.ac.uk] **Contact person:** [Elisa Rapisarda] [elisa.rapisarda@cern.ch]

Abstract: We propose a multi-step Coulomb-excitation study of ⁷⁰Se at HIE-ISOLDE using the ²⁰⁸Pb(⁷⁰Se,⁷⁰Se^{*})²⁰⁸Pb[∗] reaction at a safe energy of 5.0 MeV/u. We aim at a precise measurement of the $\langle 2_1^+ | \mid \hat{E2} | \mid 2_1^+ \rangle$ diagonal matrix element as well as gaining information on additional matrix elements. Such information will shed light onto the shape conundrum of the 2^+_1 state in ⁷⁰Se as well as foreseeing the opportunity for a more detailed understanding of the shape-coexistence phenomenon in this region.

Requested shifts: 15+1 shifts (1 shift needed for setting up the experiment) **Installation:** [MINIBALL + CD at $[57^\circ, 77^\circ]$ forward angles]

A remarkable feature of atomic nuclei is their ability to adopt different mean field shapes for a small cost in energy compared to their total binding energy. As shown in Fig. 1, nuclei in the $A \approx 70$ region close to the $N = Z$ line are predicted to lie in a region of rapidly evolving nuclear shape because of the shell gaps at proton and neutron numbers 34 and 36. Macroscopic-microscopic models suggest a transition from gamma-soft shapes at ${}^{64}Ge$, through oblate-prolate shape-coexistence in ⁶⁸Se and ⁷²Kr to some of the most prolate deformed nuclei at ⁷⁶Sr and ⁸⁰Zr. The shape coexistence in $N = Z$ nuclei, in particular, may be enhanced by the occupation of the same orbitals for protons and neutrons and the resulting neutron-proton interaction [2, 3].

A key tool for identifying the sign of the nuclear deformation is the reorientation effect in low-energy Coulomb excitation. This effect is a second-order perturbation that generates a time-dependent hyperfine splitting of the nuclear levels and changes the population of the different magnetic substates; hence, modifying the Coulomb-excitation cross section depending on the magnitude and sign of the spectroscopic quadrupole moment, *Q^S* [4]. An example is the reorientation-effect measurement of ${}^{70}Se$ $(Z = 34)$ at REX-ISOLDE, where the nucleus of interest was produced as an isobarically pure beam through extracting it from ISOLDE as an SeCO⁺ molecule and breaking this molecule in the EBIS [5]. Additional accurate lifetimes measurements using the recoil-distance Doppler shift method [6], when combined with the only deter-

Figure 1: Deformed single-particle level energies for the orbits of interest. Figure taken from Ref. [1].

Figure 2: The $B(E2; 2^+_1 \rightarrow 0^+_1)$ value as a function of $Q_s(2_1^+)$ for the 2_1^+ state in ⁷⁰Se. The asterisk indicates the theoretical value. Figure taken from [6].

mination of Q_S for the $2⁺₁$ state [5], suggest an oblate shape for the ground state of ⁷⁰Se [5, 6]. Moreover, experimental and theoretical results in the light Se and Kr nuclei seems to suggest the emergence of oblate shapes as one approaches $N = Z$ [6]. However, the sudden decrease of the $B(E2; 2^+_1 \rightarrow 0^+_1)$ value from the NNDC accepted value of 44(9) W.u. [7] to the recent determination of 20.0(1.2) W.u. [6] cannot be accommodated theoretically. A large uncertainty in the $Q_s(2_1^+)$ value prevents a more detailed comparison with theory. Aided by the higher beam energies available at HIE-ISOLDE, the first goal of this proposal is the accurate determination of the $\langle 2_1^+ | \mid \hat{E}2 \mid | 2_1^+ \rangle$ diagonal matrix element, which currently spans from $-0.15 \leq \langle 2_1^+ \mid \mid \hat{E2} \mid \mid 2_1^+ \rangle \leq +1.0$ eb.

We propose to do a multi-step Coulomb excitation using the $^{208}Pb(^{70}Se, ^{70}Se^*)^{208}Pb^*$ reaction at 5.0 MeV/u . This bombarding energy is well below the Coulomb barrier at around 427 MeV and, assuming Cline's prescribed 5.0 fm separation between nuclear surfaces for heavy-ion reactions [8], safe for laboratory scattering angles $\theta_{lab} \leq 83^\circ$. A large Sommerfeld parameter of $\eta = 196 \gg 1$ validates the semiclassical approximation and a small adiabaticity parameter of $\xi = 0.35$ enhances the population of the 2^+_1 state in ⁷⁰Se. Using matrix elements extracted from Refs. [6, 7], GOSIA calculations [9] are presented in Fig. 3 for the population of the 2^+_1 state in ⁷⁰Se as a function of scattering angle and at different and extremely plausible $Q_s(2_1^+)$ values. Such a population strongly depends on $Q_s(2_1^+)$, being stronger as the shape becomes more oblate, and

Figure 3: Calculated differential cross sections for the population of the 2^+_1 state in ⁷⁰Se.

peaks at $\theta_{lab} \approx 40^\circ$. However, the reaction-kinematics plots shown in Fig. 4 illustrate the importance of moving the CD detector closer to the target position; hence, avoiding the high-energy ²⁰⁸Pb recoils that would badly damage the detector otherwise. The scattered ⁷⁰Se ions will therefore be detected with an S3 CD-type silicon detector placed covering the [57[°], 77[°]] angular range in the laboratory frame. The remaining angular coverage will be shielded from the ²⁰⁸Pb recoils. A yield of 10^4 ions/s for the previous ⁷⁰Se reorientationeffect measurement at 2.94 MeV/u yielded an area of 139(13) counts for the 2^+_1 peak [5]. Comparatively, assuming the same yield and $Q_s(2_1^+) = +0.8$ eb, we could approximately achieve 650 counts/day with a 1.5-mg/cm² ²⁰⁸Pb foil; 500 counts/day for $Q_s(2_1^+) = 0$ eb. Fifteen shifts will provide a measurement of $Q_s(2_1^+)$ with an approximately 10% uncertainty.

Figure 4: Reaction kinematics for the ${}^{70}Se$ ejectiles and ${}^{208}Pb$ recoils.

An additional fundamental question lies in understanding the excitation mechanism of higher-lying levels. With a total cross section of tens of mb, we expect to obtain information on transitional matrix elements relating the 2^+_2 , 4^+_1 , 0^+_2 , 4^+_2 and 6^+_1 states. About 200 counts for the population of the 2^+_2 state will provide information on the

sign of the $\langle 2^+_2 | \hat{E}^2 | \hat{Z}^+ \rangle$ matrix element, which might indicate the existence of a low-lying 0^+ excitation. In fact, low-lying excited 0^+ states have been observed in other neutron-deficient Se [10, 11, 12] and Kr [13] isotopes and associated with shape coexistence. Alternatively, with a $E(4_1^+)/E(2_1^+) = 2.16$ ratio as well as the typical sequence of 2^+_2 , 4^+_1 and 0^+_2 states at almost twice the 2^+_1 excitation energy, a vibrational picture might be suggested in ⁷⁰Se. The breakdown of the phonon model in the Cd isotopes [14] clearly questions Bohr and Mottelson's vibrational picture and strongly encourages the search for multi-phonon excitations in other regions of the nuclear chart. J.N.O. and D.G.J. have experience performing reorientation-effect measurements at TRIUMF and iThemba LABS and REX-ISOLDE, respectively. J.N.O. has recently published a rapid communication entitled "Reorientation-effect measurement of the $\langle 2_1^+ | \mid \hat{E}2 \mid \mid 2_1^+ \rangle$ matrix element in $^{10}Be"$ [15].

Summary of requested shifts: 15+1 shifts (5 days) for a 10% uncertainty in $Q_s(2_1^+)$ and the determination of the sign of the $\langle 2^+_2 | | \hat{E}2 | | 2^+_2 \rangle$ matrix element.

References

- [1] M. Bender *et al.*, Phys. Rev. C **73**, 034322 (2006).
- [2] K. Heyde and J.L. Wood, Rev. Mod. Phys **83**, 1467 (2011).
- [3] A. de Shalit and M. Goldhaber, Phys. Rev. **92**, 1211 (1953).
- [4] O. Häusser, in Nuclear Spectroscopy and Reactions C, edited by J. Cerny (Academic, New York, 1974).
- [5] A. M. Hurst *et al.*, Phys. Rev. Lett. **98**, 072501 (2007).
- [6] J. Ljungvall *et al.*, Phys. Rev. Lett. **100**, 102502 (2008).
- [7] http://www.nndc.bnl.gov. (*NNDC database*)
- [8] Douglas Cline, Ann. Rev. Nucl. Part. Sci. **36**, 683 (1986).
- [9] T. Czosnyka *et al.*, Bull. Am. Phys. Soc. **28**, 745 (1983).
- [10] A. Ahmed *et al.*, Phys. Rev. C **24**, 1486 (1981).
- [11] J.H. Hamilton *et al.*, Phys. Rev. Lett. **32**, 239 (1974).
- [12] T. Mylaeus *et al.*, J. Phys. G**15**, L135 (1989).
- [13] E. Clément *et al.*, Phys. Rev. C **75**, 054313 (2007).
- [14] P. E. Garrett and J. L. Wood, J. Phys. G **37**, 064028 (2010).
- [15] J. N. Orce *et al.*, Phys. Rev. C (R) (2012), in press.

Appendix

DESCRIPTION OF THE PROPOSED EXPERIMENT

We propose to use the ²⁰⁸Pb(⁷⁰Se,⁷⁰Se*[∗]*) ²⁰⁸Pb*[∗]* reaction at a bombarding energy of 5.0 MeV/u. The de-excited γ -rays will be detected with the MINIBALL array and the scattered ⁷⁰Se ions with a forward S3 double-sided CD-type silicon detector covering [57*◦ ,* 77*◦*] scattering angles in the laboratory frame. A 1.5-mg/cm^2 thick 208Pb target will be required. Pure ⁷⁰Se beams have previously been delivered at REX-ISOLDE [5] using $SeCO⁺$ molecules and breaking this molecule in the EBIS [5]. The same procedure should be available at HIE-ISOLDE.

The experimental setup comprises: (*MINIBALL + CD*)

HAZARDS GENERATED BY THE EXPERIMENT: Hazards named in the document relevant for the fixed MINIBALL $+$ CD installation.

Additional hazards: None.

Hazard identification: Hazards named in the document relevant for the fixed MINIBALL + CD installation.

Average electrical power requirements (excluding fixed ISOLDE-installation mentioned above): [make a rough estimate of the total power consumption of the additional equipment used in the experiment]: ... kW