CERN Accelerating science

Article
Report number arXiv:1209.1347 ; KCL-PH-TH-2012-36 ; LCTS-2012-18 ; CERN-PH-TH-2012-223 ; FTPI-MINN-12-29 ; UMN-TH-3117-12 ; KCL-PH-TH-2012-36 ; LCTS-2012-18 ; CERN-PH-TH-2012-223 ; UMN-TH-3117-12 ; FTPI-MINN-12-29
Title Metastable Charged Sparticles and the Cosmological Li7 Problem
Author(s) Cyburt, Richard H. (Michigan State U. ; Michigan State U., NSCL ; Michigan State U., JINA) ; Ellis, John (CERN ; King's Coll. London) ; Fields, Brian D. (Illinois U., Urbana, Astron. Dept.) ; Luo, Feng (Minnesota U. ; King's Coll. London) ; Olive, Keith A. (Minnesota U., Theor. Phys. Inst. ; Minnesota U.) ; Spanos, Vassilis C. (Democritos Nucl. Res. Ctr.)
Publication 2012
Imprint 07 Sep 2012
Number of pages 49
Note Comments: 49 pages, 29 eps figures
49 pages, 29 eps figures
In: JCAP 12 (2012) 037
DOI 10.1088/1475-7516/2012/12/037
Subject category Astrophysics and Astronomy
Abstract We consider the effects of metastable charged sparticles on Big-Bang Nucleosynthesis (BBN), including bound-state reaction rates and chemical effects. We make a new analysis of the bound states of negatively-charged massive particles with the light nuclei most prominent in BBN, and present a new code to track their abundances, paying particular attention to that of Li7. Assuming, as an example, that the gravitino is the lightest supersymmetric particle (LSP), and that the lighter stau slepton, stau_1, is the metastable next-to-lightest sparticle within the constrained minimal supersymmetric extension of the Standard Model (CMSSM), we analyze the possible effects on the standard BBN abundances of stau_1 bound states and decays for representative values of the gravitino mass. Taking into account the constraint on the CMSSM parameter space imposed by the discovery of the Higgs boson at the LHC, we delineate regions in which the fit to the measured light-element abundances is as good as in standard BBN. We also identify regions of the CMSSM parameter space in which the bound state properties, chemistry and decays of metastable charged sparticles can solve the cosmological Li7 problem.
Copyright/License Preprint: © 2012-2025 CERN (License: CC-BY-3.0)



Corresponding record in: Inspire


 Record created 2012-09-07, last modified 2023-11-03


Fulltext:
Download fulltextPDF
IOP Open Access article:
Download fulltextPDF
External link:
Download fulltextPreprint