THE ATLAS TRANSITION RADIATION TRACKER

TWEPP 2012

James Degenhardt

University of Pennsylvania
On behalf of the ATLAS Collaboration

OUTLINE

- I. The ATLAS Detector and the LHC Status
- 2. The Transition Radiation Tracker (TRT)
- 3. TRT Operation and Performance
- 4. Summary

THE LHC STATUS

- The LHC is a hadron collider (pp, PbPb, pPb*)
- Synchronous collider operating at **40MHz** (25 ns bunch spacing, a.k.a. bunch crossing, design, <u>50 ns in practice</u>)
- Design instantaneous luminosity of I 0³⁴ cm⁻²s⁻¹
 and 7 x 7 TeV
- The LHC has been operating well since November 2009
- First collisions at 3.5 x 3.5 TeV, March 30th 2010, currently operating with 4 x 4 TeV
- Instantaneous Luminosity of 10³³ cm⁻²s⁻¹ and approaching 10³⁴ cm⁻²s⁻¹
- Delivered 6 fb⁻¹ of 7 TeV data in 2011 and already has more than 14 fb⁻¹ of 8 TeV data for 2012 run
- Heavy Ion (HI) Collisions collected more than I50 ub⁻¹ of pb-pb data in 2011 with the TRT demonstrating that it can run in highly occupied events
- More HI data expected in 2013 p-HI Run

Peak Instantaneous Luminosity

Luminosities achieved with 50 ns bunch spacing

INNER DETECTOR

- Provides charged particle tracking above 0.1 GeV and $|\eta| <$ 2.5, $\eta = -\ln \tan(\theta/2)$
- Electron identification for particles with $|\eta| < 2.0$ and $0.5 < p_T < 150$ GeV
- · Immersed in 2T solenoidal field
- Consists of Pixel detectors, Semiconductor Tracker (SCT) and Transition Radiation Detector (TRT)

ATLAS DETECTOR

- The ATLAS Detector is a multipurpose collider detector
- Multi system muon detection
- 8 fold air core ~ I.4T muon toroid
- Liquid Argon and Scintillator Tile
 Calorimetry
- Silicon inner tracker, straw outer tracker

TRT Barrel

- 3x32 modules
- 1.44 m* straws parallel to the beam axis
- wires electrically split in the middle to reduce occupancy (~1.5cm dead region)
- each end read out separately
- 105,088 readout channels total
- 2 triangular front end electronics boards per module (4 boards for the outer modules)

TRT End-cap

- 12 A type wheels with 8 layers of straws each
- 8 B type wheels with 8 layers of straws where the layers are spaced further apart
- 39 cm long radial straws
- 122,880 readout channels per end-cap

^{*} first 8 layers of straws in barrel are only active for 312 mm from electronics.

CONDITIONS FOR TRT OPERATION AT 10³⁴ cm⁻²s⁻¹

Counting Rate per wire	20 MHz				
Ionization Current Density	0.15 μA/cm				
Ionization Current per wire	Ι0 μΑ				
Power dissipated by ionization current per straw	I5 mW				
Total ionization current in detector volume	3 A				
Total dissipated energy in the detector volume from ionizing particles	5 kW				
Charge collected over 10 years of LHC operation	10 C/cm				

Total Radiation Dose after 10 years

Neutrons	10 ¹⁴ n/cm ²			
Charged Particles	10 MRad			

Particle Flux at Im from IP

Charged	10 ⁵ hadrons/cm ² sec
Photons	10 ⁶ photons/cm ² sec
Neutrons	10 ⁶ n/cm ² sec

- Occupancy up to 30%*
- Short bunch crossing interval: 25 ns
- High spatial resolution, good pattern recognition: many space points
- · Fast and chemically passive active gas: aging
- Chemically resistant straw materials: straw is basically an electrochemical reactor
- minimal amount of material in front of calorimeter
- Precise and robust mechanical structure: $\sim 100 \mu m/m \sim 10^{-5}$
- Stable temperature: active cooling

^{*} possibly higher occupancy with Heavy Ion physics

THE DIGITIZED TRT SIGNAL

- Each straw signal is readout over 75 ns (3 bunch crossings)
- The discriminated signal is digitized into 24 bits (~ 3.12 ns)
- The 24 bits can also be thought of as time bins
- There is one High Threshold bit for every 25 ns
- **Trailing Edge (TE):** Independent of the particle position as it transits the straw: electrons furthest from the wire, nearest the straw wall
- **Leading Edge (LE):** Dependent on where the particle transits the straw. Indicates minimum distance of approach
- **Time Over Threshold (ToT)**: Dependent on the particles path length and accumulated ionization or dE/dx

THE TRT READOUT CHAIN

Readout Chain Schematic

- The TRT Readout starts at the straw anode where the signal is shaped in the ASDBLR (50 ns signal plus large ion tail to 15 ns pulse)
- The analog signal is then digitized in time in the DTMROC
- The digitized signal is then sent to the backend via the Patch Panels (PPs) to the Read Out Drivers (RODs)

- Event fragments are buffered on DTMROCs until Level I accept
- From the RODs the events are sent to the ATLAS Level 2 trigger
- Level 2 readout is base on Regions of Interest (ROI)
- Full events are passed to the Event Filter and permanent storage after a High Level Trigger accept

TRT FRONT END READOUT

LVDS (like) Low Level (30mVStep) Ternary Clock/Control inputs Chip to Back End Chip to Chip DTMROC-S x 16 Channels 2 x ASDBLR x 8 Shaping Control Control Test Pulses Backbone BX, CMD IN Hard Reset Fast Out "OR" Derandomizer 40 MHz Link Pipeline 104 Inputs Back-End Electronics Front-End Electronics

- Rate/straw up to 20MHz (50ns),
 48ns maximum drift time
- ASDBLR: Amplifier/shaper with ion tail cancellation and baseline restoration
- Two discriminators for each channel
 - 200 300 eV (15% MIP) tracking threshold ~2fC (LT)
 - ~6 keVTR threshold ~ I 20fC
 (HT)
- Digital pipeline, 6 µs deep
 - Tracking bit stored every 3.12 ns
 - TR bit stored every 25 ns

SOME READOUT FEATURES OF DTMROC

- The Fast-Out allows quick sampling of data outside of ATLAS readout chain
 - Can use fast-out signal to **trigger** events for simple debugging
- Fast-Out feature also allows for the option of providing a Level
 One Trigger to the ATLAS Trigger system
- Fast-Out and FE Polling (for SEU detection and correction)
 share the same TTC line (CMD OUT)
- SEUs can disrupt DTMROC configuration
 - Monitor registers at ~65Hz and rewrite any changed values
 - Expect SEU rate <O(Hz) for full system at nominal LHC conditions (estimated with test beams before installation)
 - Triplicate DTMROC registers make most SEUs harmless
 - Measured rate of SEU at le33cm⁻²s⁻¹ is 2e-4 Hz
 - Extrapolated rate (from measured rate) at 1e34 cm⁻²s⁻¹ is 2e-3 Hz

FAST-OR COSMICS TRIGGER

- Early detector commissioning relied heavily on cosmics for timing, alignment and calibration.
- TRT Fast-OR was the **primary cosmic trigger** for ATLAS timing and alignment.
- Use Fast-OR output of DTMROC chips
- Single FE DTMROC signals are then OR-ed, resulting in a FE board trigger granularity
- In practice: set HT to ~MIP levels
- Pure, high rate, and low jitter:
 - 98% of events triggered in barrel had tracks
 - Total rate for barrel + endcaps: ~20Hz
 - >90% of triggers fall in 25ns time window
- FAST-OR used in dedicated cosmic runs only
- Investigations are ongoing for using the trigger in collision running for dedicated highly ionizing particle searches.

SETTINGS AND CALIBRATION

Hardware Settings:

Timing Delays

 Delay tuning as fine as 0.5ns used to align all readout channels in time with LHC collisions

Thresholds

- Low threshold, calibrated to produce uniform 2% noise occupancy across detector
- High threshold, set to produce uniform response to pions across the detector

Offline Calibrations (every 24hrs):

R-T Relation

 Parameterization that relates measured drift time to track-to-wire distance

T₀ Constants

- Further align readout channels in time (within +/- 0.5ns)
- Plus overall constant for full detector
 - Sensitive to global changes ~ I 00ps after applying
 T₀ corrections and comparing runs

TRT Barrel R-T Relation

TRT End-cap R-T Relation

TRT IS NOT WITHOUT CHALLENGES

- The TRT readout chain has a **long chain** (~6) of **QPLL** (Quartz Phase Lock Loop) chips to keep the system synchronized
 - The chain of QPLLs is very sensitive to abrupt clock changes and drift
 - Automatized resynchronization procedures have been developed to minimize impact of QPLLs loosing lock
 - Rarely occurs during data taking, and mostly occurs during clock changes (which take place outside of collisions)
- The TRT is experiencing unprecedented gas leaks though leak rate (and Xe loss) is still at the level of TDR design tolerances
 - The detector is taking action to minimize the impact of the leaks
 - In the extreme case the gas mixture will need to be changed, and the TRT is prepared for this contingency
 - TRT electronics are explicitly designed to handle either Xe
 or Ar as the active gas. (with Ar the TR functionality is lost, but pulse
 separation is improved at high rates)
 - Data Quality is not compromised

- Collision Pileup is a real challenge that all LHC detectors must confront
 - Performance degradation at highest luminosities is small and matches predictions from simulation
- Data compression demonstrated some problems in 2011 HI Run
 - When using Houghman compression, bit flips observed in specific RODs and large event fragment sizes seen.
 - Compression escapes and ROD firmware suspected to be part of problems
 - Using zero suppression scheme, behavior was no longer observed
 - Compression studies demonstrated that escapes are sensitive to pileup conditions
 - Multiple tables now available to handle different conditions

TRT Occupancy vs. Pileup

Z→µµ with 25 vertices

STRAW HIT EFFICIENCY

- Hit Efficiency ~94% in plateau
 - drop outside plateau is due to geometry and reconstruction effects
 - Dead channels excluded (~2.5%)
- Monte Carlo was tuned to 900 GeV data
- Plot requirements on tracks for hit efficiency study
 - ≥ I pixel hits, ≥ 6 SCT hits, ≥ 15 TRT hits
 - $p_T > 1 \text{ GeV}$, $|d_0| < 10 \text{mm}$, $|z_0| < 300 \text{mm}$
 - do is the transverse impact parameter
 - z₀ is the longitudinal impact parameter
- More stringent cuts are added to tracks requirements in the presence of pile-up
- Effect of low efficiency near the straw edges is minimized from continuous tracking hits
- In the presence of large pileup, the straw hit efficiency is close to constant

Hit Efficiency vs. Hit Position in Straw

TRT Hits on Track vs. pileup

TIMING

- Readout window is **75ns**, while maximum drift time is ~50ns
 - Requires timing precision ~ns
 to see leading and trailing edges
- Hardware delays adjusted at level of FE boards

Barrel

Time residual spread ~3ns

Endcaps

- Time residual Spread ~3ns
- TRTTime residual is at the level of simulation

POSITION RESOLUTION

- Barrel performance exceeding simulation performance 120μm (data) vs.132μm (simulation)!
 - Short straws demonstrate position resolution smaller than 100 µm
- · Lots of work done to get this far, including: alignment, calibration, tracking software
- Position resolution of the TRT is at expected level or better

TRT Position Resolution vs Pileup

ELECTRON IDENTIFICATION

HT Probability vs. y Factor

- Electrons are Identified by the presence of High Threshold hits (from the presence of Transition Radiation) along the track
- By selecting tracks with a relatively large number of HT hit fraction on the track, the TRT is able to discriminate electrons from charge pions
- HT fraction is a key input to ATLAS electron Identification

Pion mis-ID Probability vs. | n |

SUMMARY

- TRT is operating smoothly: >99% uptime in physics runs
- Excellent TRT performance with further optimization still possible
- TRT is in great shape to provide high quality data for its expected lifetime (and probably beyond!)

RELATED TALKS AND PAPERS

- TRT Presentations
 - CERN Detector Seminar on TRT by Christoph Rembser
 - http://indico.cern.ch/conferenceDisplay.py?confld=91040
 - TWEPP 2010: <u>Performance of the ATLAS Transition Radiation Tracker read-out with cosmic rays and first high energy</u> collisions at the LHC
 - http://indico.cern.ch/materialDisplay.py?contribId=110&sessionId=35&materialId=slides&confld=83060
- ATLAS Inner Detector and TRT Papers
 - Performance of the ATLAS Inner Detector Track and Vertex Reconstruction in the High Pile-Up LHC Environment
 - https://cdsweb.cern.ch/record/1435196/files/ATLAS-CONF-2012-042.pdf
 - The ATLAS Inner Detector commissioning and calibration (EPJC 70:787-821, 2010)
 - http://arxiv.org/abs/1004.5293
 - The ATLAS Transition Radiation Detector (TRT) Fast-OR Trigger
 - http://cdsweb.cern.ch/record/1229213/files/ATL-INDET-PUB-2009-002.pdf
 - The ATLASTRT electronics (JINST 3:P06007, 2008)
 - http://www-library.desy.de/cgi-bin/spiface/find/hep/www?irn=7829213
 - The ATLASTRT barrel detector (JINST 3:P02014,2008)
 - http://iopscience.iop.org/1748-0221/3/02/P02014/
 - The ATLASTRT end-cap detector (JINST 3:P10003,2008)
 - http://iopscience.iop.org/1748-0221/3/10/P10003/
 - The ATLAS Transition Radiation Tracker (TRT) proportional drift-tube: Design and Performance (JINST 3:P02013,2008)
 - http://iopscience.iop.org/1748-0221/3/02/P02013/
- The ATLAS Technical Design Report
 - http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/TDR/access.html

BACKUPS

OPERATIONS AND DATA QUALITY

- Active and providing good quality data for 100% of LHC stable beam periods during 2009 and 2010
 - Highest among ATLAS sub-detectors!
 - Thanks to:
 - Lots of hard work over the years by many people (the hard work is still continuing!)
 - Automated and streamlined procedures for DAQ, Detector Control Systems
 - including automatic recovery from common readout problems
 - Continual improvements in data quality monitoring
 - Can run with nominal HV regardless of beam conditions

ATLAS p-p run: April-June 2012										
Inner Tracker		Calorimeters		Mu	Muon Spectrometer			Magnets		
Pixel	SCT	TRT	LAr	Tile	MDT	RPC	CSC	TGC	Solenoid	Toroid
100	99.6	100	96.2	99.1	100	99.6	100	100	99.4	100
All good for physics: 93.6%										

Luminosity weighted relative detector uptime and good quality data delivery during 2012 stable beams in pp collisions at Vs=8 TeV between April 4th and June 18th (in %) – corresponding to 6.3 fb⁻¹ of recorded data. The inefficiencies in the LAr calorimeter will partially be recovered in the future.

MOMENTUM RESOLUTION

- With its long lever arm, TRT contributes significantly
 - Radius of last barrel SCT layer: 514mm
 - End of TRT Barrel: 1068mm
- TRT greatly improves the momentum resolution at higher p_T

PARTICLE IDENTIFICATION

UPDATE

- Transition Radiation probability depends on gamma factor of a particle
 - Turn on curve also depends on geometry, properties of the radiator
 - Different radiators in barrel and end-caps
- Select electrons, pions, in data to tune and validate:
 - Pions: hadron enriched sample from all tracks
 - Electrons: tag and probe using photon conversions
- ToT tuned using path length corrections
 - · Can discriminate Kaons, protons

FAST-ORTRIGGER COSMICS TRIGGER

- Implemented quickly after LHC incident in Fall 2008:
 - First tracks in October 2008
 - Fully timed in May 2009
- Major Contributor to ATLAS commissioning:
 - High rate of tracks for Inner Detector
 - Alignment, timing
 - Timing reference for other triggers
 - Especially barrel muon trigger

COVERAGE & OCCUPANCY

- 2.5% of channels **dead** (I% mechanical and I.5% electronics)
 - Additional ~ I % of channels with reduced efficiency
- Tune LT settings to achieve uniform noise occupancy of 2%
 - May eventually tune for uniform efficiency, but good first pass
- See drift time occupancy ~3% at luminosity of 10³¹ cm⁻²s⁻¹
 - Expect occupancy ~30-40% at 10³⁴ cm⁻²s⁻¹
 - Also expect average occupancy ~30-40% in upcoming LHC heavy ion run
 - Occupancies >80% for central collisions

FRONT END ELECTRONICS

- Barrel: analog and digital chips are mounted on opposite sides of the same PCB
 - Analog and digital grounds coupled by distributed low value resistors
- Endcaps: analog and digital chips mounted on separate PCBs
- Analog (+/- 3V) and digital (2.4V) powered separately

TIME OVERTHRESHOLD AS A DISCRIMINATOR

- ToT distributions for pion and electron candidates
- Clearly demonstrates discrimination power
- ToT is corrected for distance from wire and global z coordinate

TRT ALIGNMENT MAPS

UPDATE

May Alignment

Barrel

Oct. Alignment

PARTICLE IDENTIFICATION

- **Transition Radiation**: photon emitted by a charged particle when traversing the boundary between materials with different dielectric constants(ε₁,ε₂).
 - Intensity: $| \propto \gamma = E/m$, $9 \propto 1/\gamma$
- Low photon emission probability per transition
 - Many transitions needed
 - Intensity eventually limited by saturation effects
- Emitted **energy** \propto (ϵ_1 - ϵ_2)
 - Gas and plastic give photon energies 5 30 keV
- Gas with high photon absorption (high Z) required
 - Xenon-based mixture
- Discriminate electrons from hadrons based on number of HT hits on a track
 - Use statistical power of many transitions, many straws crossed

- Time Over Threshold (ToT) is used as a measure of a particle's dE/dx through the straw.
- Corrections to ToT for path length are performed for proper dE/dx measurement.
- Measuring the corrected ToT then provides an additional discriminator for particle ID in the TRT.

TR PHYSICS

Saturation

The formation zone effect limits the increase of the TR yield with particle energy at

$$\gamma_{sat} \approx 0.6 (l_1 l_2)^{1/2} \omega_{p1}/c$$

To identify electrons with momenta

$$p_T > 1 \text{ GeV/c}$$
:

choose $l_1 l_2$ to get sat $\approx 2 \cdot 10^3$

good e/pion separation in momentum range

1 GeV/c

(illustration on the left is for higher momenta $\rightarrow \gamma > 1000$)

Detectable photon yield

In practice, the useful radiator length is limited – to a few cm at $\gamma_{sat} = 2.10^3$ – as a balance is reached between TR generation and absorption

The number of TR X-rays detected per electron by typical TRD modules is $N_X < 10$

Typical detectors usually consist of several TRD modules behind one another

TR PHYSICS

Single interface

- total rad. Energy (W ∝ γ)
- $dW/d\omega = const. O(a) for \omega < \gamma \omega_{p2}$
 - ω_{p2} = plasma frequency (ω_{air} ~ 0.7 eV)
- frequency cut-off $\omega < \gamma \omega_{p1}$
 - $\omega_{p1} \sim 20 30 \text{ eV}$

Periodic radiator

- interference pattern in d²W/d(Ω)dω
- Formation zone effect limits energy spectrum to $\omega < \gamma \omega_{p1} l_1/z_1$ if $l_1 < z_1$
 - formation length $z_1 = 2\gamma c/\omega_{p1} > 10 \mu m \cdot \gamma/10^3$ $\omega_{max} \approx \iota_1 \omega_{p1}^2/(2 \pi c)$ independent of particle energy!
- TR X-rays below a few keV are absorbed in the radiator
- Thin, Xe-based X-ray detectors rapidly become inefficient (transparent) above ω ~ 15 keV

CHARACTERISTIC DESIGN OF A TRANSITION RADIATION DETECTOR

- A Typical TRD consists of:
 - Radiator: production of TR photons
 - Regular radiators (foils), e.g. Li,
 Polyethylene, Mylar, ect.
 - Irregular radiators (foam, fibers), e.g. carbon fibers, carbon foam, Polystyrene, Poly...
 - Embedded in a gas volume: CO₂
 - Detector: to track charged particle, to observe TR photon
 - Gas chambers using high Z gas with efficient absorption of photons
 - Example: ZEUSTRD

EXAMPLES OF RADIATORS

