A gLite FTS based solution for managing user
output in CMS

Mattia Cinquilli
CERN, IT Department, CH-1211 Geneva 23, Switzerland

E-mail: mcinquil@cern.ch

Hassen Riahi
INFN Perugia, Via Alessandro Pascoli, 06123 Perugia, Italy

E-mail: hassen.riahi@pg.infn.it

Daniele Spiga
CERN, IT Department, CH-1211 Geneva 23, Switzerland

E-mail: spiga@cern.ch

Claudio Grandi
INFN Bologna, Viale B. Pichat, 40127 Bologna, Italy

E-mail: claudio.grandi@bo.infn.it

Marco Mascheroni
CERN, Route de Meyrin, 1211 Geneva 23, Switzerland

E-mail: mmascher@cern.ch

Francesco Pepe
INFN Bologna (now at CAEN), Viale B. Pichat, 40127 Bologna, Italy

E-mail: francesco.pepe@bo.infn.it

Eric Vaandering
Fermi National Laboratory, Batavia, Illinois, USA

E-mail: ewv@fnal.gov

Abstract. The CMS distributed data analysis workflow assumes that jobs run in a different
location from where their results are finally stored. Typically the user output must be transferred
across the network from one site to another, possibly on a different continent or over links not
necessarily validated for high bandwidth/high reliability transfer. This step is named stage-out
and in CMS was originally implemented as a synchronous step of the analysis job execution.
However, our experience showed the weakness of this approach both in terms of low total job
execution efficiency and failure rates, wasting precious CPU resources. The nature of analysis

data makes it inappropriate to use PhEDEx, the core data placement system for CMS. As
part of the new generation of CMS Workload Management tools, the Asynchronous Stage-Out
system (AsyncStageOut) has been developed to enable third party copy of the user output.
The AsyncStageOut component manages glite FTS transfers of data from the temporary store
at the site where the job ran to the final location of the data on behalf of that data owner.
The tool uses python daemons, built using the WMCore framework, and CouchDB, to manage
the queue of work and FTS transfers. CouchDB also provides the platform for a dedicated
operations monitoring system. In this paper, we present the motivations of the asynchronous
stage-out system. We give an insight into the design and the implementation of key features,
describing how it is coupled with the CMS workload management system. Finally, we show the
results and the commissioning experience.

1. Introduction

CMS, the Compact Muon Solenoid experiment located at CERN (Geneva, Switzerland), has
defined a model where end-user analysis jobs running on a worker node store their outputs in
a storage element for later access. Often resulting files have a significant size (about 1GB per
each output file) and the user does not always have his/her own local space resources to store
such data. So the outputs are accessed remotely by users for re-analysis. CMS has explored the
direct remote stage-out approach: jobs running on the worker node and copying each output file
to a user pre-defined location at the end of the job execution. This is also called the synchronous
approach. Recently, a more evolved approach to the stage-out step has been implemented: once
jobs have produced their output files, these are copied to the local site storage element, close to
where the jobs have run. A central service is then able to schedule the transfers to the required
remote storage elements. With reference to the strategy of the stage-out step execution, this
approach is called asynchronous stage-out. This paper describes the asynchronous stage-out
solution presenting the motivations and the details of the AsyncStageOut service, the test and
results performed with this tool, and gains compared to the synchronous solution.

2. Experience with current synchronous stage-out.

The direct remote stage-out has been used in CMS since the first versions of the CMS Remote
Analysis Builder (CRAB). This strategy has been demonstrated to work but to have several
limitations in the distributed analysis environment. Figure 1 illustrates the combination of the
jobs and input/output data workflows. The success of output files transfer from a local disk to a
remote storage element relies on the fact that network, storage resources and all infrastructure
elements in the middle behave without any problem. Within this approach, the job wrapper
will retry the operation again a short time after failure. Obviously this is not efficient to occupy
the CPU if copying the output takes a large fraction of time compared to the data processing.
In general, in case of an infrastructure problem, it is unlikely that it can be resolved in a short
interval of time. If each attempt fails, the job wrapper continues its execution and clears the
output of that job, effectively losing it. The job must then be resubmitted and the resources
used by the last job are wasted.

The failure of the stage-out may be due to network problems, the data storage system, or
authentication problems on the sites involved in the transfer of the output. The failure of the
stage-out is the cause of inefficiencies since it not only occurs after the use of computing resources
required to execute the job, including the queues of Grid and local schedulers, but also because
the resubmission of the job is responsible for a delay in the completion of the task, forcing users
to wait a longer time before being able to analyze their outputs.

For the CMS Tier-2s, this strategy can often result in a Distributed Deny of Service attack
(DDoS) to the Grid sites’ storage systems where a huge number of worker nodes dispersed widely

Job flow >

i ul Data flow — =

ol -G -0

Figure 1. Jobs and data workflows. The jobs are submitted to the WMS which redirects them
to the matching sites. Jobs run in the site’s worker nodes reading the input data to analyze
from the storage element. Once the job has succeeded and produced output files, these are then
copied by the job itself to the pre-defined remote storage element.

are trying to stage-out there.

During July 2011, a crucial month for physics conferences, 4 766 902 analysis jobs have been
submitted, where 4 067 588 has finished successfully and 14 391 have failed in the remote stage-
out (numbers taken from Experiment Dashboard [2]). Such a defect in the design of the analysis
workflow often causes the failure of the users’ analysis jobs after reaching the timeout of the Grid
copy command. Figure 2 shows in (a) the fraction of the jobs failed in 2010 and, among the jobs
failed for application error, (b) shows the percentage of failure caused by the remote stage-out
approach. The distribution of the number of successful jobs vs. CPU wall-clock time spent for
the remote stage-out is shown in Figure 3. The 95% of successful jobs spent an average of 500
seconds while performing the remote stage-out which means that they consumed about 22 000
days of CPU wall-clock time. This represents the latency introduced by the remote stage-out
step in the physics analysis activity. The total amount of CPU wall-clock time consumed doing
the remote stage-out from the worker node corresponds to about 24500 days (Figure 2 (b)).

Regarding failed jobs, Figure 4 shows the distribution of the number of jobs that failed in
the remote stage-out vs. the average CPU wall-clock time spent and the distribution of the
same number of failed jobs vs. the average CPU wall-clock time spent for the remote stage-out
step. The manual or automatic resubmission of a failed job can happen only after the end of
the execution of the current job. Figures 4 (a) and (b) also shows that about 4600 days of CPU
wall-clock time were effectively wasted by 14391 jobs. In addition, the collaboration had to wait
at least that time before the resubmission of their jobs. Figure 4 shows in (b) that the remote
stage-out has consumed about 330 days of CPU wall-clock time, which also correspond to the
delay in case of resubmissions.

3. Asynchronous stage-out strategy and workflow

To address the synchronous stage-out issues it was decided to adopt an asynchronous strategy
for the remote stage-out. This has required the design and development of a machinery able to
stage-out the outputs locally, in the storage of the site where the code is executing, followed by

[Terminated jobs status | | Stage Out application failure fraction |

l:l Done [stage Out Problem
Other Reason
Grid Failure -
- ‘:’ Event Processor Failure]
Application Fail
65.9 %) [Aepiication Failure L [cMssw exception
- Unknown % °) - File Open Error

(UiElie) (15.8 %)

(1.5 %)

(11.2 %) (11.1%) (12.3 %)

(21.5 %)

(a) (b)
Figure 2. Fractions of CMS analysis jobs grouped by terminated status in (a) and Application

Failure error types in (b), highlighting the percentage of failures caused by the synchronous
remote stage-out; statistics from 2010.

Average time in seconds

® 500 750 @ 2000
4% 1%

95%

Figure 3. The distribution of the number of jobs done during July 2011 over average CPU
wall-clock time spent for the remote stage-out.

a subsequent outputs harvesting step where the users outputs are copied to a remote storage
using gLite FTS [3].

The asynchronous stage-out workflow is shown schematically in Figure 6. The use of glite
FTS helps balancing site resource usage, prevent network and storage overload, and manage
transfer resubmission. The latter will avoid wasting resources by resubmitting the whole analysis
workflow as it is the case for the synchronous remote stage-out approach and reduces also the
delay in the execution of the analysis workflows since only the transfer of the output will be
resubmitted. To reduce the delays in accessing the outputs, the initial copy of the output, in the
local SE of the site where the job run, is provided to the user. The analysis workflow including
the asynchronous stage-out steps can be summarized as follows:

Average time in seconds

@ 20.000 @ 500 ® 1.000
@® 40.000 3.500 ® 4500
70.000 @® 10500
4% gx 2%

3%

6%

(@) (b)

Figure 4. (a) The distribution of the number of jobs failed for the remote stage-out during
July 2011 over CPU wall-clock time spent. (b) The distribution of the number of jobs failed for
the remote stage-out during July 2011 over CPU wall-clock time spent by the remote stage-out
step.

e user submits its analysis workflow from its working station (User Interface),

e based on the configuration and the location of the data that he needs, the jobs are scheduled
to run in matched Grid sites,

e once the execution of the analysis code in the worker node (WN) is done, the output is
copied in the local SE of the site (local stage-out) in a /store/temp/user logical area; if the
local copy of the output succeeds, a request is automatically submitted to FTS to copy the
output to the remote SE (remote stage-out) in /store/user area,

e the transfer request is then tracked and resubmitted if the submission fails.

The NoSQL database, CouchDB [4], is extensively used in Data Management / Workload
Management (DMWM) [5]. This technology is used to persist the details of user outputs to
transfer using the AsyncStageOut tool[7].

3.1. AsyncStageOut design

The asynchronous stage-out tool is implemented as a standalone tool with a modular
architecture, based on the common DMWM library, WMCore [6]. Figure 5 shows the sequence
of the interactions of AsyncStageOut in CRAB3 architecture. To be as flexible as possible,
the AsyncStageOut tool provides a set of configurable parameters such as expiration days, max
transfers retries, max files per transfer and database source. Its core machinery is described in
the following items.

(i) AsyncStageOut interacts with the database source in CRABServer’s CouchDB instance to
get the details of the output to transfer; each document in this database represents a job
FrameWorkJobReport (FWJR) and should be organized in steps describing the status of
the analysis job execution in the WN, namely logArchive, cmsRun and stageOut. The
analysis job output is copied locally in the storage of the site where the code is executing.

3\ Job flow ——»
ul

Data flow >

\\

Thin CRAB @ | crABServer| @ b g :
in AsyncStageOut

Client @ WMCore/
ore N

WMCore WMAgent @ WMCore | counos

y (

=)

g

Figure 6. Asynchronous stage-out
workflow schema.

Figure 5. CRAB3 architecture overview
including AsyncStageOut service.

Once this step is finished, the analysis job is considered as done and its information, such
as status, output location and output path are updated in its FWJR.

(ii) The LFNDuplicator module regularly polls the database source to get the output details
of finished jobs and stores them as transfer documents in a CouchDB database, named
files_database. Once added, the transfer document is in a new state.

(iii) The TransferDaemon module regularly polls the files database to get the details of files to
transfer. At each polling cycle it instantiates, for each user, a TransferWorker object which
marks the transfer documents as acquired, and then submits FTS jobs for transferring the
user outputs to the final destination site and:

e if a transfer fails, the transfer document is marked as failed in the files database;
the TransferWorker marks the transfer as expired if the transfer still fails after
max_transfers retries times;

e it marks the transfer as done if it succeeds.

(iv) Updates the database source by adding an AsyncStageOut step to the FWJR document.

The main interactions of the asynchronous stage-out components are shown in Figure 7. To allow

CouchDB

CouchpB C\L«FN DUPI icator S files_database

—_—
database_source \ :
a==_ L &

TransferDaemon |—— Y| +ransterworker

AsyncStageOut

Figure 7. Asynchronous stage-out core schema.

the management of many transfer jobs in parallel, the tool implements a parallel processing

approach, by means of the multiprocessing library of Python. Expired and done transfer
documents will remain the in files database for expiration_days before being removed from
there by the StatDaemon which tasked to merge the transfer documents, by FTServer used, into
a single document and insert it into the stat database.

To be able to interact with any DMWM tools requiring the remote stage-out service, this tool
is developed following a plugin-based architecture to allow addition of a new source whenever
needed by just writing a class which inherits from the Source parent class. The first plugin
developed is the Job State Machine (JSM) which interacts with the WMAgent framework.
Another plug-in has been recently developed which will use summary documents produced by
all agents and replicated to a central monitoring database.

The asynchronous stage-out system requires much more care, in particular regarding the use
of disk storage and time required by the operation of the remote stage-out. In fact, in such a
system, each output must be copied first in the local SE and transferred later to the remote site,
which requires more storage capacity than the current synchronous remote stage-out strategy.
In addition, the operation of the local copy and the subsequent transfer with FTS, introduces
latency between the completion of the job and the time at which the asynchronous stage-out tool
begins effectively to transfer the output. For this reason, the asynchronous stage-out system has
been integrated into a version of CRAB2, and used to perform preliminary tests of scalability
and latency.

4. Results

Since CRABS3 is not yet in production and there was the need to test the asynchronous stage-
out with real use cases. The first functional tests have been done plugging the AsyncStageOut
service into CRAB2. This required an ad-hoc version of CRAB, that was able to bypass the
remote stage-out and instead store the output locally. Also the AsyncStageOut had to interface
with CRAB2 system, so a new plug-in had to be developed in order to achieve that.

4.1. Functional tests

Tests used a dataset spread over 20 available CMS sites which resulted in a to create a large
number of jobs producing equal output sizes. The CRAB workflow created for this test consisted
of 400 jobs, each producing a 1.3 GB file. The workflow was submitted several times to reach a
total of 1686 transfer jobs. Figure 8 shows the fraction of successful and failed transfers, while
Figure 9 shows the failure rate by site.

Failed Transfer Fraction

[Ipone B Transfers failed
(98.3 %) I Failed 15

y N

T2_FR_GRIF_LLR T2_UK_SGrid_Bristol T2_FR_IPHC T2_IT Bari

Figure 9. Transfers failed by site for functional
Figure 8. Fraction of failed and tests.

succeeded transfers for functional tests.

Out of a total of 1686 transfers, approximately 98.3% of transfers succeeded. The transfer

failure in this test were caused by using an incorrect F'TS server or temporary issues at these
sites involved in the transfer. The configuration of the asynchronous stage-out allows to retries
failed transfers. Given that, the asynchronous system can be considered to be more reliable
than synchronous one. The histogram in Figure 10 shows the number of transfer attempts by
site. This histogram shows the results only for the successful jobs. Note that if the system was
synchronous, the only successful jobs would be the ones in the first column, while the others
would collapse and their jobs would have to be resubmitted. From Figure 9, the number of
attempts seems to be greater for some sites. As example, T2_UK Bristol appears to be one of
the sites with the highest number of failures (Fig. 9): this might indicate some incompatibility
of the site with the asynchronous stage-out system, since the latter is still experimental. The

| Transfers retries | Transfers done by site
. I T2 KR KNU

o [T2_FR_GRIF_LLR
£ 3 I T2N_TIFR

5 10

[_] T2_FR_GRIF_IRFU

[T2_PT_NCG_Lisbon

[] T2_UK_SGrid_Bristol

[[] T2_FR_IPHC

[72 ES_CIEMAT

[] T2_PT_LIP_Lisbon

[__] T2_EE_Estonia

I T2.IT_Pisa

[T2_PL_Warsaw

[T2_BR_SPRACE

[T2_us_miT

[_] T2 Us_ucsD

[] T2_US_Nebraska

[] 127 Bari

PRI BT

5 6
retries

102

10

Figure 10. Asynchronous transfer retries by sites.

total latency introduced by the asynchronous stage-out system is more distributed in the second
round of tests, due to differing network performance at the various sites and the different times
when the transfers of outputs were requested. Furthermore, the output sizes of each job were
very similar, nearly 1.3 GB. Table 1 shows the average time required to transfer an output from
a site source to a site destination. The performance was varying between sites.

The load supported by the asynchronous stage-out server during these tests is shown in Figure
11. The histogram shows the trend of the total number of transfers per hour, and the number
of transfers marked as completed to the asynchronous stage-out server for each hour. The
maximum number of simultaneous transfers reached almost 600 jobs. Within the conditions
described above, the system did not show scalability problems. The maximum number of
transfers marked as completed per hour was approximately 350. Comparing with Figure 11,
the number of analysis jobs completed per hour in the first half of December 2010, a period in
which there was intense analysis, the number of jobs completed is over two orders of magnitude
greater than the results obtained in our test, shown by the green histogram in Figure 12. However
it is not realistic to test with loads comparable to those of real analysis, because the consumption
of resources would be very high.

Table 1. Transfer latency by source site of about 1.3 GB file.

Source site Latency (min) Files
T2_US_UCSD 158 14
T2_EE_Estonia 312 86
T2_FR_GRIF_LLR 610 254
T2 FR_GRIF_IRFU 381 183
T2_IN_TIFR 390 92
T2_US_Nebraska 6 109
T2_PT_LIP Lisbon 540 142
T2_ES_CIEMAT 318 137
T2_KR_KNU 400 113
T2_FR_IPHC 425 149
T2_PT_NCG_Lisbon 352 126

[Active transfers |

S

[=2]
o
o

Legend
I Active Transfers

[Notified transfers
Ended transfers

active transfer
(%2
o
o

Y
o
o

300

200

100

IIIIIIIIIlIIIIIIIIIIIllllllll

10 20 30 40 50 60 70
elapsed time (hour)

Figure 11. Load supported by the asynchronous stage-out server to manage 1349 transfers in 60
hours. In blue, the number of active transfers for each hour. In green, the number of transfers
notified in the asynchronous stage-out for each hour, while the red represents the number of
transfers completed in each hour.

4.2. Scalability tests

More tests have been done by using the new generation of analysis tool, CRAB3, in order
to understand the behavior and possible bottlenecks of the asynchronous solution. The total
number of jobs submitted in this test is 23 909 jobs, where 8414 successfully to executed their
codes and staged-out the outputs locally while 14495 failed. Figure 13 shows the success and
failure rates by user of the asynchronous transfers of outputs. Most of the failures of jobs in these
tests were caused mainly by the fact that at the time of testing CRAB3 was still a prototype
and sites were not yet compatible with CRAB3 workflows.

Terminated jobs

12,000 . . 23'8 Hours frE)m 2010-1.2>01 to 2(210*12*11IUTC

10,000

8,000

6,000

4,000

2,000

2010-12-02 2010-12-04 2010-12-06 2010-12-08 2010-12-10
Maximum: 11,396 , Minimum: 1,631 , Average: 5,808 , Current: 10,240

Figure 12. Number of analysis jobs terminated per hour during the first half of December 2010
(the period when these tests are done).

B done Ml taited [Jother

Number of Jobs

Figure 13. Success and failure rates by users.

5. Conclusions

Based on Figure 2, if the jobs were submitted using CRAB2 and, so, the remote stage-out step is
performed synchronously, an approximation of the number of failed jobs for the stage-out from
a total of 8414 would be 223 and the number of succeeded jobs would be 5545. So, 223 CPU
slots would be effectively wasted. Moreover, as shown by the plot (b) in Figure 4, failed jobs
make the physicists or CRAB resubmission components wait that time before the resubmission
of the jobs.

Regarding succeeded jobs, the asynchronous stage-out approach makes a first safe copy
available to users in /store/temp/user area in the storage of the site where the job was
executing. So, physicists can already access their outputs from there and in a transparent
way through the CRAB3 RESTFull API’s [?].

The distribution of the number of jobs finished vs. average time spent for the remote stage-
out in CRAB 2 is shown in Figure 4, while the distribution of the number of jobs done during
these tests vs. average time spent for the local stage-out is shown in Figure 14. If the jobs of

this test were submitted using CRAB2, 95% of jobs done, which is 5268 jobs, would spend an
average of 500 seconds to perform the stage-out, while they required only an average of seconds
to perform the local stage-out in CRAB3. So, in this test, the asynchronous stage-out approach
has allowed to users the access to their outputs about 450 seconds earlier for 5268 jobs compared
to the synchronous stage-out. This approximation of the gain in term of CPUs slots and times
seems to be promising.

Average time in seconds

@ 50 75
@ 500

3% 2%

95%

Figure 14. The distribution of the number of jobs done during these tests over average time
spent for the local stage-out.

The new stage-out approach implemented by the AsyncStageOut system will allow CMS
analysis jobs to:

e regain CPU times previously consumed by the analysis job stuck in the remote stage-out
step;

e reduce the delays in completing the analysis workflows by removing the fraction of failures
caused by the synchronous stage-out step;

e regain the resources wasted previously by the failure of jobs to perform the remote stage-out
synchronously;

e organize the transfers to Tier-2s sites using a dedicated service in order to avoid the overload
of their networks and storage systems;

e reduce the latency of the availability of analysis jobs outputs by storing them first in
/store/temp/user area of the sites where the jobs were executing.

The AsyncStageOut has been heavily tested by the integration team of CMS and has shown
to have satisfactory performance. Once CRAB3 is in production it will be possible to better
understand the system behavior, scalability and whether, in particular, it is introducing issues
to PhEDEx transfers of CMS production system by overloading F'TS servers, designing and
implementing then eventually required optimizations.

References
[1] CMS Collaboration, Adolphi, R., et al.: The CMS experiment at the CERN LHC, JINST, 0803, S08004
(2008).

Karavakis, E., et al: User-centric monitoring of the analysis and production activities within the ATLAS and
CMS Virtual Organizations using the Experiment Dashboard system, in proceedings of EGI Community
Forum 2012 - EMI Second Technical Conference, 2012, PoS(EGICF12-EMITC2)110.

Frohner A, et al. Data management in EGEE. Journal of Physics Conference Series 219 062012, doi:
10.1088/1742-6596,/219/6/062012, 2009.

Apache CouchDB database http://couchdb.apache.org.

Kutzentsov, V. et al.: Life in extra dimensions of database world or penetration of NoSQL in HEP community,
in these proceedings.

Wakefield S, et al. Large Scale Job Management and Experience in Recent Data Challenges within the LHC
CMS experiment. Proceedings of XII Advanced Computing and Analysis Techniques in Physics Research,
2008.

Riahi H., 2012: Design optimization of the Grid data analysis workflow in CMS, Ph.D. Thesis. University of
Perugia, Italy.

Cinquilli M., et al.: CRAB3: Establishing a new generation of services for distributed analysis at CMS, in
these proceedings.

