

Heavy Flavor and the CKM Matrix

Stéphane T'JAMPENS LAPP (CNRS/IN2P3 et Université de Savoie)

On behalf of the LHCb collaboration Including results from ATLAS/CMS, BaBar/Belle and CDF/DØ

Outline

CKM Matrix

- Moduli
- Phases (CP violation)
 - Gamma
 - Charm

Bounds on New Physics with FCNCs

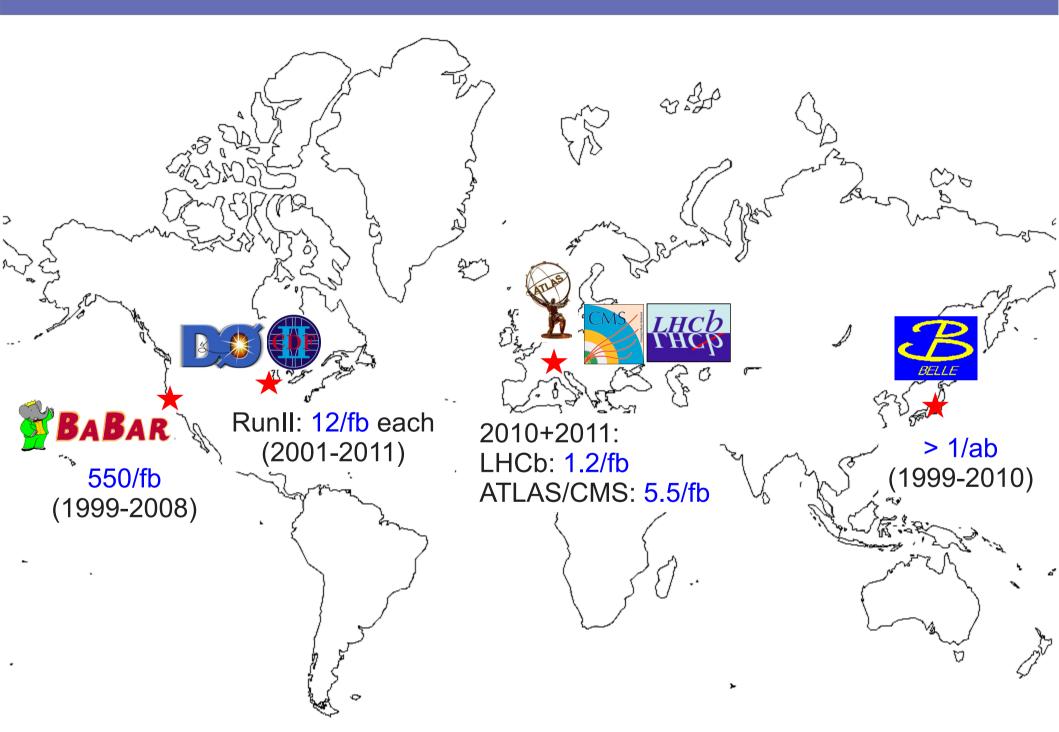
- Mixing in B
- Rare Decays:
 - $B_s \rightarrow \mu\mu$
 - $B_s \rightarrow K^* \mu \mu$

Future: LHCb Upgrade, Bellell and SuperB

selected highlights (apologies if your analysis is not mentioned)

CKM Matrix: Quark-Mixing Matrix

- In SM, Weak-charged transitions mix quarks of different generations:
- → encoded in quark-mixing matrix
- Cabibbo (1963): universality of weak-coupling constant \rightarrow unitary matrix
- Kobayashi-Maskawa (1973): 1 CP-violating phase with 3 families
- → Cabibbo-Kobayashi-Maskawa (CKM) Matrix



Hierarchy: Wolfenstein parametrization (1983)

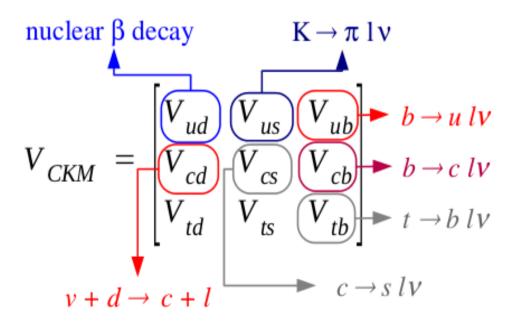
$$V = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + O(\lambda^4)$$

4 parameters (A, λ , ρ , η): SM testable and predictive (correlation among measurements)

Some of the Main Flavor-Physics Experiments

CKM Matrix

Moduli


CKM Matrix: Moduli

CKM matrix: free parameters determined experimentally

Goal: high precision of CKM parameters

- → pin down the SM flavor couplings and search for NP
- → Data = weak ⊗ QCD: precise lattice-QCD calculations (few % or better)

required See Van der Water, Witzel, Bouchard

Excellent determination (error ~ 0.03%) Very good determination (error ~ 0.4 %) Good determination (error ~ 2 – 3%) Non-negligible error (5 – 12%) Not competitive with unitarity constraints

Lingering difference: V_{ub} inc. > V_{ub} excl. (2.4 σ) (idem V_{cb} : 2.1 σ) See Urquijo, Kwon

CKM Matrix

Phases → CP violation

KM Ansatz: Tested to be Dominant CPV Phase at EW Scale

1.5

excluded area has CL > 0.95

Inputs:

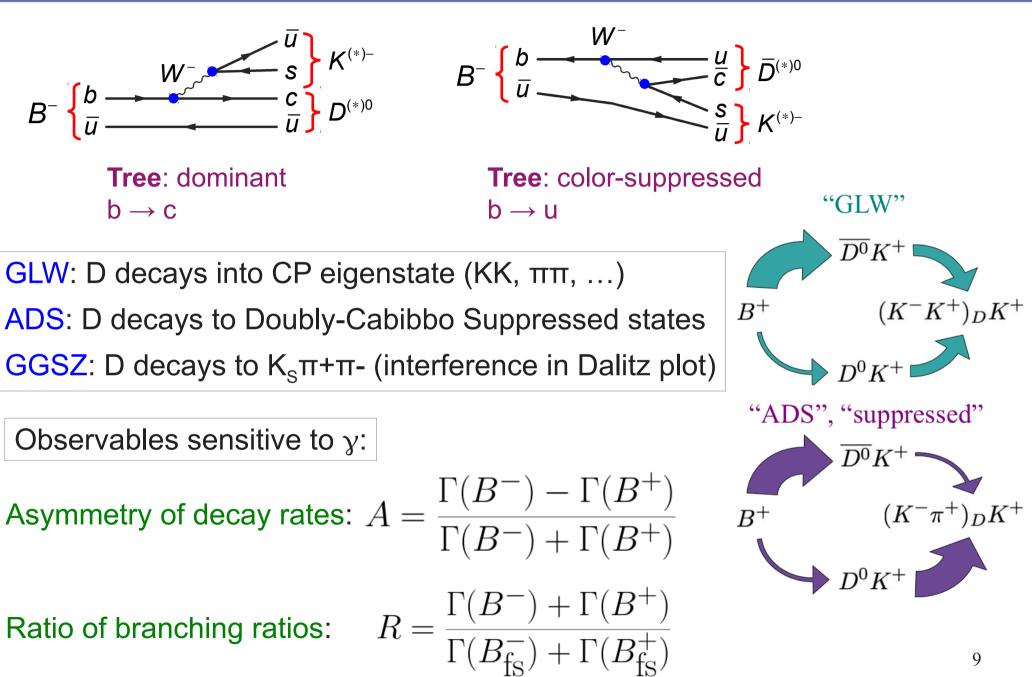
- A, λ : $|V_{ud}|$, $|V_{us}|$, $|V_{cb}|$
- $\bar{\rho}, \bar{\eta}$: • $|V_{ub}|, B \rightarrow \tau v, \Delta m_d, \Delta m_d \& \Delta m_s, [\epsilon_{\kappa}], \sin 2\beta, \alpha, \gamma$ See Yusa
- Lattice-QCD (LQCD)

Impressive accomplishments

Overall consistency at 2σ level

CKM dominant source of flavor and CPV violation. Is CKM sufficient?

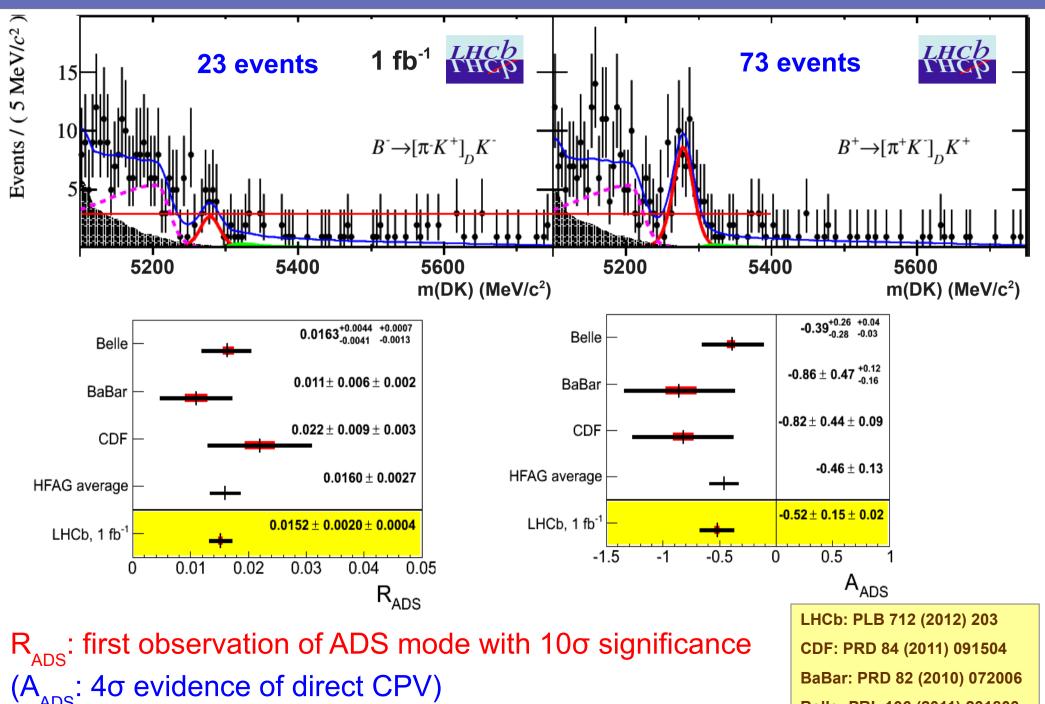
Some discrepancies:


- $|V_{ub}|, |V_{cb}|$
- B→τν vs sin2β: 2.8σ

 $B \rightarrow D^{(*)} \tau v: 3.4\sigma (BaBar)$ arXiv:1205.5442

1.0 $\Delta m_{d} \& \Delta m_{s}$ sin 2β 0.5 Δm_d εκ Ц 0.0 α VublsL α -0.5 εκ -1.0 γ sol. w/ $\cos 2\beta < 0$ (exd. at CL > 0.95) -1.5 1.0 1.5 2.0 -1.0 -0.5 0.0 0.5 ō

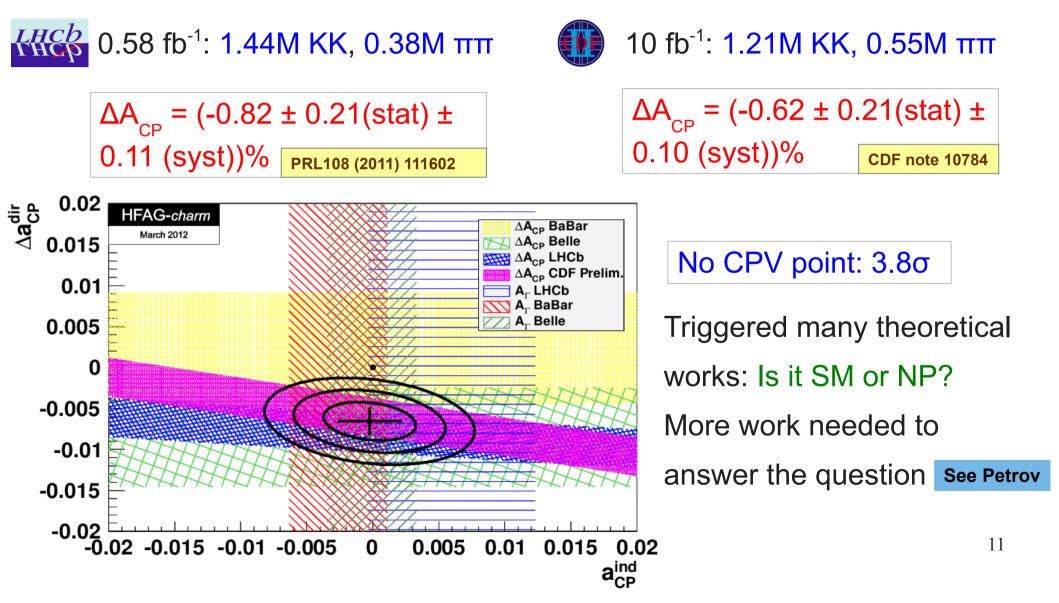
Need to overall improve precision but especially on γ (18%) for reference UT (β : 3%, $_{8}$ α : 5%) and on LQCD inputs


CKM Matrix: Gamma (Direct CPV)

9

CKM Matrix: Gamma (Direct CPV)

See Akiba

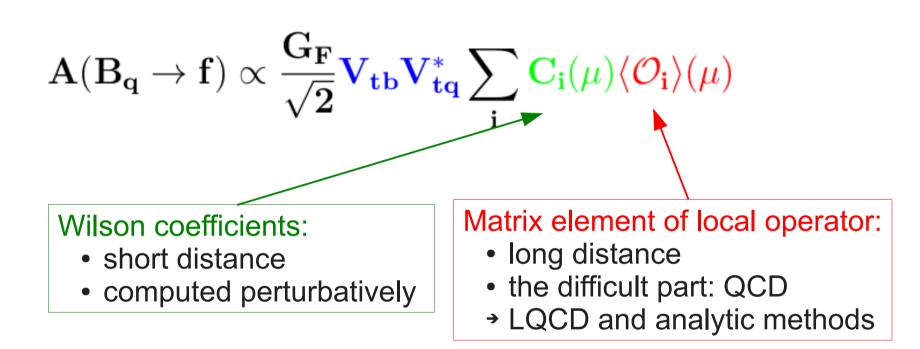

Belle: PRL 106 (2011) 231803

CKM Matrix: direct CPV in Charm

See Cinabro for CPV in mixing

See Harr

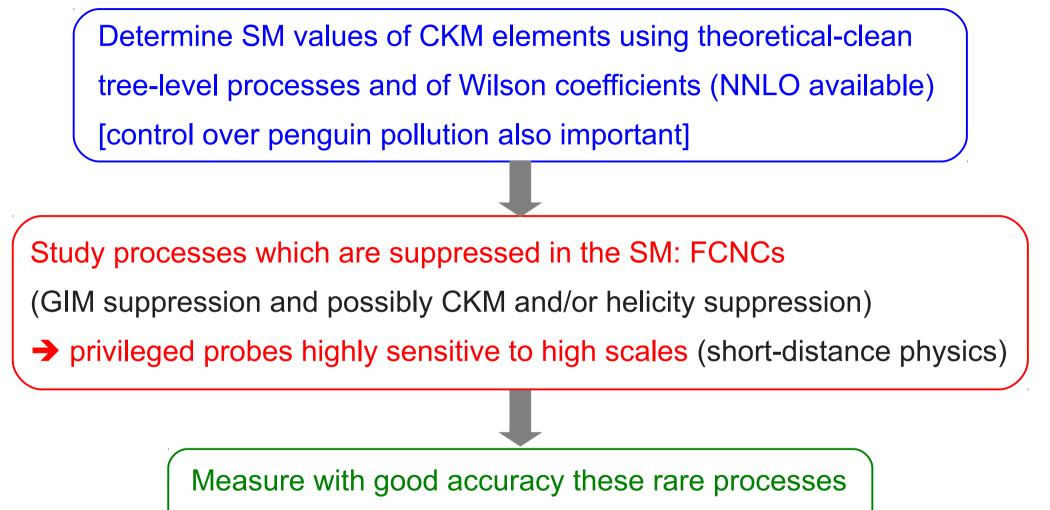
Production and detector asymmetries cancel out.



Precision Flavor Physics Unraveling the Flavor Structure of BSM

Key words: experimental precision – theoretical cleanliness

Theory to Interpret Flavor Measurements

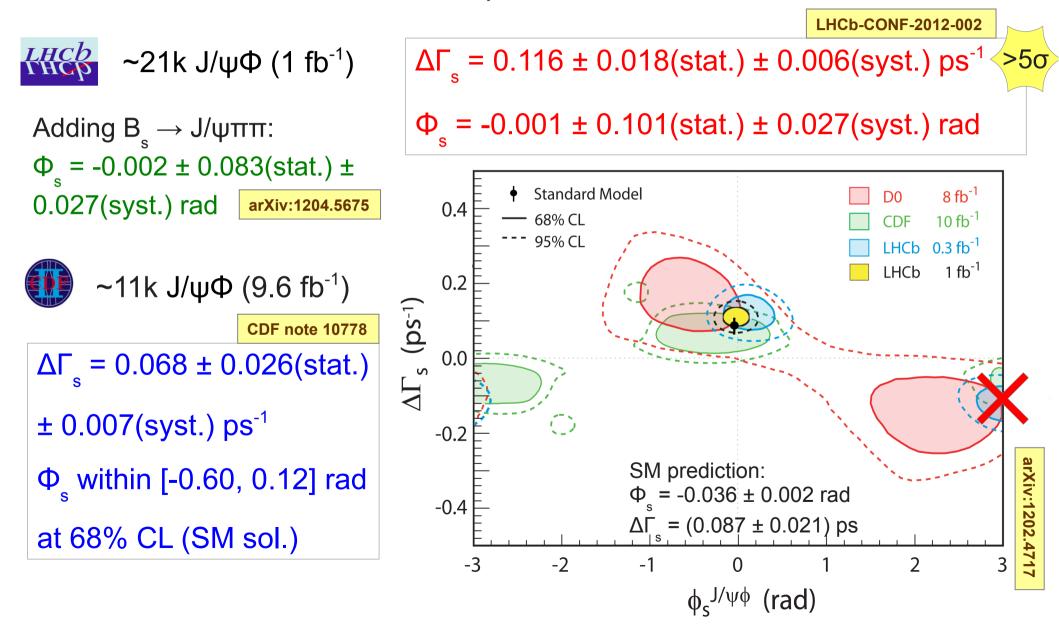

Framework: Operator Product Expansion: separate low and high energies

NP is in Wilson coefficients $C_i = C_i^{SM} + C_i^{NP}$ or new local operators O_i [C_i^{NP} generically suppressed by a factor of order M_W^2/Λ_{NP}^2 wrt C_i^{SM}]

→ Learn about the Dirac, chirality and CP structure of BSM

Probing the BSM Flavor Structure

and determine the allowed room for new physics


Such chain has already been closed, with good accuracy, for b \rightarrow d and s \rightarrow d Δ F=2 observables (K and B_d meson-antimeson mixing)

Mixing in B_s

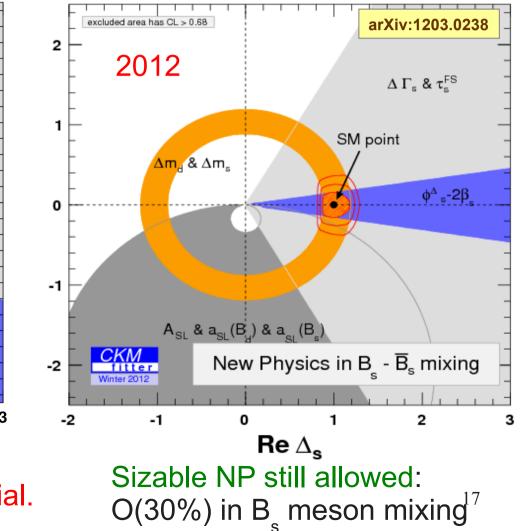
(Δ**F**=2 **F**C**N**C**)**


B_{s} Mixing: ΔΓ_s, Φ_s

"Golden mode": $B_s \rightarrow J/\psi \Phi \rightarrow$ need angular distribution to disentangle the mixture of CP-odd and CP-even amplitudes

NP in Mixing

See Webber

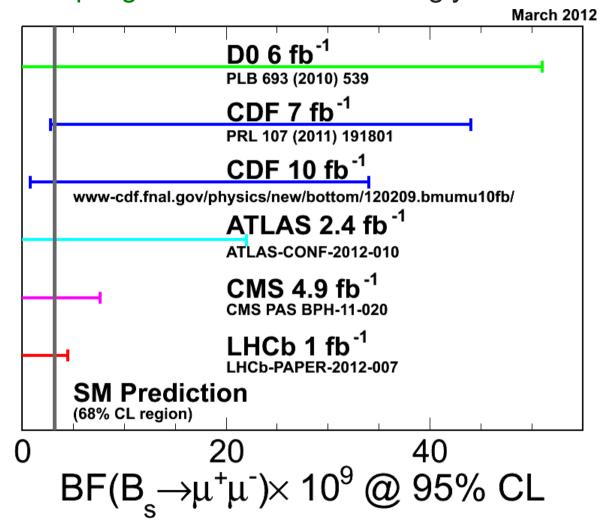

SM in B semileptonic asymmetry A_{SI}

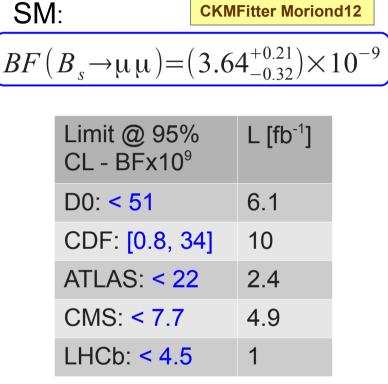
D0: PRD 84 (2011) 052007

excluded area has CL > 0.68 2 2010 $\Delta \Gamma_{s} \& \tau_{s}^{FS}$ 1 SM point $\Delta m_d \& \Delta m_s$ $\mathsf{Im}\,\Delta_{\mathsf{s}}$ 0 -1 $\phi_s^{\psi\phi}$ $A_{SL} \& A_{SL} (B_{d}) \& A_{SL} (B_{s})$ CKM fitter New Physics in $B_{s} - \overline{B}_{s}$ mixing -2 2 0 3 -2 -1 1 $\operatorname{Re}\Delta_{s}$

Independent cross-check for A_{sl} is crucial.

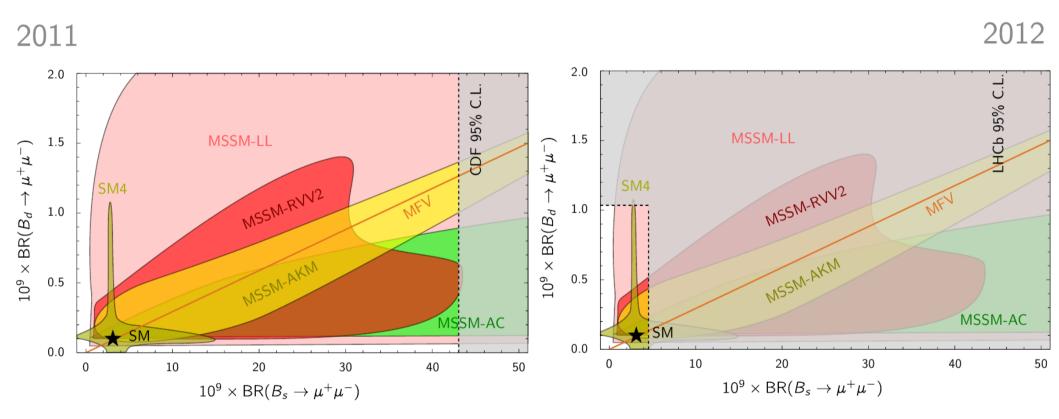
Simple model-independent parametrization of NP in all $\Delta F=2$ observables: $M_{12}^{s} = M_{12}^{SM,s} \cdot \Delta_{s}$




Rare Decays

(ΔF=1 FCNC)

 $B_s \rightarrow \mu\mu$: helicity-suppressed FCNC, sensitive to (pseudo)scalar S⁽⁾ and P⁽⁾ couplings which could be strongly enhanced by NP.


We are getting close to SM value!

Whole Run II sample (10 fb⁻¹, +30% data): last summer deviation not reinforced by new data, but still >2 σ for bkg-only hypothesis (2.8 σ in summer 2011) ¹⁹

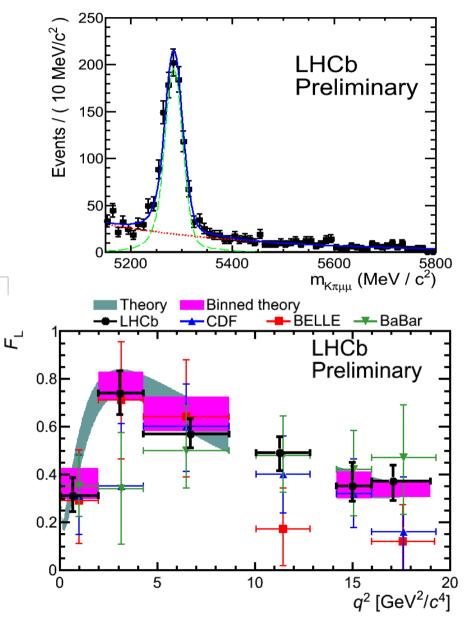
$B_{L} \rightarrow \mu\mu$: Constraints on MSSM Models

Straub – MoriondEW12 arXiv:1205.6094 See also Mahmoudi – MoriondQCD12 arXiv:1205.3099

Large fraction of the parameter space excluded

 $b \rightarrow s$ FCNC mediated by EW penguins: sensitive to $C^{()}_{7,9,10}$ Wilson coefficients (electromagnetic dipole and semileptonic operators).

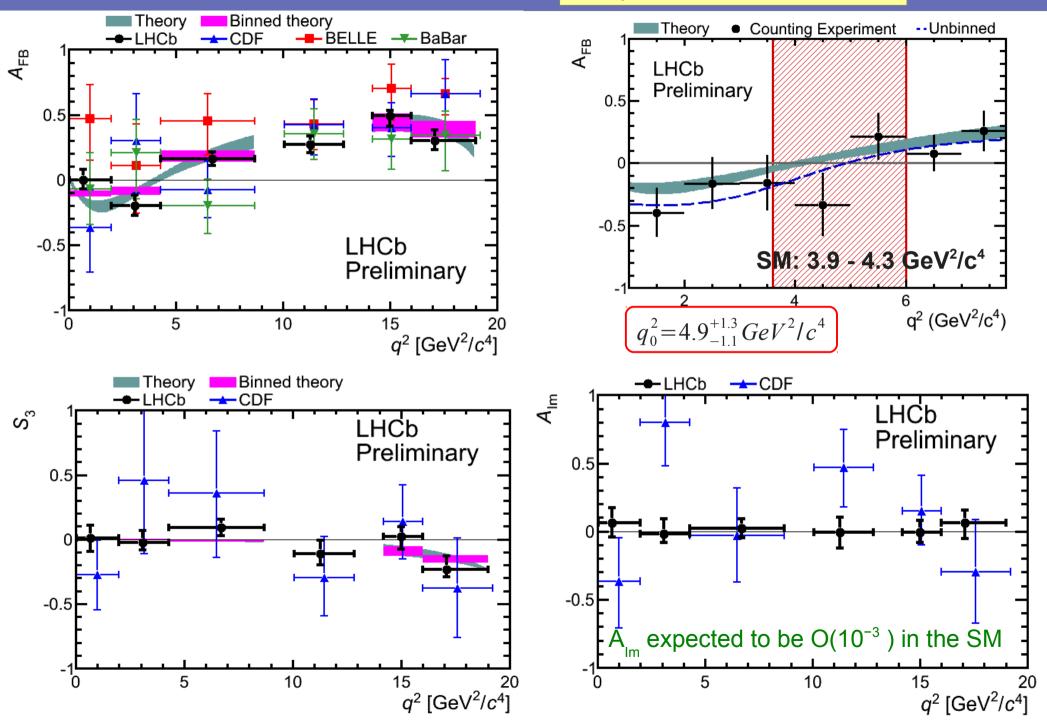
<u>Lнср</u>

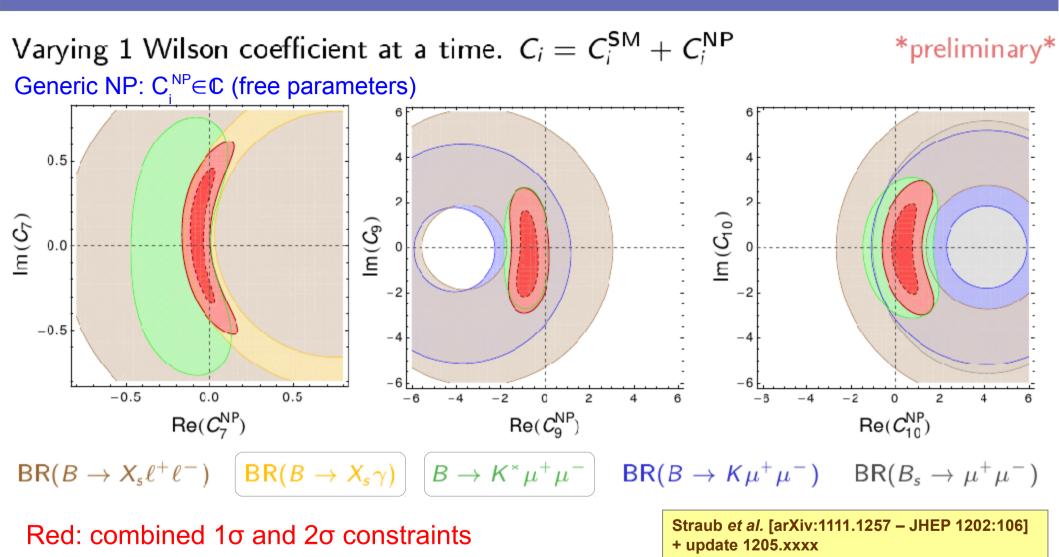

LHCb-CONF-2012-008

Observes 900 candidates (1 fb⁻¹) (BABAR + Belle + CDF \sim 600). Largest sample in the world, just as clean as at the B factories

Decay described by three angles and dimuon invariant mass squared (θ_{μ} , θ_{κ} , Φ , q^2).

Angular distribution of decay products and q²-dependence of K*µµ provides many observables:


- F : fraction of K* long. polarization
- A_{FB}: forward-backward asymmetry
- $S_{_3} \propto A_{_2} (1 F_{_L})$: asym. in K* trans. polarization
- A_{Im}: T-odd CP asymmetry


$B_d \rightarrow K^* \mu \mu$: Results

Theory: Bobeth at al. [arXiv:1105.0376] CDF, PRL 108 (2012), Belle, PRL 103 (2009) BaBar prelim., Lake Louise 2012

See Owen

Bounds on Wilson Coefficients from ΔF=1 FCNC Decays

Over-constraining Wilson coefficients with many measurements in a global fit (similar to UT global fit): best sensitivity to small NP effects

Toward High-Precision Flavor Physics

LHCb Upgrade

Bellell & SuperB

LHCb Upgrade, Bellell and SuperB

See Eklund, Nishimura, Wormser

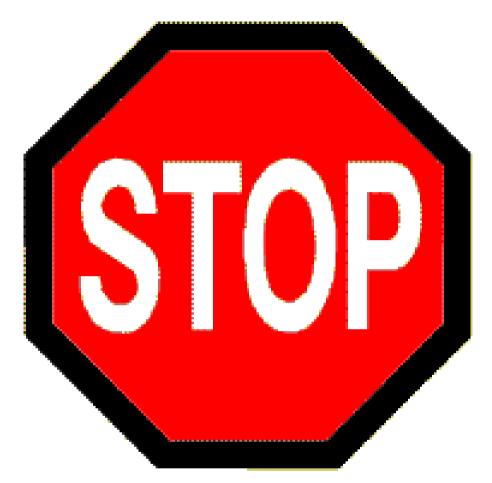
LHCb FTDR:LHCC-2012-007					Current		Upgrade	Theory	
					precision 2018 0.10 [9] 0.025		$(50{\rm fb}^{-1})$	uncertainty	
		ng	$2\beta_s \ (B^0_s \to J/\psi \ \phi)$		0.10 [9]		0.008	~ 0.003	
Upgrade	ת		$2\beta_s \ (B^0_s \to J/\psi \ f_0(980))$		0.17 [10] 0.0		0.014	$\sim 0.01 \\ 0.03 \times 10^{-3}$	
	Chronic		$\frac{A_{\rm fs}(B_s^0)}{2^{\rm ceff}(B^0)}$	0.	$4 \times 10^{-3} [18]$	$\frac{0.6 \times 10^{-3}}{0.17}$	$\frac{0.2 \times 10^{-3}}{0.03}$		
• L=1 – 2 × 10^{33} cm ⁻² s ⁻¹	Gluonic		$\frac{2\beta_s^{\text{eff}}(B_s^0 \to \phi\phi)}{2\beta_s^{\text{eff}}(B_s^0 \to K^{*0}\bar{K}^{*0})}$			$0.17 \\ 0.13$	$0.03 \\ 0.02$	0.02 < 0.02	
	penguii		$2\beta_s^{\text{eff}}(B_s^0 \to K^0 K^0)$ $2\beta^{\text{eff}}(B^0 \to \phi K_s^0)$		0.17 [18]	$0.13 \\ 0.30$	$0.02 \\ 0.05$	< 0.02 0.02	
	Right-han	ded	$\frac{2\beta}{2\beta_s^{\text{eff}}(B_s^0 \to \phi \gamma)}$			0.09	0.02	< 0.02	
Commissioning: 2019	currents		$ au^{2eta_s}(B^o_s o \phi_{\gamma})/ au^{ m eff}(B^0_s o \phi_{\gamma})/ au_{B^o_s}$		_	5%	1%	0.2%	
	Electroweak		$\frac{1}{S_3(B^0 \to K^{*0}\mu^+\mu^-; 1 < q^2 < 6 \text{GeV}^2/c^4)}$		0.08 [14]	0.025	0.008	0.02	
Bellell physics:1002.5012	penguii		$s_0 A_{\rm FB} (B^0 \to K^{*0} \mu^+ \mu^-)$		25% [14]	6%	2%	7~%	
Bellell TDR:1011.0352			$A_{\rm I}(K\mu^+\mu^-; 1 < q^2 < 6 {\rm GeV})$	$^{2}/c^{4})$	0.25 [15]	0.08	0.025	~ 0.02	
			$\mathcal{B}(B^+ \to \pi^+ \mu^+ \mu^-) / \mathcal{B}(B^+ \to K)$		25%[16]	8%	2.5%	$\sim 10~\%$	
Belle II	Higgs		$\mathcal{B}(B^0_s \to \mu^+ \mu^-)$		$5 \times 10^{-9} [2]$	0.5×10^{-9}	0.15×10^{-9}	0.3×10^{-9}	
1 0 10 ³⁵ -2 -1	penguin		$\mathcal{B}(B^0 \to \mu^+ \mu^-) / \mathcal{B}(B^0_s \to \mu^-)$		-	~ 100 %	$\sim 35 \%$	~ 5 %	
 L=8 × 10³⁵ cm⁻² s⁻¹ 	Unitarit	0	$\gamma \ (B \to D^{(*)} K^{(*)})$	~ 1	$0-12^{\circ}$ [19, 20]	4°	0.9°	negligible	
• 50 ab ⁻¹	triangle		$\gamma \ (B^0_s \to D_s K) \beta \ (B^0 \to J/\psi \ K^0_S)$		 0.8° [18]	11° 0.6°	2.0° 0.2°	negligible	
 50 ab Commissioning: late 2014 Char <i>CP</i> viola 			$\frac{p \ (D^* \to J/\psi \ \Lambda_S^*)}{A_{\Gamma}}$	2	$\frac{0.8^{-10}}{3 \times 10^{-3}}$ [18]	0.0^{-1} 0.40×10^{-3}	0.2^{-1} 0.07×10^{-3}	negligible	
		*		2.3×10^{-3} [18] 2.1×10^{-3} [5]		0.40×10 0.65×10^{-3}	0.07×10^{-3} 0.12×10^{-3}	_	
	er violat	1011	Observable	SM Theory		nt Expt.		or Factories	
SuperB physics: 1008.1541		ab ⁻¹)				-	*	± 0.03	
SuperB detector: 1007.4241			$S(B o \phi K^0)$	0.68		± 0.17			
		ש	$S(B \to \eta' K^0)$	0.68	0.59	± 0.07	±0.02	0.02 1292	
		0	γ from $B \to DK$		±	11°	±1		
• L= 1 × 10^{36} cm ⁻² s ⁻¹		(2	$A_{\rm SL}$	-5×10^{-4}	-0.0049	0 ± 0.0038	±0	502 100.	
• 75 ab ⁻¹		ģ	$S(B \to K_S \pi^0 \gamma)$	< 0.05	-0.15	5 ± 0.20	±0	0.03	
		ē	$S(B \to \rho \gamma)$	< 0.05		3 ± 0.65		0.03 (1:1)	
 Commissioning: 2016 		dn	$A_{\rm CP}(B \to X_{s+d}\gamma)$	< 0.005		0.06 ± 0.06		:0.02	
Sensitivity to key observables: very broad and complementary physics program down to SM		l/\$uperB	$\frac{\mathcal{B}(B \to \tau \nu)}{\mathcal{B}(B \to \tau \nu)}$	1.1×10^{-4}		$(1.64 \pm 0.34) \times 10^{-4} < 1.0 \times 10^{-6} (3.55 \pm 0.26) \times 10^{-4}$		$\times 10^{-4}$	
		_	$\mathcal{B}(B \to \mu\nu)$ $\mathcal{B}(B \to \mu\nu)$	4.7×10^{-7}	1				
		elle						$\pm 0.2 \times 10^{-7}$ $\pm 0.13 \times 10^{-4}$ $\pm 0.10 \times 10^{-6}$	
		B	$\mathcal{B}(B \to X_s \gamma)$	3.15×10^{-6}	-				
			$\mathcal{B}(B \to X_s \ell^+ \ell^-)$	1.6×10^{-6}	· · · · · · · · · · · · · · · · · · ·		$\pm 0.10 \times 10^{-6}$		
theory error			$\mathcal{B}(B \to K \nu \overline{\nu})$		$3.6 \times 10^{-6} < 1.3 \times 10^{-5}$		$\pm 1 \times 10^{-6}$		
		$A_{\rm FB}$	$(B \to K^* \ell^+ \ell^-)_{q^2 < 4.3 {\rm GeV}^2}$	-0.09	0.27	± 0.14	±0	0.04	
			-						

Conclusion (messages to bring home)

Flavor Physics: sensitive to very high energy scale: offers indirect insights into the structure of matter and its interactions

Past decade: very impressive improvement in the flavor sector (both theory and experiments)

O(100%) NP ruled out in flavor-physics. But still sizable NP O(10-30%) allowed (compatible with all low-energy flavor measurements) → still a large potential for NP discovery.


(Very) likely, NP effects will be small but by no means unobservables!
 → toward high-precision flavor physics
 What matters is the experimental precision and the theoretical cleanliness for interpretation of short-distance physics

Excited decade to come for flavor physics: we shall learn a lot. We are just at the beginning.

"precision measurements at a given energy scale allow

us to make predictions concerning the next energy scale"

John Iliopoulos Dirac Medal award 26

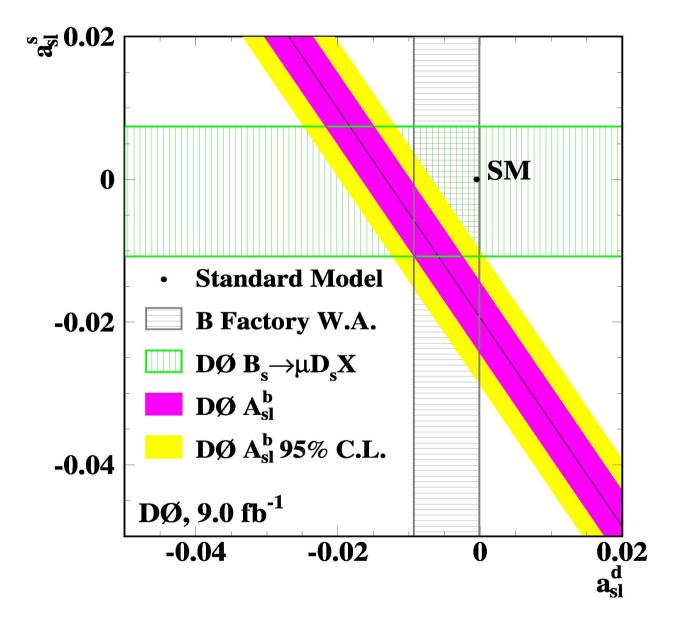
BACKUP SLIDES

Wilson coefficients

Wilse	on coeff.	description	SM	enhancement in models
	$C_{1,2}$	charged current	YES	
0	3,,6	QCD penguins	YES	SUSY
	C7,8	$\gamma, oldsymbol{g}$ -dipole	YES	SUSY, large tan eta
(C9,10	(axial-)vector	YES	SUSY
	Cs,p	(pseudo-)scalar	,	SUSY, large tan β , R-parity viol.
	$C'_{S,P}$	(pseudo-)scalar flipped	$\sim m_{l}m_{s}/m_{W}^{2}$	SUSY, R-parity viol.
(-3,,6	QCD peng. flipped	$\sim m_s/m_b$	SUSY
	$C'_{7,8}$	$\gamma, {m g}$ -dipole flipped	$\sim m_s/m_b$	SUSY, esp. large tan eta
($C'_{9,10}$	(axial-)vector flipped	$\sim m_s/m_b$	SUSY
0	T , T 5	tensor	negligible	leptoquarks

G. Hiller, arXiv:0911.4054

 \rightarrow Need for many orthogonal observables!


N. Mahmoudi (Moriond QCD 2012)

$B \rightarrow K^* \ell^+ \ell^-$: most promising observables

Most promising observables in the early LHC era:

	Obs.	# angles	Ci	C'_i	also known as	measured?		
CP averaged obs.	F_L	1	х	х	$-S_2^c$	x		
	A_{FB}	1	х		$\frac{3}{4} S_6^s$	x		
avera	S_3	1		х	$rac{1}{2}(1-F_L) \; {\cal A}_T^{(2)}$	x		
-	S_5	2	х	х				
T-odd CP asymm.	A_9	1		х	A_{im}	x		
	A_7	2	х	х				
odd O	A_8	3	х	х				
	accessible from #-dimensional angular distribution				sensitive to right-handed currents			

NP in Mixing

