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Advanced Visualization System for Monitoring the 
ATLAS TDAQ Network in real-time 

Batraneanu Silvia, Campora Daniel, Martin Brian, Savu Dan, Stancu Stefan and Leahu Lucian 

 

This article briefly describes the network monitoring framework and 
introduces the system’s visualization challenges and previous 
limitations. The functionality, design and implementation of the 3D 
visualization system are then described in detail, with a focus on the 
model design, user interaction, navigation mechanisms and methods 
used to achieve scalability when rendering and updating many 
objects in real-time. 

Abstract – The trigger and data acquisition (TDAQ) system of the 
ATLAS experiment at CERN comprises approximately 2500 servers 
interconnected by three separate Ethernet networks, totaling 250 
switches. Due to its real-time nature, there are additional 
requirements in comparison to conventional networks in terms of 
speed and performance. A comprehensive monitoring framework has 
been developed for expert use. However, non experts may experience 
difficulties in using it and interpreting data. Moreover, specific 
performance issues, such as single component saturation or 
unbalanced workload, need to be spotted with ease, in real-time, and 
understood in the context of the full system view. We addressed these 
issues by developing an innovative visualization system where the 
users benefit from the advantages of 3D graphics to visualize the 
large monitoring parameter space associated with our system. This 
has been done by developing a hierarchical model of the complete 
system onto which we overlaid geographical, logical and real-time 
monitoring information.  

 

I. INTRODUCTION 
 

he architecture of the ATLAS TDAQ networks has already 
been described in [1] and the operational model in [2]. 

There are three distinct networks, all based on the Ethernet 
technology: a control network and two dedicated data 
networks. Each network has two chassis based devices at the 
core and approximately 100 aggregation switches. Network 
traffic and device statistics are gathered in real time, at a 30 
seconds interval, to assess the performance of the network, to 
assist in system analysis and to provide reliable status 
information to the experiment’s run control. Gathering 
relevant statistics and system status information is only part of 
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a much larger problem: making it available to different types 
of users and deciding in what form to present it. 

II. SPECIFIC VISUALIZATION REQUIREMENTS 
 
Unlike general purpose networks, the ATLAS TDAQ system 
has very demanding requirements in terms of speed and 
performance. For example, some areas of the network have to 
operate at very high rates and even a low rate of discarded 
packets might cause unacceptable application delays. Both 
health and performance monitoring tools are needed to gather 
and analyze historical and real-time statistics for the purpose 
of insuring proper operation and performing post-mortem 
troubleshooting. In order to have a complete image of the 
overall system status, the information cannot be restricted to 
network-specific statistics, so other data categories are 
collected, such as environmental statistics, physical and 
logical grouping information, etc. 
 
The existing centralized monitoring framework offers access 
to different data sources, both internal and external, and also 
provides front-end Web applications which allow the intuitive 
display and analysis of historical data. However, no single 
frontend application allows the intuitive display of all needed 
real time and historical monitoring information for all user 
categories. There are at least three different consumer groups, 
each with their own visualization requirements: 

 Networking experts need to analyze, monitor and 
troubleshoot the network. They need to have access 
to detailed knowledge about which ports or devices 
are reporting chronic or sporadic failures in order to 
perform maintenance operations, 

 System analysts need to understand how subsystems 
interact and to have a global view of the system, its 
traffic overloads, communication flows and lost 
packets. They use this information to determine if the 
TDAQ system is well balanced and to tune it for 
optimal performance, 

 Operators need to have a less detailed view over the 
system that allows them to identify if all or most of 
the system is working within the design limits. This 
way they can adjust the event rate to accommodate to 
the current situation. 

 
Taking all these into account, an effective network 
visualization system for the ATLAS TDAQ system needs to: 
 display the network in an intuitive way by using a logical 

grouping that follows the architecture of the system and 
the flow of data inside it, 

 display both traffic and status information in real time, 
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 offer top-level, intermediate and detailed views of the 
network, 

 provide fast navigation between views to avoid missing 
the big picture while searching for detailed information. 

 
With such a network to monitor, the developers face several 
important challenges. First, the system’s scale brings a 
technical visualization problem which is augmented by the 
overlapping of data and control networks. Although some of 
the requirements have been addressed by two bi-dimensional 
real-time monitoring displays, there are still limitations with 
respect to the specific visualization requirements of the TDAQ 
system. Logical grouping is important in understanding how 
subsystems interact and this prevented us from using 
automatic placement algorithms to ameliorate visual clutter 
inside the existing monitoring displays.  
 
Secondly, every component is characterized by several 
descriptive parameters and monitoring variables leading to a 
large variable space that needs to be visualized. Aggregation 
and relevant error propagation need to be used in order to help 
the user interpret the data with ease. Last but not least, many 
of these variables need to be updated in real time (30 seconds) 
and, to achieve this, efficient data structures and update 
mechanisms need to be implemented. The rendering of the 
whole 3D scene, including the dynamic objects, needs to be 
done at a frame rate of over 30fps, frame rate considered to be 
the lower limit for real-time rendering and which avoids image 
flickering. 
 
Although 2D visualization has its advantages, there are good 
reasons to use 3D visualization, especially for large scale and 
complex models. The most obvious advantage is the additional 
dimension to encode information, which also creates a large 
visible workspace for holding visualizations. 
 
Also, in 3D we can represent overlapping networks without 
causing visual clutter. Intuitive navigation paradigms [3 ] such 
as “walk” or “fly” can be used to navigate through our 
network model with ease from the top level view to the most 
detailed views. Another important benefit is the evaluation of 
the camera-object distance which can trigger different 
behaviours such as the levels of detail [4] or object update. 
Taking into account these benefits, we opted for a 3D visual 
structure to represent our system. 
 
From a technical perspective, 3D implementations bring 
greater challenges because they require more processing 
power, involve many more parameters and six degrees of 
freedom for movement.  
 
   

III. MONITORING SOFTWARE PLATFORM 
A comprehensive framework, depicted in Figure 1, has been 
deployed for monitoring the TDAQ networks health and 
performance. It contains a mixture of commercial software 
and in-house developed tools.  
 

CA Spectrum [5] has been chosen for health monitoring. It 
maintains a model of the full network and polls the network 
devices and connections for their status every 60 seconds via 
the Simple Network Management Protocol (SNMP). Its most 
useful feature in our case is the alarm management 
mechanism: it generates alarms based on both synchronous 
and asynchronous events (SNMP traps) and forwards them to 
different types of clients.  
 

 
Fig. 1.  Monitoring software framework for the ATLAS TDAQ networks 

 
Performance monitoring is achieved using a set of in-house 
applications. In order to provide a complete performance 
monitoring solution, both back-end and front-end applications 
have been developed. Some of them have been developed in 
order to overcome the scaling issues of the aforementioned 
commercial package when performing high rate network 
statistics gathering and display. Others have been developed to 
access additional data sets which are relevant for 
troubleshooting. 
 
The backend applications which are used to gather dynamic 
and static network-related information are: 
 

• APoll [6]- a high-performance SNMP polling engine 
that efficiently gathers statistics from all the network 
ports and store them as RRD files, with a polling 
interval of  30 seconds or less. 

 
• NetDiscovery - a network topology discovery engine 

which takes into account the particularities of the 
TDAQ network, such as aggregated links and 
physical links shared by VLANs, to create an up-to-
date network map. 

 
• sFlow engine [7] - an sFlow based flow collector and 

analysis engine, which stores statistically sampled 
data about flows. This is extremely useful for a post-
mortem or detailed troubleshooting. 

 
At the core of the monitoring framework lies a Central 
DataBase (CDB) which is used to store data and metadata 
from various sources and provide it on request to several 



 

front-end clients. The data sources are internal, i.e. gathered 
by above-mentioned backend applications, or external, which 
are gathered and stored by applications managed by other 
groups but which are of major interest when performing 
network monitoring and troubleshooting. Several script-based 
tools connect to external and internal data sources, retrieve the 
latest updates and perform consistency checks. In this way, the 
CDB repository is kept consistent and up-to-date. 
 
Historical time series statistics are stored in RRD [8] files and 
are split into internal repositories, network device and traffic 
statistics, and external repositories, containing various 
environmental and PC specific statistics. A set of MySQL 
databases are used to store both static information, such as 
topology and descriptive device information, and dynamic 
data, such as a current snapshot of important variables (i.e. 
SNMP counters) for devices and interfaces. 
 
Several front-end applications have been designed to visualize 
the gathered data. Some focus on historical data (Net-IS), 
while others on real-time data (Net- RT). A complete solution 
for viewing all sorts of historical data is Net-IS (Integrated 
System for Performance Monitoring) [9]. It has a powerful 
interface which provides convenient access to all historical 
data that is stored or referenced by the CDB. The information 
can either be browsed with the use of several predefined 
hierarchical trees, or it can be directly searched using regular 
expressions. Several time series values can be displayed at the 
same time both overlaid on the same plot, or as an array of 
mini-plots. 
 
A different set of presentation clients is grouped under the 
name of Net-RT. In this category, real-time data regarding the 
component status and traffic values are provided both in 
tabular format and using a traffic-aware network map. 
 
The main benefit of the current architecture is that all 
information categories, static and dynamic, are available to all 
visualization and analysis tools. Based on the stored logical 
and physical grouping information, statistics can be 
aggregated. As depicted in Figure 1, the 3D visualization is 
integrated into the framework. Its main role is to monitor in 
real-time both the health and the performance of the TDAQ 
networks. 
 

IV. TRIDIMENSIONAL MODEL 
A hierarchical 3D model has been built using four layers of 
abstraction, as shown in Figure 2: 
 

 subsystem layer - offers the overall picture of the 
network at a glance. It contains two types of 
containers: processor farms and network cores, 

 rack layer - contains device groups formed using 
geographic proximity and/or function, 

 device layer - contains processors and aggregation 
switches, 

 network interface layer - offers information about 
network interfaces and their associated traffic 

throughput and errors, displayed in bi-dimensional 
panels.  
 

Guidelines taken from the information visualization domain 
were used to map object attributes into graphical properties. 
At every level, individual and aggregated status information is 
color-coded based on predetermined thresholds which vary for 
each subsystem. 

 
 

Fig. 2.  Hierarchical 3D model of the TDAQ networks with four layers: 
network interfaces, devices, racks and subsystems 

 
Three color levels are used consistently throughout the model 
whenever component status is represented: green - normal 
state; orange - warning state and red - critical state. This 
representation is frequently used in monitoring displays and 
hence the users are very familiar with it.  
 
We equally used a consistent color schema at every level to 
display network affiliation: blue is used to represent the 
control network while yellow is used to represent the data 
network. Visual representations of components belonging to a 
particular network (network cores, aggregated connections, 
aggregation switches, network interfaces) are all colored using 
one of these colors. Components which are connected to both 
networks, such as computers, are colored using neutral colors 
such as white or gray. Color saturation is used to differentiate 
between the two data networks. 
 
In the case of a network interface representation, since 2D 
areas are used, we decided to use borders for network 



 

affiliation and the panel background for operational status. 
Shape is used to distinguish between component types: 
network devices (core and aggregation switches) are 
represented using cylinders while processor and processing 
farms are represented using boxes. 
 

V. SYSTEM IMPLEMENTATION 

A. System and client architecture 
 
The advanced visualization system is integrated in the 
monitoring platform described in Section II and is 
characterized by a three-layer architecture depicted in Figure 
3. On the data layer lays the CDB repository containing all the 
metadata and the statistics of the underlying system. On the 
intermediate layer, a Web server is used to deliver, static and 
real-time content to client applications. Application logic, such 
as statistics aggregation and error propagation, is done at this 
middle layer and is embedded in a set of Python [10] scripts. 
On the presentation layer, a specialized 3D engine is used to 
display and interact with the 3D model. 
 
The components for the first two layers run on servers placed 
inside the ATLAS Control Network (ATCN), which is a 
protected area, separated from the main General Purpose 
Network (GPN) of CERN. The front-end application is run 
both inside ATCN, for operators, and outside it, for remote 
users. Due to security reasons, a set of gateway machines, 
acting as an upper layer firewall, allow only certain HTTP 
conversations to be established based on known source and 
destination signatures.  
 

 
Fig. 3.  Advanced visualization system architecture 

 
 

Besides having to run the communication on top of the HTTP 
protocol, a data format that can impose a certain structure 
needed to be chosen. The XML format responded to both 
requirements and was used as the main technology for storing 
and transmitting data between the Web server and the client 
applications. Moreover, because XML is interoperable, it 
allows the communication between modules using different 
programming languages such as Python on the server side and 
C++ on the client side.  
 
At the intermediate layer, Python scripts aggregate statistics, 
format and store them in XML files which are then served to 
the client applications. These files are updated at regular 
intervals: the static description of the system every 30 minutes 
and the statistics every 30 seconds. A set of multimedia files 
containing the top level 3D model or historical plots are also 
made available on request. 
 
For the presentation layer, a 3D engine was built from scratch 
using the OpenSceneGraph (OSG) [11] platform to insure the 
full control over the creation, rendering and update of the 3D 
model and also over the user interaction and navigation 
mechanisms.  
 
OSG is an open source, portable and high performance 3D 
graphics framework written in C++ and OpenGL [12]. The 
framework has rigorous data structures based on the Standard 
Template Libraries (STL) [13] and implements well-known 
design patterns [14], such as visitor and callback. It provides a 
thin wrapper on top of OpenGL calls which gives access to 
many of its rendering options and a statistics display, essential 
for performance tuning. Node selection based on bit masks 
and specialized event handlers can be used to implement 
powerful interaction mechanisms.  
 
Figure 4 presents the internal architecture of the OSG-based 
3D engine, which is designed using a 3 layer approach. The 
bottom layer of the 3D engine is in charge of retrieving and 
storing its XML and multimedia content.  
 
The multimedia content retrieval has specific characteristics 
which didn’t allow us to use the default modules provided by 
OSG. First of all, like in the case of XML content, the 
multimedia files should be obtained using secure HTTP 
connections and for this the underlying cURL [15] library was 
used. Secondly, to obtain the plot images, a series of HTTP 
GET parameters need to be sent to the server and hence the 
URL format became very specific. Also, in the majority of 
situations, more than one plot needs to be retrieved and 
displayed at the same time, so it is preferable to use a single 
connection for fetching multiple files (multi-download) in 
order to save time. The MediaIO module has been built to 
overcome these limitations and, in addition, to offer 
centralized access to all needed types of multimedia files.  
 
The intermediate layer manages the scene graph and the 
construction of additional information on demand.  The scene 
graph management module uses the information made 
available by the modules from the bottom layer to construct 
and update the scene. A scene manager class initiates the 



 

creation process by iterating on the subsystem container list 
and generating the associated object hierarchy. This way, the 
static top level 3D model is populated progressively. At every 
hierarchical level, a dedicated manager class is used to create a 
set of objects of the same type. 
 

 
Fig. 4. OpenSceneGraph-based client architecture 

 
Each of these classes contains a subclass dedicated to updating 
the dynamic components of the particular type, which is called 
update callback functor and is made available by OSG’s 
traversal and callback mechanisms. Also, in order to update 
the visible objects only, a unique cull callback factor class is 
used in conjunction with the update callbacks. The second 
module (Details-On-Demand) uses the name of a selected 
object to retrieve its detailed description and associated plots.  
 
The top level manages user interaction and navigation and 
contains four modules. The first one handles all navigation 
aspects, the second one handles object selection and highlight 
and the third one is dedicated to the Head-Up Display (HUD), 
containing navigation controls and additional information on 
demand. Since multiple event handlers are used to obtain 
different interaction behaviours, a fourth module plays the role 
of an event coordinator which enables/disables some 
behaviours at certain moments in time to avoid undesirable 
effects.  
 
The selection module can trigger the display of additional 
information inside the HUD. These details are obtained and 
formatted by the intermediate level module Details-On-
Demand. The module dedicated to the HUD can also trigger 
navigation to certain key locations in the scene, such as the 
top-level viewpoint or initial container viewpoints. In order to 
navigate to the close proximity of a selected object, the 
navigation module needs to obtain the object’s specific 
position and dimensions from the scene graph management 
module.  
 
 
 

B. Rendering and scene graph optimizations 
 
The goal was to create a true real-time rendering application 
which offers a frame rate of minimum 30 frames per seconds 
(fps). The OSG rendering statistics display allows precise 
rendering measurements and hence to evaluate the impact of 
each optimization on traversal times and on the overall frame 
rate.   
 
Inside the client application, dedicated threads are used for 
XML and multimedia file transfers and, by doing so, the 
rendering performance is decoupled from the performance of 
these transfers. In any case, the transfer duration is less than 
one second and hence it is not affecting the 30 seconds update 
interval. 
 
In terms of frame completion time, a limit of 30 fps translates 
into a maximum of 33.3 milliseconds (ms) in which a frame 
can be rendered. In order to render a frame, OSG performs at 
least three scene graph traversals: the UPDATE traversal flags 
the change made to the scene graph, the cull traversal keeps 
the visible nodes and the draw traversal sends the 
corresponding OpenGL calls to the GPU. More details about 
the scene graph traversals used in OSG can be found in [16]. 
 
The frame completion time represents the sum of all these 
traversal times. In this first phase of scene creation, we are 
mainly interested in the static behaviour of the scene, more 
precisely when real time updates are not performed, and we 
monitored closely the cull and draw traversal times.  We had 
to decrease as much as possible these times and, according to 
these results, we adjusted the ranges used for the Level-Of-
Detail nodes. Levels of details [4] represent a frequently used 
rendering acceleration technique which consists in hiding 
undistinguishable details when the camera is situated at certain 
distances from a given node. 
 
We used the scene graph construction to perform a series of 
optimizations and structural changes. Tests were performed on 
three platforms running different operating systems (Windows 
XP, Windows 7 and Scientific Linux for CERN 5) , containing 
Intel Dual Core CPUs ranging from 1.86 to 3.4 GHz and three 
types of nVIDIA cards (Quadro FX 1400, GeForce GT 540M, 
GeForce 9800 GT) and the results were similar. In conclusion, 
in the case of our application, the behaviour was not 
influenced by the underlying platform. 
 
 OpenGL offers different vertex and primitive data definition 
and storage options. We evaluated these options in the context 
of our application to see which method offers the best 
performance for the different object types. For rendering 
geometry, the best solution was to use vertex arrays in 
combination with triangle primitives and color binding per 
vertex. It provided a 14% decrease in the draw time in 
comparison to the default.  Also, some built-in OSG geometry 
classes such as osg::Box have been replaced by custom nodes 
optimized for fast rendering, leading to a decrease of 15% in 
the draw time. 
 



 

Text rendering is very expensive and, for this reason, we 
disabled some built-in features and obtained a draw time 4 
times smaller than the initial one. Also, we had to carefully 
choose how to display text and in what conditions, so we 
chose to temporarily augment the selected object or to display 
it in a different window on demand. Specialized OSG classes, 
such as Optimizer and Simplifier, were used to optimize 
complex objects and to reduce their sample ratio, hence 
creating simplified versions which can be used in levels of 
detail.  
 
Another way of improving rendering time is by restructuring 
the scene graph. In our case, this implied the elimination, 
where possible, of Transform nodes and embedding the object 
coordinates into the geometry description. By eliminating a 
Transform node at the panel level we obtained a cull time 3 
times smaller than the initial one.  In order to have a maximum 
of flexibility when using levels of detail, the positioning of the 
LOD (Level-Of-Detail) nodes needed to be chosen carefully.  
 
During the scene creation process, we performed multiple 
evaluations of the static scene. After building the panel 
geometry, we evaluated the rendering time and the frame rate 
for an increasing number of panel instances. Some general 
conclusions were drawn. First of all, the rendering times 
provide a linear increase with the number of instances and the 
frame rate is inversely proportional with the number of 
instances. Second of all, the cull time represents 10% of the 
draw time, so optimizations regarding this time are not very 
important.   
 
Regarding the number of panels that can be rendered and still 
remain above the 30fps limit, this was situated at around 3000. 
After the creation of all other objects, the rendering time was 
measured again. The frame rate dropped under 30 fps when 
rendering more than 15 fully detailed racks or 40 simplified 
racks, number corresponding to the maximum number of racks 
needed to be displayed inside a container.  
Based on these measurements, the LOD ranges have been 
defined so as to maintain a frame rate of over 30fps in all 
conditions. 
 

C. Targeted update mechanism 
 
The construction of the scene graph is expensive and is often 
done as a pre-process. The preferred approach was to create 
the majority of objects at initialization time and to update 
them in real-time during scene rendering. The synchronous 
update of all objects in the scene strongly interferes with the 
rendering. We found methods to perform only partial updates 
and to insure a minimum frame rate that will not affect the 
user’s navigation experience.  
 
OSG enables update based on proximity by introducing the 
option of only traversing the nodes which are rendered by 
their parent LOD nodes but, by default, it updates all active 
nodes regardless of their presence in the camera’s view 
frustum.  A more efficient method, depicted in Figure 5, is to 
use the cull traversal in addition to the update traversal to 

update only the nodes which are inside the view frustum and 
rendered by their parent LOD node. More precisely, the use of 
the cull visitor guarantees that only the objects that are visible 
(not culled by any scene graph culling mechanism) are 
updated. 
 
As in any scene-graph-based API, in OSG the cull traversal is 
always performed after the update traversal and hence the list 
of visible objects cannot be modified during the rendering of a 
single frame. The targeted update mechanism exploits 
temporal coherence in rendering, implying that adjacent 
frames are usually very similar, and updates the nodes which 
were visible in the previous frame.  
 
For flagging the visible nodes bit masks were used. A traversal 
mask has been set for the update visitor and after each update 
traversal every node mask is set so as to exclude it from the 
next update traversal. In the cull traversal, every visible node 
has its mask set to include it into the next update traversal. 
 
 
 

 
Fig. 5 – Targeted update mechanism 

 
 
The real-time update is done with the help of a dedicated 
update callback functor class. An instance of this class can be 
attached either to a leaf (or geometry) node with the purpose 
of updating the contained geometry or to a grouping node 
(Group, LOD, Transform) with the purpose of updating the 
geometry contained by its children nodes and thus updating 
more objects in the same callback.   
 
Using a callback of each object is not a viable option because 
the frame rate was dropping under 30 fps. Using callbacks at 
the device level led to an increase of 26% in the frame rate 
while at the rack level led to a 38% increase. The downside of 
this grouping was an increase of the maximum frame 
completion time which has been decreased by spreading the 
updates over multiple frames.  
 
 
 



 

D. Interaction and navigation 
 
In the case of our system, the interaction and navigation 
needed to be adapted to the specifics of 3D graphics. The 
navigation was carefully planned to provide the user with 
intuitive movements and to fulfill one of the main 
requirements: navigating with ease from the top level view to 
the most detailed and back. Viewport controls, such as 
panning and zooming, were used in combination with guided 
navigation movements. We also aimed at a very intuitive 
interaction mechanism and managed to obtain the most 
detailed information in only a few clicks. 
 
3D navigation implies 6 degrees of freedom in comparison to 
only 2 degrees provided by the 2D navigation. For this reason, 
in a 3D world, free navigation without any restrictions is 
difficult especially for users which are not familiar with a 3D 
display. It constitutes established practice that in a 3D world 
the users are guided between two locations of interest and, 
when using viewport controls (panning, zooming, etc), their 
movements to be restricted to only the ones they really need 
[17].  
 
We used navigation paradigms such as “fly” and “walk” to 
enable a more intuitive navigation. Inside the subsystem 
containers resembling rooms, we are using the “walk” 
paradigm. Outside the containers, the “fly” paradigm is used. 
Object layout parameters and dimensions were used to restrict 
navigation and to calculate locations of interest (ex: rack view, 
device view). We used guided movements between 
hierarchical levels and a combination of free and guided 
movements on the same hierarchical level. The guided 
navigation between hierarchical layers is done by drilling 
down via mouse selection events and returning to higher levels 
by selecting dedicated buttons on the Head-Up Display. 
 
For bringing up additional information regarding a particular 
device, we used the details-on-demand technique [18] in two 
mechanisms. The first was to add additional objects such as 
additional text labels directly on the object upon its selection. 
Due to the limited space, adding too many elements creates 
the risk of visual clutter and hence we needed to display 
additional information in a separate window. 
 
The main problem with 2D windows placed inside a 3D 
display is that they are not intuitive to display when the 
camera changes position or orientation. In 3D graphics, a 
common practice is to use a Head-Up Display (HUD) to 
visualize information of interest or to provide interaction 
controls. A HUD enables the usage of a 2D interface which is 
guaranteed to always be drawn on top of the 3D model, and 
hence the positioning and orientation problems are solved.  
 
Besides providing context-aware navigation (depending on 
hierarchical level, position, object type, etc), we benefited 
from having full control of camera movements in order to 
introduce powerful enhancements such as radial navigation 
inside the farm containers, smooth interpolation for guided 

camera movements, speed and field of view control to 
accommodate panoramic and detailed views.  
 
The viewpoint-based navigation and details-on-demand 
implementation rely on object selection. Different behaviours 
are triggered when single or double clicking on an object and 
the camera moves to different viewpoints based on these 
events.  
 
The selection mechanism involves the use of a specialized 
Visitor node (IntersectionVisitor) that traverses the scene 
graph in the search for geometrical objects meeting different 
intersection criteria. Node masks are used to specify which 
nodes are selectable at a certain moment and to trigger 
different behaviours based on object type.   
 
Figure 6 presents the overall interaction schema for the top to 
the bottom of the model hierarchy. When the camera is 
situated in the top level viewpoint, double clicking on a 
container will trigger navigation to the top level viewpoint of 
the selected container. By doing so, the user is able to see the 
top-level traffic panels and monitor the container’s overall 
state. When double-clicking on a container, the user will enter 
the container and arrive at an initial viewpoint from where all 
the racks are visible and any problematic racks may be 
discerned. 
 
 
 

 
Fig. 6 – Overall interaction schema 

 
 



 

From any location inside a container, the user is able to 
highlight either a whole rack, by clicking on the rack frame or 
a device, or an interface by clicking on the corresponding 
object. Double clicking on one of these objects will trigger 
navigation to a viewpoint from which the best view on the 
selected object is provided. Going further, additional 
information and mini-plots regarding the object appear in a 
dedicated HUD window. 
 

VI. CONCLUSIONS  
 
An in-depth study concerning the TDAQ system’s 
visualization requirements has been performed.  The system’s 
large scale represented one of the most important visualization 
problems that we’ve faced, augmented by the fact that the 
networks overlap. Moreover, our monitoring tools gather a big 
volume of data and operate at a fast rate. These statistics need 
to be visualized in real-time and the display has to be updated 
very frequently. One of the main novelties regarding our 
approach is that it uses 3D visualization and guidelines from 
the information visualization domain to build an advanced 
visualization system which accommodates these requirements.  
 
We used the OSG framework to build a dedicated 3D engine 
for the display, interaction and real-time update of our system 
model. Scene creation and assembly have been automated. 
From the rendering performance point of view, we achieved 
the goal of rendering at a frame rate of 30fps or better. For this 
purpose, we performed optimizations at every level: geometry, 
text rendering, scene graph restructuring and, depending on 
the results, we used and adjusted Level-Of-Detail nodes to 
obtain the wanted frame rate and created a targeted update 
mechanism based on visibility and proximity to minimize the 
impact of the real time updates of the overall rendering time.   
 
We took advantage from having full control on camera 
movements to implement specialized mechanisms allowing 
intuitive and context aware navigation. Also, features such as 
selection bit masks, intersection visitors and event handlers 
allowed us to provide efficient user interaction via an intuitive 
selection and highlight mechanism. Additional information 
and statistics plots, related to a selected node, are displayed 
with the help of a Head-Up Display.  
 

VII. FUTURE WORK 
 
The data taking process is characterized by a multitude of 
parameters such as trigger rates, event size, luminosity blocks, 
etc. This information needs to be integrated into the 
visualization system so as to help place the computing-related 
events into the context of the current data taking run. 
 
A rule-based engine has been recently developed to collect 
and aggregate logs and alarms. It can be integrated with the 
visualization system to offer precise information about a 
certain problem and to perform more efficient error 
propagation inside the visualization system. 

 
 OSG offers the possibility of displaying multiple views in the 
same time. This facility can also be used to display multiple 
views of different containers which can be used to help 
finding correlations between behaviours of different elements. 
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