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ABSTRACT: Modern experiments search for extremely rare processes hidden in much larger 

background levels. As the experiment‘s complexity, the accelerator backgrounds and luminosity 

increase we need increasingly complex and exclusive event selection. We present the first 

prototype of a new Processing Unit (PU), the core of the FastTracker processor (FTK). FTK is a 

real time tracking device for the ATLAS experiment‘s trigger upgrade.  The computing power 

of the PU is such that a few hundred of them will be able to reconstruct all the tracks with 

transverse momentum above 1 GeV/c in ATLAS events up to Phase II instantaneous 

luminosities (3×10
34

 cm
-2

 s
-1

) with an event input rate of 100 kHz and a latency below a hundred 

microseconds. The PU provides massive computing power to minimize the online execution 

time of complex tracking algorithms. The time consuming pattern recognition problem, 

generally referred to as the “combinatorial challenge”, is solved by the Associative Memory 

(AM) technology exploiting parallelism to the maximum extent; it compares the event to all 

pre-calculated “expectations” or “patterns” (pattern matching) simultaneously, looking for 

candidate tracks called “roads”. This approach reduces to a linear behavior the typical 

exponential complexity of the CPU based algorithms. Pattern recognition is completed by the 

time data are loaded into the AM devices. We report on the design of the first Processing Unit 

prototypes. The design had to address the most challenging aspects of this technology: a huge 

number of detector clusters (“hits”)  must be distributed at high rate with very large fan-out to 

all patterns (10 Million patterns will be located on 128 chips placed on a single board) and a 

huge number of roads must be collected and sent back to the FTK post-pattern-recognition 

functions. A network of high speed serial links is used to solve the data distribution problem. 

KEYWORDS: Trigger concepts and systems (hardware and software); Pattern recognition; VLSI 

circuits. 
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1. Introduction 

The trigger system at hadron colliders must maintain high trigger efficiencies for the 

physics we are most interested in, while suppressing the enormous QCD backgrounds. A multi-

level trigger [1] is an effective solution for this task. The ATLAS trigger system [2] consists of 

three levels. The hardware Level-1 Trigger quickly locates the regions of interest in the 

calorimeter and the muon system, operating at rates up to 100 kHz. The subsequent trigger 

levels, Level-2 and the Event Filter (EF), are collectively known as the high-level trigger 

(HLT). They consist of software algorithms running on a farm of commercial CPUs. The Level-

2 algorithms may request track information in a Level-1 region of interest while the EF has 

access to information throughout the entire detector. The final EF output rate is limited to 200 

Hz. 

The trigger event selection requires massive computing power to minimize the online 

execution time of complex algorithms. The online track reconstruction is the most demanding 

task. The FastTracker processor (FTK) [3] will be an important element in triggering at CERN’s 

Large Hadron Collider (LHC), and even more so after the planned luminosity upgrade.  

The FTK is highly parallel, with the detector segmented into η-φ towers, each with its own 

tracking processor. Each processor covers one sixteenth of the detector in φ, 22.5°, plus 10° 

overlap to maintain high efficiency. The η range of each region is divided into four overlapping 

intervals, for a total of 64 η-φ towers. Consequently, a tower receives only a fraction of the 

silicon hits, and the Processing Units (PUs) executing track reconstruction have substantially 

fewer candidates to process. Within each tower, we distribute the high luminosity data on 12 

parallel buses at the full 100 kHz Level-1 Trigger rate. 
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The pattern recognition inside each detector tower is executed by two PUs working in 

parallel. Figure 1a shows one of the 8 FTK Core Crates [3]. Each core crate contains16 PUs, 

corresponding to 8 towers, all contiguous and contained in an azimuthal detector section of 45°. 

The pixel and SCT data are transmitted from the Read-Out Drivers (RODs) on S-Link [4] 

fibers to the Data Formatters (DF) which perform cluster finding (see figure 1a). The DFs 

organize the detector data into the FTK η-φ tower structure, taking the needed overlap into 

account, for output to the core crates. The barrel layers and the forward disks are grouped into 

logical layers. The cluster centroids in each logical layer are sent on high-speed serial links to 

the PUs located in the Core Crates. 

 

 
Figure 1: (a) The FastTracker architecture. The Core Crate, containing up to 16 PUs, is shown. 

(b) The PU, composed of a 9U VME board, the AMBFTK, and a rear card, the AUXFTK. Both 

are placed in the same slot of the VME Core Crate. 

2. The Processing Unit Architecture 

The PU algorithm consists of two sequential steps. In the first step, pattern recognition is 

carried out by a dedicated device called the Associative Memory (AM), which finds track 

candidates (coarse-resolution roads). When a road is found that has hits in at least seven of the 

eight silicon layers used for pattern recognition, the second step is carried out in which the full-

resolution hits within the road are fit to determine the track helix parameters and a goodness of 

fit. Tracks that pass a χ
2
 cut are kept. The ATLAS inner tracker geometry is described in [5], 

while the geometry for the Phase II upgrade is being defined.  

The PU consists of a 9U VME board, called the AM Board or AMBFTK, along with an 

auxiliary card on the back of the crate (AUXFTK). A special P3 connector allows for   

communication between the front and rear boards placed in the same VME slot (see figure 1b).  

The AMBFTK has 128 AM chips organized into 4 large mezzanines called LAMBs. The 

AMBFTK finds the roads, while the AUXFTK refines the track finding by doing preliminary 

track fitting with full resolution detector information. The AUXFTK contains also the Data 

Organizer (DO), which is an important interface between the DF, the AMBFTK and the Track 

Fitter (TF). 

The DO engines are smart databases where full resolution hits received from the DFs are 

stored in a format that allows rapid access based on the pattern recognition road ID.  When the 

AM finds roads, the DO retrieves the requisite number of hits. In addition to storing hits at full 
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resolution, the DO also converts them to a coarser resolution, referred to as super-strips (SS), 

appropriate for pattern recognition in the AM. The AMBFTK contains a very large number of 

preloaded patterns, corresponding to the possible combinations of a SS in each silicon layer that 

a real track could produce. These are determined in advance from a full ATLAS simulation of 

single tracks using detector alignment extracted from real data. The AM is a massively parallel 

system in that each hit is compared with all patterns nearly simultaneously. When a pattern has 

been found with the requisite number of hit layers, it is then labelled as a road, and the AM 

sends the road number back to the DO. The DO immediately fetches the associated full 

resolution hits and sends them and the road ID to the Track Fitter (TF). Because each road is 

quite narrow, the TF can provide high resolution helix parameters using the average parameters 

across the relevant tracking modules, adjusted by corrections that are linear in the actual hit 

position in each layer. Fitting a track is thus extremely fast since it consists of a series of 

multiply-and-accumulate steps. A modern FPGA can fit approximately 10
9
 track candidates per 

second. Finally, duplicate-track cleanup is performed by the Hit Warrior (HW).  

After processing the hits, the PU sends all found tracks with transverse momentum PT 

above a minimum value, typically 1 GeV/c, over S-LINK to the second FTK stage. 

2.1 The First PU Prototype 

The associative memory board has a long development history [6, 7] while the use of an  

AUX card containing multiple high-level functions constitutes a totally new development. For 

this reason, this first PU prototype includes a fully functional AMBFTK, with a much simpler 

AUXFTK, the proto-AUX, where the DO and TF functions are missing. The goal of the proto-

AUX is to test the high frequency serial links and provide data to the AMBFTK board at full 

speed in order to verify the performance of the Associative Memory system. The AMBFTK    

will have to face large input (hit) and output (roads) data traffic and a challenging fan-out. 

problem. 

The proto-AUX card provides hits on 12 buses, covering the 8 logical layers used by the 

AM for pattern recognition. The connection allows a maximum of 12 Gbits/sec input to the 

AMBFTK through 12 high frequency serial links and a maximum of 24 Gbits/sec output (found 

roads) through additional 16 high frequency serial links. These buses are provided by the AUX 

card through a high frequency ERNI P3 connector (see figure 1b). A custom board profile has 

been studied and simulated at the CAD to guarantee a perfect board-to-board closure of the P3 

connector without backplane support in that region. A network of high speed serial links 

characterizes the bus distribution on the AMBFTK.   

2.2 The AMBFTK 

The motherboard has flexible control logic placed inside a group of powerful FPGA chips 

visible in figure 2a. All the FPGAs are Xilinx Spartan6 chips [8] which have Low-Power 

Gigabit Transceivers (GTP). Ultra-fast data transmission between chips, over backplanes, or 

over longer distances is becoming increasingly popular and important. However, it requires 

specialized, dedicated on-chip circuitry and differential I/O capable of coping with the signal 

integrity issues present at these high data rates. All Spartan-6 LXT devices have two 8 gigabit 

transceiver circuits. Each GTP transceiver is a combined transmitter and receiver capable of 

operating at data rates up to 3.2 Gb/s. The transmitter and receiver are independent circuits that 

use separate PLLs to multiply the reference input frequency by programmable numbers between 

2 and 25, generating the bit-serial data clock. Additionally, each GTP transceiver has a large 
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number of user-definable features and parameters. All of these can be defined during device 

configuration, and many can also be modified during operation. 

The incoming hits (12 serial links, the red arrows in figure 2a) are received by the GTPs in 

the two input FPGAs and saved in large derandomizing FIFOs.  Outgoing road IDs from the 

LAMBs (4 links/LAMB) are sent to the FPGAs (in the blue boxes) near the P3 on serial links 

(blue arrows). The FPGA inside the grey box is the Control chip. It is connected to all of the 

FPGAs in the AMBFTK to control the event processing.   

 
Figure 2: (a) AMBFTK layout. The red arrows show the hit paths from the P3 connector to the 

LAMBs and the blue arrows show the road paths from the LAMBs to the P3 connector. The 

yellow square in the top-left corner shows the size of the LAMB mezzanine. (b) the Proto-AUX 

2.3 The LAMB Mezzanine 

The LAMB and the AMBFTK communicate through an SMD connector placed in the 

center of the LAMB (inside the yellow central rectangle in figure 3 corresponding to the 4 green 

boxes in figure 2a).  One of the LAMBs is shown as a transparent yellow square in the top-left 

quarter of figure 2a. Each LAMB contains 32 Associative Memory (AM) chips, 16 per face, as 

in past designs.  However, the AM chips are new [9]. They are 65 nm standard cell devices 

except for the individual patterns each of which is a single custom cell designed to maximize 

the pattern density and minimize power consumption. They are in LQ208 packages (1.4 mm 

thick) and contain the stored patterns along with the readout logic.  They have a core voltage of 

1.2 V and an I/O voltage of 3.3 V.  A large current (up to 25 A per LAMB) is provided through 

the two connectors in the yellow boxes at the bottom of figure 3 to support the 1.2 Volts. The 

3.3 V current is provided by the LAMB central SMD connectors, together with the signals. 

The 32 AM chips in each LAMB are connected as eight 4-chip pipelines (4 on the top side 

and 4 on the bottom side). Each AM chip receives an input road bus from its upstream chip (in 

figure 3 the green arrows show the direction of the road flux) which it multiplexes with its 

internally matched roads onto a single output bus to its downstream chip.  The roads flow down 

the 8 pipelines and are collected and merged into 4 streams by the two GLUE chips shown on 

the bottom of the LAMB inside green boxes. The Glues are Spartan6 FPGAs, containing high-

speed serial links, the GTPs, used to transfer roads to the motherboard through the SMD 

connector.  



 
 

– 5 –

 

 
Figure 3: The LAMB mezzanine layout 

 

The hits for each event, organized into 8 buses for 8 detector layers, arrive at the LAMBs 

from the AMBFTK through the SMD connector and are fed partially in parallel, partially 

serially. They are distributed to the 32 AMchips with a four-fold fan-out through the Input 

Distributor (INDI) chips shown in the red (Spartan6 FPGA, connected through GTPs) and blue 

(Xilinx CPLDs) boxes. The 4 buses that are distributed serially by the AMBFTK are received 

by the GTPs of the Spartans, while the CPLDs receive the parallel buses. The CPLDs are 

located in the center of the board; the left column distributes the 4 buses to the left half 

mezzanine (see blue arrows), while the right column distribute the same buses to the right. 

There are also multiple Spartan chips, one placed at the top and one at the bottom of the LAMB, 

and they distribute their outputs to the bottom or top half of the board. The red arrows show 

how each bus is multiplied by 4 and distributed by the Spartans while the blue arrows show the 

bus distribution by a CPLD couple. 

 

2.4 Event Processing 

 
When the Control chip starts to process an event, the hits are popped in parallel from all 

the hit input FIFOs and are simultaneously sent to the four LAMBs.  

An End Event (EE) word separates hits belonging to different events. The EE contains the 

event tag. The data on different streams have to be synchronized. The input FPGAs are provided 

with deep FIFOs for this purpose, one for each serial link.  If, occasionally, a FIFO becomes 
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“Almost Full”, a HOLD signal is sent to the upstream board, which suspends the data flow until 

more FIFO locations become available.  The Almost Full threshold is set to give the upstream 

board enough time to react. The 12 Holds for the input serial links are sent back to the 

AUXFTK through the P2 connector. Holds are also sent by the AUXFTK to the AMBFTK to 

stop sending roads if an AUX FIFO receiving one of the road links becomes half full. 

The new AM chip is able to process two events in parallel. While hits of one event (the 

“N+1st” event) are downloaded into the LAMBs, locally matched roads of the previous event 

(the “Nth” event) are collected from the LAMBs and sent to the AUXFTK.  

When the EE word is received on a hit stream, no more words are popped from the relative 

FIFO until the EE word containing the same tag is received on all 12 hit streams (event tag 

“N+1”). At that time, the “N+1st” event is fully loaded into the AM chips.  Once the LAMBs 

have made the last of the matched roads of the “Nth” event available to the AUXFTK, including 

the 16 EE words on all the 16 road serial links, the “Nth” event is considered fully processed. At 

that point, the Control chip sends INIT to push events ahead in the pipeline: the “Nth event” 

will be deleted by the AMBFTK since it is fully processed, the matched pattern information of 

the “N+1st” event will be copied to reset the pattern bank for a new event and start the read-out 

of the matched roads of the “N+1st” event (complete the “N+1” event processing).  Finally, a 

new event, the “N+2nd” event, will be popped out of the input FIFOs and sent to the AM chips 

to register its matches with patterns. 

In conclusion, the INIT signal will be provided with the logical AND of these 2 conditions: 

(1) All EE words for the “Nth” event have been delivered to the output on the 16 serial road 

links going to the AUXFTK.  

(2) All EE words have been received for the “N+1st” event from the 12 serial links coming from 

the AUX board. 

2.5 Proto-AUX 

The Proto-AUX, pictured in figure 2b, was designed to test the high-speed links to the 

AMBFTK and VME access to the AUXFTK.  It contains two Altera Stratix IV [10] FPGAs, 

each of which has sixteen 8.5 Gbit/s transceivers. A small test card was also produced to test the 

VME access to the Proto-AUX.  There are roughly 300 MB of ROM memory on each 

AUXFTK which will be written with VME.  

Although each transceiver can be configured as independent receiver and transmitter, the 

StratixIVs are configured such that one has 16 receivers and the other has 16 transmitters.  The 

transmitter FPGA will send fake data, which it will have read from a buffer on the board, on 12 

of its transmitters to the AMBFTK over the P3 connector.  The receiver FPGA will receive data 

from the AMBFTK on all 16 of its receivers.  Data integrity will be checked by comparing the 

received road IDs to the expected IDs corresponding to the sent data. 

3.  PU’s diagnostic:  the Spy Buffers  

Each main FTK functional block is provided with circular memory buffers called Spy 

Buffers. They are deep enough to record, as a logic state analyzer, a few events sent to the block 

output or received on the block input. Our PU prototypes implement them. Comparing a 

sender’s output buffer with a receiver’s input buffer checks data transmission. Comparing a 

block’s input and output with emulation software checks data processing. The memories also 

serve as sources and sinks of test patterns for testing single functions, single boards, a small 
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chain of boards, a slice of FTK, FTK as a standalone system, or the data paths to FTK’s external 

sources and sinks. The buffers can be frozen and read by monitoring software parasitically 

during data-taking, and buffers inside contiguous boards or block functions can be frozen 

together via dedicated signals when any piece of logic detects an error condition, such as 

‘invalid data’ or ‘lost synchronization’. By polling the PU’s circular memories during beam 

running, large samples of track and hit data, pattern IDs, etc., unbiased by L2 or L3 trigger 

decisions, are sampled and statistically analyzed to monitor data quality. 

4. Conclusions  

We report on the design of the first Processing Unit prototypes for the FTK processor. This 

design had to face the most challenging aspects of this technology: the huge volume of detector 

clusters (“hits”) distributed at high rate with large fan-out to all patterns (10 million patterns will 

be located on 128 chips placed on a single board) and the large number of roads collected and 

sent back to the FTK post-pattern-recognition functions. A network of high-speed serial links 

has been used to solve the data distribution problem. 
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