
A
TL

-D
A

Q
-P

R
O

C
-2

01
2-

01
3

12
Ju

ne
20

12

Advanced Visualization System for Monitoring the
ATLAS TDAQ Network in real-time

Batraneanu Silvia, Campora Daniel, Martin Brian, Savu Dan, Stancu Stefan and Leahu Lucian

This article briefly describes the network monitoring framework and
introduces the system’s visualization challenges and previous
limitations. The functionality, design and implementation of the 3D
visualization system are then described in detail, with a focus on the
model design, user interaction, navigation mechanisms and methods
used to achieve scalability when rendering and updating many
objects in real-time.

Abstract – The trigger and data acquisition (TDAQ) system of the
ATLAS experiment at CERN comprises approximately 2500 servers
interconnected by three separate Ethernet networks, totaling 250
switches. Due to its real-time nature, there are additional
requirements in comparison to conventional networks in terms of
speed and performance. A comprehensive monitoring framework has
been developed for expert use. However, non experts may experience
difficulties in using it and interpreting data. Moreover, specific
performance issues, such as single component saturation or
unbalanced workload, need to be spotted with ease, in real-time, and
understood in the context of the full system view. We addressed these
issues by developing an innovative visualization system where the
users benefit from the advantages of 3D graphics to visualize the
large monitoring parameter space associated with our system. This
has been done by developing a hierarchical model of the complete
system onto which we overlaid geographical, logical and real-time
monitoring information.

I. INTRODUCTION

he architecture of the ATLAS TDAQ networks has already
been described in [1] and the operational model in [2].

There are three distinct networks, all based on the Ethernet
technology: a control network and two dedicated data
networks. Each network has two chassis based devices at the
core and approximately 100 aggregation switches. Network
traffic and device statistics are gathered in real time, at a 30
seconds interval, to assess the performance of the network, to
assist in system analysis and to provide reliable status
information to the experiment’s run control. Gathering
relevant statistics and system status information is only part of

Manuscript received April 28, 2012. (Write the date on which you

submitted your paper for review.)
S. M. Batraneanu is with the University of California, Irvine, USA (e-mail:

silviab@cern.ch).
D. H. Campora Perez, is with the University of Seville, Seville, Spain (e-

mail: dcampora@cern.ch).
B. Martin is with CERN, Geneva, Switzerland (e-mail: bmartin@cern.ch)
D. O. Savu is with CERN, Geneva, Switzerland (e-mail:dsavu@cern.ch)
S. N. Stancu is with CERN, Geneva, Switzerland (e-mail:sstancu@cern.ch)
L. Leahu is with University “Politehnica” Bucharest, Romania (e-mail:

lleahu@cern.ch)

a much larger problem: making it available to different types
of users and deciding in what form to present it.

II. SPECIFIC VISUALIZATION REQUIREMENTS

Unlike general purpose networks, the ATLAS TDAQ system
has very demanding requirements in terms of speed and
performance. For example, some areas of the network have to
operate at very high rates and even a low rate of discarded
packets might cause unacceptable application delays. Both
health and performance monitoring tools are needed to gather
and analyze historical and real-time statistics for the purpose
of insuring proper operation and performing post-mortem
troubleshooting. In order to have a complete image of the
overall system status, the information cannot be restricted to
network-specific statistics, so other data categories are
collected, such as environmental statistics, physical and
logical grouping information, etc.

The existing centralized monitoring framework offers access
to different data sources, both internal and external, and also
provides front-end Web applications which allow the intuitive
display and analysis of historical data. However, no single
frontend application allows the intuitive display of all needed
real time and historical monitoring information for all user
categories. There are at least three different consumer groups,
each with their own visualization requirements:

 Networking experts need to analyze, monitor and
troubleshoot the network. They need to have access
to detailed knowledge about which ports or devices
are reporting chronic or sporadic failures in order to
perform maintenance operations,

 System analysts need to understand how subsystems
interact and to have a global view of the system, its
traffic overloads, communication flows and lost
packets. They use this information to determine if the
TDAQ system is well balanced and to tune it for
optimal performance,

 Operators need to have a less detailed view over the
system that allows them to identify if all or most of
the system is working within the design limits. This
way they can adjust the event rate to accommodate to
the current situation.

Taking all these into account, an effective network
visualization system for the ATLAS TDAQ system needs to:
 display the network in an intuitive way by using a logical

grouping that follows the architecture of the system and
the flow of data inside it,

 display both traffic and status information in real time,

T

mailto:dcampora@cern.ch�
mailto:bmartin@cern.ch�

 offer top-level, intermediate and detailed views of the
network,

 provide fast navigation between views to avoid missing
the big picture while searching for detailed information.

With such a network to monitor, the developers face several
important challenges. First, the system’s scale brings a
technical visualization problem which is augmented by the
overlapping of data and control networks. Although some of
the requirements have been addressed by two bi-dimensional
real-time monitoring displays, there are still limitations with
respect to the specific visualization requirements of the TDAQ
system. Logical grouping is important in understanding how
subsystems interact and this prevented us from using
automatic placement algorithms to ameliorate visual clutter
inside the existing monitoring displays.

Secondly, every component is characterized by several
descriptive parameters and monitoring variables leading to a
large variable space that needs to be visualized. Aggregation
and relevant error propagation need to be used in order to help
the user interpret the data with ease. Last but not least, many
of these variables need to be updated in real time (30 seconds)
and, to achieve this, efficient data structures and update
mechanisms need to be implemented. The rendering of the
whole 3D scene, including the dynamic objects, needs to be
done at a frame rate of over 30fps, frame rate considered to be
the lower limit for real-time rendering and which avoids image
flickering.

Although 2D visualization has its advantages, there are good
reasons to use 3D visualization, especially for large scale and
complex models. The most obvious advantage is the additional
dimension to encode information, which also creates a large
visible workspace for holding visualizations.

Also, in 3D we can represent overlapping networks without
causing visual clutter. Intuitive navigation paradigms [3] such
as “walk” or “fly” can be used to navigate through our
network model with ease from the top level view to the most
detailed views. Another important benefit is the evaluation of
the camera-object distance which can trigger different
behaviours such as the levels of detail [4] or object update.
Taking into account these benefits, we opted for a 3D visual
structure to represent our system.

From a technical perspective, 3D implementations bring
greater challenges because they require more processing
power, involve many more parameters and six degrees of
freedom for movement.

III. MONITORING SOFTWARE PLATFORM
A comprehensive framework, depicted in Figure 1, has been
deployed for monitoring the TDAQ networks health and
performance. It contains a mixture of commercial software
and in-house developed tools.

CA Spectrum [5] has been chosen for health monitoring. It
maintains a model of the full network and polls the network
devices and connections for their status every 60 seconds via
the Simple Network Management Protocol (SNMP). Its most
useful feature in our case is the alarm management
mechanism: it generates alarms based on both synchronous
and asynchronous events (SNMP traps) and forwards them to
different types of clients.

Fig. 1. Monitoring software framework for the ATLAS TDAQ networks

Performance monitoring is achieved using a set of in-house
applications. In order to provide a complete performance
monitoring solution, both back-end and front-end applications
have been developed. Some of them have been developed in
order to overcome the scaling issues of the aforementioned
commercial package when performing high rate network
statistics gathering and display. Others have been developed to
access additional data sets which are relevant for
troubleshooting.

The backend applications which are used to gather dynamic
and static network-related information are:

• APoll [6]- a high-performance SNMP polling engine
that efficiently gathers statistics from all the network
ports and store them as RRD files, with a polling
interval of 30 seconds or less.

• NetDiscovery - a network topology discovery engine

which takes into account the particularities of the
TDAQ network, such as aggregated links and
physical links shared by VLANs, to create an up-to-
date network map.

• sFlow engine [7] - an sFlow based flow collector and

analysis engine, which stores statistically sampled
data about flows. This is extremely useful for a post-
mortem or detailed troubleshooting.

At the core of the monitoring framework lies a Central
DataBase (CDB) which is used to store data and metadata
from various sources and provide it on request to several

front-end clients. The data sources are internal, i.e. gathered
by above-mentioned backend applications, or external, which
are gathered and stored by applications managed by other
groups but which are of major interest when performing
network monitoring and troubleshooting. Several script-based
tools connect to external and internal data sources, retrieve the
latest updates and perform consistency checks. In this way, the
CDB repository is kept consistent and up-to-date.

Historical time series statistics are stored in RRD [8] files and
are split into internal repositories, network device and traffic
statistics, and external repositories, containing various
environmental and PC specific statistics. A set of MySQL
databases are used to store both static information, such as
topology and descriptive device information, and dynamic
data, such as a current snapshot of important variables (i.e.
SNMP counters) for devices and interfaces.

Several front-end applications have been designed to visualize
the gathered data. Some focus on historical data (Net-IS),
while others on real-time data (Net- RT). A complete solution
for viewing all sorts of historical data is Net-IS (Integrated
System for Performance Monitoring) [9]. It has a powerful
interface which provides convenient access to all historical
data that is stored or referenced by the CDB. The information
can either be browsed with the use of several predefined
hierarchical trees, or it can be directly searched using regular
expressions. Several time series values can be displayed at the
same time both overlaid on the same plot, or as an array of
mini-plots.

A different set of presentation clients is grouped under the
name of Net-RT. In this category, real-time data regarding the
component status and traffic values are provided both in
tabular format and using a traffic-aware network map.

The main benefit of the current architecture is that all
information categories, static and dynamic, are available to all
visualization and analysis tools. Based on the stored logical
and physical grouping information, statistics can be
aggregated. As depicted in Figure 1, the 3D visualization is
integrated into the framework. Its main role is to monitor in
real-time both the health and the performance of the TDAQ
networks.

IV. TRIDIMENSIONAL MODEL
A hierarchical 3D model has been built using four layers of
abstraction, as shown in Figure 2:

 subsystem layer - offers the overall picture of the
network at a glance. It contains two types of
containers: processor farms and network cores,

 rack layer - contains device groups formed using
geographic proximity and/or function,

 device layer - contains processors and aggregation
switches,

 network interface layer - offers information about
network interfaces and their associated traffic

throughput and errors, displayed in bi-dimensional
panels.

Guidelines taken from the information visualization domain
were used to map object attributes into graphical properties.
At every level, individual and aggregated status information is
color-coded based on predetermined thresholds which vary for
each subsystem.

Fig. 2. Hierarchical 3D model of the TDAQ networks with four layers:
network interfaces, devices, racks and subsystems

Three color levels are used consistently throughout the model
whenever component status is represented: green - normal
state; orange - warning state and red - critical state. This
representation is frequently used in monitoring displays and
hence the users are very familiar with it.

We equally used a consistent color schema at every level to
display network affiliation: blue is used to represent the
control network while yellow is used to represent the data
network. Visual representations of components belonging to a
particular network (network cores, aggregated connections,
aggregation switches, network interfaces) are all colored using
one of these colors. Components which are connected to both
networks, such as computers, are colored using neutral colors
such as white or gray. Color saturation is used to differentiate
between the two data networks.

In the case of a network interface representation, since 2D
areas are used, we decided to use borders for network

affiliation and the panel background for operational status.
Shape is used to distinguish between component types:
network devices (core and aggregation switches) are
represented using cylinders while processor and processing
farms are represented using boxes.

V. SYSTEM IMPLEMENTATION

A. System and client architecture

The advanced visualization system is integrated in the
monitoring platform described in Section II and is
characterized by a three-layer architecture depicted in Figure
3. On the data layer lays the CDB repository containing all the
metadata and the statistics of the underlying system. On the
intermediate layer, a Web server is used to deliver, static and
real-time content to client applications. Application logic, such
as statistics aggregation and error propagation, is done at this
middle layer and is embedded in a set of Python [10] scripts.
On the presentation layer, a specialized 3D engine is used to
display and interact with the 3D model.

The components for the first two layers run on servers placed
inside the ATLAS Control Network (ATCN), which is a
protected area, separated from the main General Purpose
Network (GPN) of CERN. The front-end application is run
both inside ATCN, for operators, and outside it, for remote
users. Due to security reasons, a set of gateway machines,
acting as an upper layer firewall, allow only certain HTTP
conversations to be established based on known source and
destination signatures.

Fig. 3. Advanced visualization system architecture

Besides having to run the communication on top of the HTTP
protocol, a data format that can impose a certain structure
needed to be chosen. The XML format responded to both
requirements and was used as the main technology for storing
and transmitting data between the Web server and the client
applications. Moreover, because XML is interoperable, it
allows the communication between modules using different
programming languages such as Python on the server side and
C++ on the client side.

At the intermediate layer, Python scripts aggregate statistics,
format and store them in XML files which are then served to
the client applications. These files are updated at regular
intervals: the static description of the system every 30 minutes
and the statistics every 30 seconds. A set of multimedia files
containing the top level 3D model or historical plots are also
made available on request.

For the presentation layer, a 3D engine was built from scratch
using the OpenSceneGraph (OSG) [11] platform to insure the
full control over the creation, rendering and update of the 3D
model and also over the user interaction and navigation
mechanisms.

OSG is an open source, portable and high performance 3D
graphics framework written in C++ and OpenGL [12]. The
framework has rigorous data structures based on the Standard
Template Libraries (STL) [13] and implements well-known
design patterns [14], such as visitor and callback. It provides a
thin wrapper on top of OpenGL calls which gives access to
many of its rendering options and a statistics display, essential
for performance tuning. Node selection based on bit masks
and specialized event handlers can be used to implement
powerful interaction mechanisms.

Figure 4 presents the internal architecture of the OSG-based
3D engine, which is designed using a 3 layer approach. The
bottom layer of the 3D engine is in charge of retrieving and
storing its XML and multimedia content.

The multimedia content retrieval has specific characteristics
which didn’t allow us to use the default modules provided by
OSG. First of all, like in the case of XML content, the
multimedia files should be obtained using secure HTTP
connections and for this the underlying cURL [15] library was
used. Secondly, to obtain the plot images, a series of HTTP
GET parameters need to be sent to the server and hence the
URL format became very specific. Also, in the majority of
situations, more than one plot needs to be retrieved and
displayed at the same time, so it is preferable to use a single
connection for fetching multiple files (multi-download) in
order to save time. The MediaIO module has been built to
overcome these limitations and, in addition, to offer
centralized access to all needed types of multimedia files.

The intermediate layer manages the scene graph and the
construction of additional information on demand. The scene
graph management module uses the information made
available by the modules from the bottom layer to construct
and update the scene. A scene manager class initiates the

creation process by iterating on the subsystem container list
and generating the associated object hierarchy. This way, the
static top level 3D model is populated progressively. At every
hierarchical level, a dedicated manager class is used to create a
set of objects of the same type.

Fig. 4. OpenSceneGraph-based client architecture

Each of these classes contains a subclass dedicated to updating
the dynamic components of the particular type, which is called
update callback functor and is made available by OSG’s
traversal and callback mechanisms. Also, in order to update
the visible objects only, a unique cull callback factor class is
used in conjunction with the update callbacks. The second
module (Details-On-Demand) uses the name of a selected
object to retrieve its detailed description and associated plots.

The top level manages user interaction and navigation and
contains four modules. The first one handles all navigation
aspects, the second one handles object selection and highlight
and the third one is dedicated to the Head-Up Display (HUD),
containing navigation controls and additional information on
demand. Since multiple event handlers are used to obtain
different interaction behaviours, a fourth module plays the role
of an event coordinator which enables/disables some
behaviours at certain moments in time to avoid undesirable
effects.

The selection module can trigger the display of additional
information inside the HUD. These details are obtained and
formatted by the intermediate level module Details-On-
Demand. The module dedicated to the HUD can also trigger
navigation to certain key locations in the scene, such as the
top-level viewpoint or initial container viewpoints. In order to
navigate to the close proximity of a selected object, the
navigation module needs to obtain the object’s specific
position and dimensions from the scene graph management
module.

B. Rendering and scene graph optimizations

The goal was to create a true real-time rendering application
which offers a frame rate of minimum 30 frames per seconds
(fps). The OSG rendering statistics display allows precise
rendering measurements and hence to evaluate the impact of
each optimization on traversal times and on the overall frame
rate.

Inside the client application, dedicated threads are used for
XML and multimedia file transfers and, by doing so, the
rendering performance is decoupled from the performance of
these transfers. In any case, the transfer duration is less than
one second and hence it is not affecting the 30 seconds update
interval.

In terms of frame completion time, a limit of 30 fps translates
into a maximum of 33.3 milliseconds (ms) in which a frame
can be rendered. In order to render a frame, OSG performs at
least three scene graph traversals: the UPDATE traversal flags
the change made to the scene graph, the cull traversal keeps
the visible nodes and the draw traversal sends the
corresponding OpenGL calls to the GPU. More details about
the scene graph traversals used in OSG can be found in [16].

The frame completion time represents the sum of all these
traversal times. In this first phase of scene creation, we are
mainly interested in the static behaviour of the scene, more
precisely when real time updates are not performed, and we
monitored closely the cull and draw traversal times. We had
to decrease as much as possible these times and, according to
these results, we adjusted the ranges used for the Level-Of-
Detail nodes. Levels of details [4] represent a frequently used
rendering acceleration technique which consists in hiding
undistinguishable details when the camera is situated at certain
distances from a given node.

We used the scene graph construction to perform a series of
optimizations and structural changes. Tests were performed on
three platforms running different operating systems (Windows
XP, Windows 7 and Scientific Linux for CERN 5) , containing
Intel Dual Core CPUs ranging from 1.86 to 3.4 GHz and three
types of nVIDIA cards (Quadro FX 1400, GeForce GT 540M,
GeForce 9800 GT) and the results were similar. In conclusion,
in the case of our application, the behaviour was not
influenced by the underlying platform.

 OpenGL offers different vertex and primitive data definition
and storage options. We evaluated these options in the context
of our application to see which method offers the best
performance for the different object types. For rendering
geometry, the best solution was to use vertex arrays in
combination with triangle primitives and color binding per
vertex. It provided a 14% decrease in the draw time in
comparison to the default. Also, some built-in OSG geometry
classes such as osg::Box have been replaced by custom nodes
optimized for fast rendering, leading to a decrease of 15% in
the draw time.

Text rendering is very expensive and, for this reason, we
disabled some built-in features and obtained a draw time 4
times smaller than the initial one. Also, we had to carefully
choose how to display text and in what conditions, so we
chose to temporarily augment the selected object or to display
it in a different window on demand. Specialized OSG classes,
such as Optimizer and Simplifier, were used to optimize
complex objects and to reduce their sample ratio, hence
creating simplified versions which can be used in levels of
detail.

Another way of improving rendering time is by restructuring
the scene graph. In our case, this implied the elimination,
where possible, of Transform nodes and embedding the object
coordinates into the geometry description. By eliminating a
Transform node at the panel level we obtained a cull time 3
times smaller than the initial one. In order to have a maximum
of flexibility when using levels of detail, the positioning of the
LOD (Level-Of-Detail) nodes needed to be chosen carefully.

During the scene creation process, we performed multiple
evaluations of the static scene. After building the panel
geometry, we evaluated the rendering time and the frame rate
for an increasing number of panel instances. Some general
conclusions were drawn. First of all, the rendering times
provide a linear increase with the number of instances and the
frame rate is inversely proportional with the number of
instances. Second of all, the cull time represents 10% of the
draw time, so optimizations regarding this time are not very
important.

Regarding the number of panels that can be rendered and still
remain above the 30fps limit, this was situated at around 3000.
After the creation of all other objects, the rendering time was
measured again. The frame rate dropped under 30 fps when
rendering more than 15 fully detailed racks or 40 simplified
racks, number corresponding to the maximum number of racks
needed to be displayed inside a container.
Based on these measurements, the LOD ranges have been
defined so as to maintain a frame rate of over 30fps in all
conditions.

C. Targeted update mechanism

The construction of the scene graph is expensive and is often
done as a pre-process. The preferred approach was to create
the majority of objects at initialization time and to update
them in real-time during scene rendering. The synchronous
update of all objects in the scene strongly interferes with the
rendering. We found methods to perform only partial updates
and to insure a minimum frame rate that will not affect the
user’s navigation experience.

OSG enables update based on proximity by introducing the
option of only traversing the nodes which are rendered by
their parent LOD nodes but, by default, it updates all active
nodes regardless of their presence in the camera’s view
frustum. A more efficient method, depicted in Figure 5, is to
use the cull traversal in addition to the update traversal to

update only the nodes which are inside the view frustum and
rendered by their parent LOD node. More precisely, the use of
the cull visitor guarantees that only the objects that are visible
(not culled by any scene graph culling mechanism) are
updated.

As in any scene-graph-based API, in OSG the cull traversal is
always performed after the update traversal and hence the list
of visible objects cannot be modified during the rendering of a
single frame. The targeted update mechanism exploits
temporal coherence in rendering, implying that adjacent
frames are usually very similar, and updates the nodes which
were visible in the previous frame.

For flagging the visible nodes bit masks were used. A traversal
mask has been set for the update visitor and after each update
traversal every node mask is set so as to exclude it from the
next update traversal. In the cull traversal, every visible node
has its mask set to include it into the next update traversal.

Fig. 5 – Targeted update mechanism

The real-time update is done with the help of a dedicated
update callback functor class. An instance of this class can be
attached either to a leaf (or geometry) node with the purpose
of updating the contained geometry or to a grouping node
(Group, LOD, Transform) with the purpose of updating the
geometry contained by its children nodes and thus updating
more objects in the same callback.

Using a callback of each object is not a viable option because
the frame rate was dropping under 30 fps. Using callbacks at
the device level led to an increase of 26% in the frame rate
while at the rack level led to a 38% increase. The downside of
this grouping was an increase of the maximum frame
completion time which has been decreased by spreading the
updates over multiple frames.

D. Interaction and navigation

In the case of our system, the interaction and navigation
needed to be adapted to the specifics of 3D graphics. The
navigation was carefully planned to provide the user with
intuitive movements and to fulfill one of the main
requirements: navigating with ease from the top level view to
the most detailed and back. Viewport controls, such as
panning and zooming, were used in combination with guided
navigation movements. We also aimed at a very intuitive
interaction mechanism and managed to obtain the most
detailed information in only a few clicks.

3D navigation implies 6 degrees of freedom in comparison to
only 2 degrees provided by the 2D navigation. For this reason,
in a 3D world, free navigation without any restrictions is
difficult especially for users which are not familiar with a 3D
display. It constitutes established practice that in a 3D world
the users are guided between two locations of interest and,
when using viewport controls (panning, zooming, etc), their
movements to be restricted to only the ones they really need
[17].

We used navigation paradigms such as “fly” and “walk” to
enable a more intuitive navigation. Inside the subsystem
containers resembling rooms, we are using the “walk”
paradigm. Outside the containers, the “fly” paradigm is used.
Object layout parameters and dimensions were used to restrict
navigation and to calculate locations of interest (ex: rack view,
device view). We used guided movements between
hierarchical levels and a combination of free and guided
movements on the same hierarchical level. The guided
navigation between hierarchical layers is done by drilling
down via mouse selection events and returning to higher levels
by selecting dedicated buttons on the Head-Up Display.

For bringing up additional information regarding a particular
device, we used the details-on-demand technique [18] in two
mechanisms. The first was to add additional objects such as
additional text labels directly on the object upon its selection.
Due to the limited space, adding too many elements creates
the risk of visual clutter and hence we needed to display
additional information in a separate window.

The main problem with 2D windows placed inside a 3D
display is that they are not intuitive to display when the
camera changes position or orientation. In 3D graphics, a
common practice is to use a Head-Up Display (HUD) to
visualize information of interest or to provide interaction
controls. A HUD enables the usage of a 2D interface which is
guaranteed to always be drawn on top of the 3D model, and
hence the positioning and orientation problems are solved.

Besides providing context-aware navigation (depending on
hierarchical level, position, object type, etc), we benefited
from having full control of camera movements in order to
introduce powerful enhancements such as radial navigation
inside the farm containers, smooth interpolation for guided

camera movements, speed and field of view control to
accommodate panoramic and detailed views.

The viewpoint-based navigation and details-on-demand
implementation rely on object selection. Different behaviours
are triggered when single or double clicking on an object and
the camera moves to different viewpoints based on these
events.

The selection mechanism involves the use of a specialized
Visitor node (IntersectionVisitor) that traverses the scene
graph in the search for geometrical objects meeting different
intersection criteria. Node masks are used to specify which
nodes are selectable at a certain moment and to trigger
different behaviours based on object type.

Figure 6 presents the overall interaction schema for the top to
the bottom of the model hierarchy. When the camera is
situated in the top level viewpoint, double clicking on a
container will trigger navigation to the top level viewpoint of
the selected container. By doing so, the user is able to see the
top-level traffic panels and monitor the container’s overall
state. When double-clicking on a container, the user will enter
the container and arrive at an initial viewpoint from where all
the racks are visible and any problematic racks may be
discerned.

Fig. 6 – Overall interaction schema

From any location inside a container, the user is able to
highlight either a whole rack, by clicking on the rack frame or
a device, or an interface by clicking on the corresponding
object. Double clicking on one of these objects will trigger
navigation to a viewpoint from which the best view on the
selected object is provided. Going further, additional
information and mini-plots regarding the object appear in a
dedicated HUD window.

VI. CONCLUSIONS

An in-depth study concerning the TDAQ system’s
visualization requirements has been performed. The system’s
large scale represented one of the most important visualization
problems that we’ve faced, augmented by the fact that the
networks overlap. Moreover, our monitoring tools gather a big
volume of data and operate at a fast rate. These statistics need
to be visualized in real-time and the display has to be updated
very frequently. One of the main novelties regarding our
approach is that it uses 3D visualization and guidelines from
the information visualization domain to build an advanced
visualization system which accommodates these requirements.

We used the OSG framework to build a dedicated 3D engine
for the display, interaction and real-time update of our system
model. Scene creation and assembly have been automated.
From the rendering performance point of view, we achieved
the goal of rendering at a frame rate of 30fps or better. For this
purpose, we performed optimizations at every level: geometry,
text rendering, scene graph restructuring and, depending on
the results, we used and adjusted Level-Of-Detail nodes to
obtain the wanted frame rate and created a targeted update
mechanism based on visibility and proximity to minimize the
impact of the real time updates of the overall rendering time.

We took advantage from having full control on camera
movements to implement specialized mechanisms allowing
intuitive and context aware navigation. Also, features such as
selection bit masks, intersection visitors and event handlers
allowed us to provide efficient user interaction via an intuitive
selection and highlight mechanism. Additional information
and statistics plots, related to a selected node, are displayed
with the help of a Head-Up Display.

VII. FUTURE WORK

The data taking process is characterized by a multitude of
parameters such as trigger rates, event size, luminosity blocks,
etc. This information needs to be integrated into the
visualization system so as to help place the computing-related
events into the context of the current data taking run.

A rule-based engine has been recently developed to collect
and aggregate logs and alarms. It can be integrated with the
visualization system to offer precise information about a
certain problem and to perform more efficient error
propagation inside the visualization system.

 OSG offers the possibility of displaying multiple views in the
same time. This facility can also be used to display multiple
views of different containers which can be used to help
finding correlations between behaviours of different elements.

REFERENCES

[1] S. Stancu M. Ciobotaru L. Leahu B. Martin and C. Meirosu. “Networks

for ATLAS trigger and data acquisition”. Proceedings of Computing in
High Energy Physics (CHEP 06), Mumbai, India, February 2006.

[2] S.M. Batraneanu A. Al-Shabibi M. Ciobotaru M. Ivanovici L. Leahu B.
Martin and S. Stancu. “Operational Model of the ATLAS TDAQ
Network”. Proceedings IEEE Real Time 2007 Conference, May 2007.

[3] 3D Navigation behaviours.http://web3d.org/x3d/wiki/index.php/General
 _X3D_Navigation_Behaviors

[4] Levels of detail technique : http://en.wikipedia.org/wiki/Level_of_detail

[5] CA SPECTRUM Infrastructure Manager.

http:// www.ca.com/us/root-cause-analysis.aspx
[6] D. Savu A. Al-Shabibi S. Batraneanu B. Martin R. Sjoen S. Stancu.

“Integrated System for Performance Monitoring of ATLAS TDAQ
Network”. Proceedings of CHEP 2010, Taipei, Taiwan, 2010

[7] R. Sjoen S. Stancu M. Ciobotaru S. Batraneanu L. Leahu B. Martin and
A.Al-Shabibi. “Monitoring individual traffic flows within the ATLAS
TDAQ network”. Proceeding of 17th International Conference on
Computing in High Energy and Nuclear Physics (CHEP09), Prague,
Czech Republic, 2009.

[8] RRDtool - Round Robin Datafiles for storing time series.
http://oss.oetiker.ch/rrdtool/.

[9] D. Savu A. Al-Shabibi S. Batraneanu B. Martin R. Sjoen S. Stancu.
Efficient Network Monitoring for Large Data Acquisition Systems. 13th
International Conference on Accelerator and Large Experimental
Physics Control Systems(ICALEPCS) 2011 , Grenoble, France, 2011.

[10] The Python Programming Language. http://www.python.org.
[11] OpenSceneGraph - open source high performance 3D graphics toolkit.

http://www.openscenegraph.org.
[12] OpenGL - The industry standard for high performance graphics.

http://www.opengl.org/.
[13] The Standard Template Library : Introduction.

http://www.sgi.com/tech/stl/stl_introduction.html.
[14] Ralph Johnson Erich Gamma, Richard Helm and John Vlissides. Design

Patterns: Elements of Reusable Object-Oriented Software. Addison-
Wesley, first edition, 1995.

[15] cURL library for enhancing Web content retrieval. http://curl.haxx.se/.
[16] P. Martz. OpenSceneGraph Quick Start Guide. Computer Graphics

Systems Development Corporation, 2007.http://www.lulu.com/items/
volume_51/767000/767629/3/print/OSGQSG.pdf

[17] Stephanie Houde. Iterative design of an interface for easy 3D direct
manipulation. In Proceedings of ACM CHI'92 Conference on Human
Factors in Computing Systems, pp. 135-142, 1992.

[18] Details-On-Demand technique. http://www.infovis-wiki.net/index.php?
 title=Details_on_demand.

http://en.wikipedia.org/wiki/Level_of_detail�
http://www.ca.com/us/root-cause-analysis.aspx�
http://www.python.org/�
http://www.opengl.org/�

