EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH Proposal to the ISOLDE and Neutron Time-of-Flight Committee

(Following HIE-ISOLDE Letter of Intent I - 102)

Solving the shape conundrum in ⁷⁰Se

October 3, 2012

J.N. Orce¹, D.G. Jenkins², N. Erasmus¹, N.A. Khumalo¹, C. Mehl¹, S. Ngqoloda¹,
B. Singh¹, S. Triambak¹, C.J. Barton², R. Wadsworth², N. Warr³, D. Muecher³,
E. Clément⁴, M. Huyse⁵, R. Raabe⁵, P. Van Duppen⁵, A. Ekström⁶, J. Cederkäll⁶,
J. Ljungvall⁷, P. Butler⁸, L. Gaffney⁸, D. Joss⁸, G. O'Neill⁸, R. Page⁸, T. Grahn⁹, P.T.
Greenlees^{9,10}, J. Pakarinen^{9,10}, P. Rahkila^{9,10}, E. Rapisarda¹¹, F. Wenander¹¹, D Voulot¹¹

¹Department of Physics, University of the Western Cape, South Africa
²Department of Physics, University of York, York, United Kingdom
³Institut für Kernphysik, Universität zu Köln, Köln, Germany
⁴GANIL, Caen, France
⁵Instituut voor Kern- en Stralingsfysica, KU Leuven, Belgium
⁶Physics Department, University of Lund, Sweden
⁷CSNSM Orsay, France
⁸Department of Physics, University of Liverpool, United Kingdom
⁹Department of Physics, University of Jyväskylä, Finland
¹⁰Helsinki institute of Physics, Finland
¹¹Physics Department, CERN, Switzerland

Spokesperson: [Nico Orce] [jnorce@uwc.ac.za] Co-Spokeperson: [David Jenkins] [david.jenkins@york.ac.uk] Contact person: [Elisa Rapisarda] [elisa.rapisarda@cern.ch]

Abstract: We propose a multi-step Coulomb-excitation study of ⁷⁰Se at HIE-ISOLDE using the ²⁰⁸Pb(⁷⁰Se,⁷⁰Se^{*})²⁰⁸Pb^{*} reaction at a safe energy of 5.0 MeV/u. We aim at a precise measurement of the $\langle 2_1^+ || \hat{E}^2 || 2_1^+ \rangle$ diagonal matrix element as well as gaining information on additional matrix elements. Such information will shed light onto the shape conundrum of the 2_1^+ state in ⁷⁰Se as well as foreseeing the opportunity for a more detailed understanding of the shape-coexistence phenomenon in this region.

Requested shifts: 15+1 shifts (1 shift needed for setting up the experiment) **Installation:** [MINIBALL + CD at $[57^{\circ}, 77^{\circ}]$ forward angles] A remarkable feature of atomic nuclei is their ability to adopt different mean field shapes for a small cost in energy compared to their total binding energy. As shown in Fig. 1, nuclei in the $A \approx 70$ region close to the N = Zline are predicted to lie in a region of rapidly evolving nuclear shape because of the shell gaps at proton and neutron numbers 34 and 36.Macroscopic-microscopic models suggest a transition from gamma-soft shapes at ⁶⁴Ge, through oblate-prolate shape-coexistence in 68 Se and 72 Kr to some of the most prolate deformed nuclei at ⁷⁶Sr and ⁸⁰Zr. The shape coexistence in N = Z nuclei, in particular, may be enhanced by the occupation of the same orbitals for protons and neutrons and the resulting neutron-proton interaction [2, 3].

A key tool for identifying the sign of the nuclear deformation is the reorientation effect in low-energy Coulomb excitation. This effect is a second-order perturbation that generates a time-dependent hyperfine splitting of the nuclear levels and changes the population of the different magnetic substates; hence, modifying the Coulomb-excitation cross section depending on the magnitude and sign of the spectroscopic quadrupole moment, Q_s [4]. An example is the reorientation-effect measurement of 70 Se (Z = 34) at REX-ISOLDE, where the nucleus of interest was produced as an isobarically pure beam through extracting it from ISOLDE as an $SeCO^+$ molecule and breaking this molecule in the EBIS [5]. Additional accurate lifetimes measurements using the recoil-distance Doppler shift method [6], when combined with the only deter-

Figure 1: Deformed single-particle level energies for the orbits of interest. Figure taken from Ref. [1].

Figure 2: The $B(E2; 2_1^+ \to 0_1^+)$ value as a function of $Q_s(2_1^+)$ for the 2_1^+ state in ⁷⁰Se. The asterisk indicates the theoretical value. Figure taken from [6].

mination of Q_s for the 2_1^+ state [5], suggest an oblate shape for the ground state of ⁷⁰Se [5, 6]. Moreover, experimental and theoretical results in the light Se and Kr nuclei seems to suggest the emergence of oblate shapes as one approaches N = Z [6]. However, the sudden decrease of the $B(E2; 2_1^+ \to 0_1^+)$ value from the NNDC accepted value of 44(9) W.u. [7] to the recent determination of 20.0(1.2) W.u. [6] cannot be accommodated theoretically. A large uncertainty in the $Q_s(2_1^+)$ value prevents a more detailed comparison with theory. Aided by the higher beam energies available at HIE-ISOLDE, the first goal of this proposal is the accurate determination of the $\langle 2_1^+ \mid\mid \hat{E}2 \mid\mid 2_1^+ \rangle$ diagonal matrix element, which currently spans from $-0.15 \leq \langle 2_1^+ \mid\mid \hat{E}2 \mid\mid 2_1^+ \rangle \leq +1.0$ eb.

We propose to do a multi-step Coulomb excitation using the ${}^{208}Pb({}^{70}Se, {}^{70}Se^*){}^{208}Pb^*$ reaction at 5.0 MeV/u. This bombarding energy is well below the Coulomb barrier at around 427 MeV and, assuming Cline's prescribed 5.0 fm separation between nuclear surfaces for heavy-ion reactions [8], safe for laboratory scattering angles $\theta_{lab} \leq 83^{\circ}$. A large Sommerfeld parameter of $\eta = 196 \gg 1$ validates the semiclassical approximation and a small adiabaticity parameter of $\xi = 0.35$ enhances the population of the 2_1^+ state in ⁷⁰Se. Using matrix elements extracted from Refs. [6, 7], GOSIA calculations [9] are presented in Fig. 3 for the population of the 2^+_1 state in 70 Se as a function of scattering angle and at different and extremely plausible $Q_s(2_1^+)$ values. Such a population strongly depends on $Q_s(2_1^+)$, being stronger as the shape becomes more oblate, and

Figure 3: Calculated differential cross sections for the population of the 2^+_1 state in ⁷⁰Se.

peaks at $\theta_{lab} \approx 40^{\circ}$. However, the reaction-kinematics plots shown in Fig. 4 illustrate the importance of moving the CD detector closer to the target position; hence, avoiding the high-energy ²⁰⁸Pb recoils that would badly damage the detector otherwise. The scattered ⁷⁰Se ions will therefore be detected with an S3 CD-type silicon detector placed covering the [57°, 77°] angular range in the laboratory frame. The remaining angular coverage will be shielded from the ²⁰⁸Pb recoils. A yield of 10⁴ ions/s for the previous ⁷⁰Se reorientation-effect measurement at 2.94 MeV/u yielded an area of 139(13) counts for the 2^{+} peak [5]. Comparatively, assuming the same yield and $Q_s(2^{+}_1) = +0.8$ eb, we could approximately achieve 650 counts/day with a 1.5-mg/cm² ²⁰⁸Pb foil; 500 counts/day for $Q_s(2^{+}_1) = 0$ eb. Fifteen shifts will provide a measurement of $Q_s(2^{+}_1)$ with an approximately 10% uncertainty.

Figure 4: Reaction kinematics for the ⁷⁰Se ejectiles and ²⁰⁸Pb recoils.

An additional fundamental question lies in understanding the excitation mechanism of higher-lying levels. With a total cross section of tens of mb, we expect to obtain information on transitional matrix elements relating the 2^+_2 , 4^+_1 , 0^+_2 , 4^+_2 and 6^+_1 states. About 200 counts for the population of the 2^+_2 state will provide information on the

sign of the $\langle 2_2^+ \mid \mid \hat{E}^2 \mid \mid 2_2^+ \rangle$ matrix element, which might indicate the existence of a low-lying 0⁺ excitation. In fact, low-lying excited 0⁺ states have been observed in other neutron-deficient Se [10, 11, 12] and Kr [13] isotopes and associated with shape coexistence. Alternatively, with a $E(4_1^+)/E(2_1^+) = 2.16$ ratio as well as the typical sequence of 2_2^+ , 4_1^+ and 0_2^+ states at almost twice the 2_1^+ excitation energy, a vibrational picture might be suggested in ⁷⁰Se. The breakdown of the phonon model in the Cd isotopes [14] clearly questions Bohr and Mottelson's vibrational picture and strongly encourages the search for multi-phonon excitations in other regions of the nuclear chart. J.N.O. and D.G.J. have experience performing reorientation-effect measurements at TRIUMF and iThemba LABS and REX-ISOLDE, respectively. J.N.O. has recently published a rapid communication entitled "Reorientation-effect measurement of the $\langle 2_1^+ \mid \mid \hat{E}^2 \mid \mid 2_1^+ \rangle$ matrix element in ¹⁰Be" [15].

Summary of requested shifts: 15+1 shifts (5 days) for a 10% uncertainty in $Q_s(2_1^+)$ and the determination of the sign of the $\langle 2_2^+ \mid \mid \hat{E}^2 \mid \mid 2_2^+ \rangle$ matrix element.

References

- [1] M. Bender *et al.*, Phys. Rev. C **73**, 034322 (2006).
- [2] K. Heyde and J.L. Wood, Rev. Mod. Phys 83, 1467 (2011).
- [3] A. de Shalit and M. Goldhaber, Phys. Rev. **92**, 1211 (1953).
- [4] O. Häusser, in Nuclear Spectroscopy and Reactions C, edited by J. Cerny (Academic, New York, 1974).
- [5] A. M. Hurst *et al.*, Phys. Rev. Lett. **98**, 072501 (2007).
- [6] J. Ljungvall *et al.*, Phys. Rev. Lett. **100**, 102502 (2008).
- [7] http://www.nndc.bnl.gov. (NNDC database)
- [8] Douglas Cline, Ann. Rev. Nucl. Part. Sci. **36**, 683 (1986).
- [9] T. Czosnyka *et al.*, Bull. Am. Phys. Soc. **28**, 745 (1983).
- [10] A. Ahmed *et al.*, Phys. Rev. C 24, 1486 (1981).
- [11] J.H. Hamilton *et al.*, Phys. Rev. Lett. **32**, 239 (1974).
- [12] T. Mylaeus *et al.*, J. Phys. G15, L135 (1989).
- [13] E. Clément *et al.*, Phys. Rev. C **75**, 054313 (2007).
- [14] P. E. Garrett and J. L. Wood, J. Phys. G 37, 064028 (2010).
- [15] J. N. Orce *et al.*, Phys. Rev. C (R) (2012), in press.

Appendix

DESCRIPTION OF THE PROPOSED EXPERIMENT

We propose to use the ${}^{208}\text{Pb}({}^{70}\text{Se}, {}^{70}\text{Se}^*){}^{208}\text{Pb}^*$ reaction at a bombarding energy of 5.0 MeV/u. The de-excited γ -rays will be detected with the MINIBALL array and the scattered ${}^{70}\text{Se}$ ions with a forward S3 double-sided CD-type silicon detector covering [57°, 77°] scattering angles in the laboratory frame. A 1.5-mg/cm² thick ${}^{208}\text{Pb}$ target will be required. Pure ${}^{70}\text{Se}$ beams have previously been delivered at REX-ISOLDE [5] using SeCO⁺ molecules and breaking this molecule in the EBIS [5]. The same procedure should be available at HIE-ISOLDE.

The experimental setup comprises: (MINIBALL + CD)

Part of the	Availability	Design and manufacturing
(if relevant, name fixed ISOLDE	\boxtimes Existing	\boxtimes To be used without any modification
installation: MINIBALL + only		
CD)		
[Part 1 of experiment/ equipment]	\boxtimes Existing	\boxtimes To be used without any modification
		\Box To be modified
	\Box New	\Box Standard equipment supplied by a manufacturer
		\Box CERN/collaboration responsible for the design
		and/or manufacturing
[Part 2 of experiment/ equipment]	\Box Existing	\Box To be used without any modification
		\Box To be modified
	\Box New	\Box Standard equipment supplied by a manufacturer
		\Box CERN/collaboration responsible for the design
		and/or manufacturing
[insert lines if needed]		

HAZARDS GENERATED BY THE EXPERIMENT: Hazards named in the document relevant for the fixed MINIBALL + CD installation.

Additional hazards: None.

Hazards	[Part 1 of experiment/	[Part 2 of experiment/	[Part 3 of experiment/	
	equipment]	equipment]	equipment]	
Thermodynamic and fluidic				
Pressure	[pressure][Bar], [vol- ume][l]			
Vacuum				
Temperature	[temperature] [K]			
Heat transfer				
Thermal properties of				
materials				

Cryogenic fluid	[fluid], [pressure][Bar],					
	[volume][l]					
Electrical and electromagnetic						
Electricity	[voltage] [V], [cur-					
	rent][A]					
Static electricity						
Magnetic field	[magnetic field] [T]					
Batteries						
Capacitors						
Ionizing radiation						
Target material	1 mg/cm^2 ²⁰⁸ Pb					
Beam particle type (e,	$^{70}\mathrm{Se}$					
p, ions, etc)						
Beam intensity	10^4 ions/s					
Beam energy	$5.0 \ {\rm MeV/u}$					
Cooling liquids	[liquid]					
Gases	[gas]					
Calibration sources:	\boxtimes					
• Open source						
• Sealed source	\boxtimes [ISO standard]					
• Isotope	¹⁵² Eu	⁶⁰ Co	²³⁹ Pu, ²⁴¹ Am, ²⁴⁴ Cm			
• Activity						
Use of activated mate-						
rial:						
• Description						
• Dose rate on contact	[dose][mSV]					
and in 10 cm distance						
• Isotope						
• Activity						
Non-ionizing radiatio	n		1			
Laser						
UV light						
Microwaves (300MHz-						
30 GHz)						
Radiofrequency (1-300						
MHz)						
Chemical	· · · · · · · ·	1	1			
Toxic	[chemical agent], [quan- tity]					
Harmful	[chem. agent], [quant.]					
CMR (carcinogens,	[chem. agent], [quant.]					
mutagens and sub-						
stances toxic to repro-						
duction)						
Corrosive	[chem. agent], [quant.]					
Irritant	[chem. agent], [quant.]					

Flammable	[chem. agent], [quant.]		
Oxidizing	[chem. agent], [quant.]		
Explosiveness	[chem. agent], [quant.]		
Asphyxiant	[chem. agent], [quant.]		
Dangerous for the envi-	[chem. agent], [quant.]		
ronment			
Mechanical			
Physical impact or me-	[location]		
chanical energy (mov-			
ing parts)			
Mechanical properties	[location]		
(Sharp, rough, slip-			
pery)			
Vibration	[location]		
Vehicles and Means of	[location]		
Transport			
Noise			
Frequency	[frequency],[Hz]		
Intensity			
Physical	· · · ·	ł	
Confined spaces	[location]		
High workplaces	[location]		
Access to high work-	[location]		
places			
Obstructions in pas-	[location]		
sageways			
Manual handling	[location]		
Poor ergonomics	[location]		

Hazard identification: Hazards named in the document relevant for the fixed MINIBALL + CD installation.

Average electrical power requirements (excluding fixed ISOLDE-installation mentioned above): [make a rough estimate of the total power consumption of the additional equipment used in the experiment]: ... kW