Advanced Visualization System for
Monitoring the ATLAS TDAQ Network
In Real-Time

S. Batraneanu, D. Campora, B. Martin,
D. Savu, S. Stancu, L. Leahu

RN

Outline

Introduction

» ATLAS trigger and data acquisition(TDAQ) system
» Monitoring the ATLAS TDAQ networks

Advanced visualization system for the TDAQ networks
» Design
= Motivation, requirements and challenges
= Hierarchical 3D model and its layout rules
» Implementation
= Client architecture
= Performance optimizations
* Real-time update
* |nteraction mechanisms

Conclusions and future work

ATLAS Trigger and Data

Acquisition System(TDAQ) Lever-

» Rejection factor:10°

» Outstanding accuracy and
efficiency

Level-2
» 3 networks
= DataCollection(Level-2)
= BackEnd(Level-3)
= Control

= 6 chassis routers, 200 edge
switches

= 7000 interfaces, 2000 nodes Level-3

» Demanding performance
requirements

MESSEN 900-300 Hz
storage

Monitoring software framework

Net-IS

4\ / Net-RT

o Timeseries plots
o sFlow stats

\oPlot aggregation

o Tabular data
o Traffic—aware map

€

1L

3DNetViz \

OneClick

RW

> Topology 1N SYNC &

* Device description £ Y

» Real-time statistics] W CROSS CHECKS
» Historical statistics(RRD)

eV
SNMP Topology sFlow
Poller Discovery Engine
(Apoll) (NetDiscovery) (NetsFlow)

—

—— —

TLAS NETWORK

P

———

I,

Advanced visualization system
-requirements and challenges-

An efficient visualization system should :
> Be intuitive
» Follow the system’s architecture and data flow
» Display the different types of monitoring data in real-time
» Offer the right level of detail
» Provide clear indications regarding the problem

Main implementation challenges
U Large scale system and overlapping networks
U Large variable space
U Real time update (30 seconds)
0 Operation on multiple OSes : Windows, Linux

2D vs. 3D Visualization

2D Visualization 3D Visualization

» Relatively inexpensive in terms » Demanding in terms of processing
of resources and setup power, configuration

» Visual clutter for overlapping » Offers additional dimension ->
networks better candidate for large scale

complex models

> Two degrees of freedom and » Six degrees of freedom and natural
restricted navigation paradigms navigation paradigms (walk, fly)

» Camera-object distance can be
evaluated

=y

H I e rarC h I Cal Processing farm Top level view Network core Qverall status -> Color

3D Model

Device type -> Shape

Devices pc-tdq-xpu-23016

Traffic quantity -> Size

m ﬁ Traffic status -> Color

data_efl aggregate uplink data-core-dc-982.5/9

Traffic panels \/

Data network type -> Saturation

Optimized object layout

Top level view
» Follows data flow
» Control network as a backplane

Panoramic rack view
Aspect ratio improvement

‘.ea-u.nl

o
*>
[
L]

-
L
2
L)

OSG implementation - overview

OpenSceneGraph(OSG)

» Open source, portable, high-performance framework based on C++ and
OpenGL

» Rigorous structure based on STL and design patterns (visitor, callback)

Why did we choose OSG?
» Thin wrapper on top of OpenGL -> access to low-level rendering options
» Rendering statistics display and API -> essential for performance tuning
» Bit masks for selection and specialized event handlers for interaction

Profited from the scene creation to perform several optimizations
» Frame rate >30fps
= Minimize overall traversal time: UPDATE+CULL+DRAW
= Adjust LOD ranges
» Real-time update impact minimization

OpenSceneGraph Lﬁ

Client architecture

User Interaction & Main event flow

Navigation
Fxent Coordinator

Navigation and
objecr selection events

» Do |

Navigation events

’ Object selection events

HUD object selection events ‘

Location fayout parameters

Additional info & plots

Scene & Appearance change

Content request

Ma nagemem‘ Selected object

z{;?::;g:g:: Details-On-Demand
A
Hierarchy : i i
Static descriptions Deta;g:ccr;;rrr;gsnenr Top ;z';i’ gﬂ?;iefgos) Historical plots
Status updates ’

Data Retrieval

Sy

Rendering and scene graph optimizations

Rendering optimizations
Impacts DRAW traversal time

Geometry rendering -> best solution was to use vertex arrays +
triangle primitives + color binding per vertex —> 14% decrease

Custom geometry nodes optimized for fast rendering -> 15%
decrease

Text rendering -> ~75% decrease
Low resolution object versions to use in Level Of Detail

Scene graph restructuring

Impacts CULL traversal time

Eliminated Transform nodes at the panel level-> ~66% decrease
LOD node rearrangement for flexibility

2

Real-time update

BaSEd On ViSibiIity and prOXimity ‘_.‘-'[Main scene graph

New targeted update mechanism
based on temporal coherence

Tested different granularities
» Individual node -> <30fps
» Device node — 26% increase
» Rack node — 38% increase

~UpdateMask ~updateMask

updateMask

Decreased maximum completion time by pdloh
spreading the updates over multiple

frames

updateMask

2

Interaction mechanisms

Top container viewpoint Top levef viewpoint

Mixing free and guided navigation mm | doubleClick
L L]
Context aware navigation
» Based on layout parameters doubleClick
» Different navigation paradigm :
» Radial navigation

» Field of view and speed
control

L]

=== (Container
| viewpoint

Selection and highlight mechanism e Y I bl
s CLL ﬁl.!!'
ﬁ:’“‘ﬁ“’“’ T
. . E_’fl g: Ao * Oum
Details-On-Demand in a Head-Up EIET fdom gwew
Display T
doubleClick doubleClick
malc e |) WSO -

pc-tdq-xpu-24004
ey

-

pc-tdq-xpu-24664 C'tﬂq
meo w |]

Rack viewpoint Device viewpoint

=

Conclusions and future work

» ldentified specific visualization requirements
» Chose 3D visualization and InfoViz guidelines
» Used open-source low-level framework OSG

» Intuitive interaction and navigation

» Frame rate > 30fps

Future work
» Integration of data taking parameters

» Rule-based expert system to Improve error
propagation rules

»Multiple views

	Advanced Visualization System for Monitoring the ATLAS TDAQ Network in Real-Time
	Outline
	ATLAS Trigger and Data �Acquisition System(TDAQ)
	Monitoring software framework�
	Advanced visualization system�-requirements and challenges-�
	Slide Number 6
	Hierarchical �3D Model�
	Optimized object layout�
	OSG implementation - overview�
	Client architecture�
	Rendering and scene graph optimizations�
	Real-time update�
	Interaction mechanisms�
	 Conclusions and future work

