ATL-DAQ-PROC-2012-006

21 May 2012

@y

GPU-Based Tracking Algorithms for the ATLAS
High-Level Trigger

D Emeliyanov! and J Howard? on behalf of the ATLAS Collaboration

1 STFC Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot,
UK
2 University of Oxford, Oxford, UK

E-mail: dmitry.emeliyanov@stfc.ac.uk, j.howardl@physics.ox.ac.uk

Abstract. Results on the performance and viability of data-parallel algorithms on Graphics
Processing Units (GPUs) in the ATLAS Level 2 trigger system are presented. We describe
the existing trigger data preparation and track reconstruction algorithms, motivation for their
optimization, GPU-parallelized versions of these algorithms, and a “client-server” solution for
hybrid CPU/GPU event processing used for integration of the GPU-oriented algorithms into
existing ATLAS trigger software. The resulting speed-up of event processing times obtained
with high-luminosity simulated data is presented and discussed.

1. Introduction

ATLAS is one of the two general-purpose detectors in operation at the Large Hadron Collider
(LHC) at CERN [1]. The detector is a layered design composed of a modular silicon and straw
tube-based Inner Detector for tracking charged particles, solenoidal and toroidal magnet systems,
a calorimeter for measuring energy deposits of particles, and a muon system for detecting and
tracking muons.

The innermost part of the ATLAS detector is a silicon tracker, composed of a Pixel detector at
the center and a silicon strip detector (SCT) surrounding it. Both the Pixel and SCT detectors
are composed of thousands of silicon wafers tiled around the collision point. Each wafer contains
an array of silicon sensors (two-dimensional pixels for the Pixel detector and one-dimensional
strips for the SCT detector) which can pinpoint where charged particles have passed through
and left charge deposits. Each SCT module consists of two layers, “axial” and “stereo”, with the
strips of opposite layers at a small relative angle to each other, allowing the tracking algorithms
to determine where particles have passed through (with some ambiguity).

The ATLAS trigger system [2] performs the online event selection in three stages, referred
to as Level 1, Level 2, and Event Filter. Level 2 and Event Filter are collectively referred to
as the High Level Trigger. The Level 1 trigger is hardware-based and uses calorimeter and
muon detector information to identify potentially interesting events and the so-called “Regions
of Interest” (ROIs) within those events. ROIs are solid-angle regions of the detector with
significant calorimetric or muon activity. They are used to seed the software-based Level 2 and
Event Filter triggers, which have access to the Inner Detector tracking data and which apply
further selection criteria to events based on data within the specified ROIs. The approximate
rate reductions and latencies of each level are summarized in Table 1.

Table 1. Event processing rates at different trigger levels.

Trigger Level Input Output Latency
Event Rate Event Rate
Level 1 40 MHz 75 kHz 2.5 pus
Level 2 75 kHz 2 kHz 40 ms
Event Filter 2 kHz 200 Hz 4s

The Level 2 trigger is highly time-constrained by the incoming event rate and necessary
output rate, and although event-level parallelization of the Level 2 trigger allows a slightly
larger window for its operation, it is constrained by technological and economic factors. In
the coming years, the LHC (and consequently the ATLAS detector) will see a large increase
in instantaneous luminosity, up to 103°em=2s~! after the LHC Phase II upgrade, resulting in
an increased event rate and tighter requirements on Level 2 run time. One possible avenue of
optimization which is being explored is the use of General Purpose Computing on Graphics
Processing Units (GPGPU Computing).

GPGPU computing is a relatively new technology which allows programmers to leverage
the massively-parallel computing pipelines on modern graphics cards [3]. These cards have
hundreds or thousands of cores and are well-suited to data-parallel algorithms. There are several
implementations of GPGPU computing, all with similar data processing models, though for the
purposes of this study we chose the NVIDIA Compute Unified Device Architecture (CUDA)
toolkit due to its performance, support, and previous use in ATLAS. The typical model for
GPGPU computing is a single “kernel” function written in a C dialect that is compiled for the
GPU and run on an array of threads. These threads are organized into one-, two-, or three-
dimensional abstractions (referred to as “blocks” in the CUDA SDK) in which each thread knows
its position and can modify respective data. Data is copied from host system memory to on-
GPU memory over the PCI Express bus and can be modified by threads running a kernel on the
GPU before being copied back to the host memory. The primary limitations of GPU computing
arise due to PCI Express bus bandwidth, branching in GPU code, and slow thread access to
global device memory on the GPU, though these are becoming less important with advances in
hardware and can be mitigated with programming techniques involving fast, block-local shared
memory.

2. Level 2 Inner Detector Data Preparation and Tracking

A large portion of the Level 2 trigger’s processing time is spent in data preparation and
tracking. Data preparation consists of decoding hits in the silicon modules of the Inner Detector
from a transport-optimized bytestream format, grouping these hits into clusters (which is
necessary because particles often activate more than one silicon cell), and forming “spacepoints”
from the clusters which represent points in three-dimensional space which are used for track
reconstruction. The tracking algorithms then combine these spacepoints into track candidates
and reject those tracks with a high statistical divergence from their constituent points.

2.1. Inner Detector Data Preparation in the ATLAS Level 2 Trigger

Data preparation at Level 2 is done on a per-ROI basis, which allows the trigger to request
only the data from those silicon modules falling within an ROI, saving both time for processing
and bandwidth for other systems using the detector readout. The data is read from a series

of temporary storage systems referred to as Readout Buffers (ROBs). The data is encoded
in a transport-optimized bytestream format and is subdivided into ROB fragments, which are
segments of the bytestream coming from individual ROBs. Each fragment is further divided into
datawords which are 32-bit for the pixel detector and 16-bit for the SCT detector. These words
encode module identifiers (headers), hits, and module trailers. The format of each fragment is
roughly summarized in Figure 1.

Module 1 Header
Module 1 Hit 1

Module 1 Hit My
Module 1 Trailer

Module N Header
Module N Hit 1

Module N Hit My
Module N Trailer

Figure 1. Bytestream format for a single ROB fragment [4].

It is important to note that the meaning of words within a fragment is context (position)
dependent, and therefore any decoding algorithm must have access to at least some set of the
neighboring words within a fragment.

The existing decoding algorithms are serial algorithms which run on the CPU and are
primarily CPU-bound. The decoding algorithms for both the Pixel and SCT detectors are
O(n), where n is the number of words in the bytestream. They iterate over ROB fragments, and
then over the words within each fragment. While looping through an individual fragment the
algorithm maintains a state containing information about which module it is decoding, assigning
decoded hits to an appropriate in-memory container, and changing the decoding state whenever
a module header or trailer is encountered. There is also error information that can be encoded
in the bytestream, but these are fringe cases which are not considered here.

Once the hit words have been decoded and mapped to their appropriate modules, the
clustering algorithm takes over, grouping adjacent hits within a module into clusters. The
clustering algorithms for the Pixel and SCT detectors are similar in principle, but differ
significantly in complexity and performance. The SCT clustering algorithm, because it operates
in only one dimension, is O(n), where n is the number of hits per module. It consists of a
single loop over the SCT strips, accumulating those which are adjacent and active into clusters.
The pixel clustering algorithm, because it operates in two dimensions, is O(n?). It consists of
a double loop over each hit within a module, generating clusters for each hit, merging clusters
when necessary due to a shared hit.

Finally, the Pixel and SCT clusters are converted to spacepoints by means of a simple
geometric transform. The pixel clusters are rotated according to the module orientation and
then offset by the module position. In the SCT case, clusters from each side of the module are
combined into pairs and two-dimensional cluster positions are derived from these combinations,
after which the translation procedure is identical to that of the pixels.

At each step in the data preparation process, some knowledge of the detector geometry is
required, and hence any decoding, clustering, or spacepoint formation algorithm will require

use of the ATLAS detector geometry. To solve this problem, a minimal version of the detector
geometry was developed for the GPU which utilizes a hash table for efficient lookup of geometry
information for the several thousand detector modules.

2.2. Track reconstruction in the ATLAS Level 2 Trigger

There are two tracking algorithms used in the ATLAS Level 2 Trigger: IdScan and SiTrack. For
this study, SiTrack was chosen because it is based on a combinatoric approach and offers a more
direct strategy for parallelization. The SiTrack algorithm includes the following steps [5]:

e Track seed formation

Optional primary vertex reconstruction (not used in this study)

Track seed extension and triplet formation

Triplet merging into track candidates

Clone track merging or removal

Track seeds are formed by generating pairs of space points from the two inner-most layers of
the detector as shown in Figure 2. The pairs are then extrapolated using a straight line, and a
cut is placed on the impact parameter with the beamline. Because charged particles curve in
the magnetic field of the detector, this places a limit on the lowest transverse momentum, pr,
of the reconstructible tracks. To reduce the number of seeds, the primary vertex is optionally
reconstructed by histogramming all track seed origins and finding the maxima. The seeds
incompatible with any of the primary vertex positions are rejected. The remaining track seeds
are then extended by finding space points in the outer layers which lie along the same trajectory
(Figure 3).

Figure 2. Track seed formation [2]. Figure 3. Track seed extension [2].

The original two-spacepoint seed and each spacepoint added at the seed extension stage form
a unique spacepoint triplet so that a triplet “tree” is formed for each seed. All triplets which are
generated for a given seed are then merged into track candidates. Finally, track candidates which
share a large number of spacepoints are filtered by either the track with the largest number of
space points or the smallest x2.

3. Implementation of GPU-accelerated algorithms

The GPU implementations of the data preparation and tracking algorithms differed significantly
in difficulty based on the inherent potential for parallelism (or lack thereof) in the existing serial
algorithms.

3.1. GPU-accelerated Data Preparation algorithms

The GPU version of the decoding algorithms is very similar to the CPU version, except that
fragments from the bytestream are assigned to separate thread blocks and each word within the
fragment is assigned to a separate thread, allowing all words to be decoded in parallel. Because
the threads within a given block can access the same shared memory, all words for a given
fragment can be copied into shared memory, allowing fast access to all words for threads trying
to determine their context in a fragment. A global output buffer is created so that the hits for
a module can be written to a location that can be accessed by the clustering routine. Atomic
integer markers are used to ensure that module hits are only recorded once to global memory,
reducing write access and decoding time. The complexity of the decoding algorithm is O(*)
where n is the number of words in the bytestream and m is the number of threads on the device.
On modern GPUs with hundreds or thousands of cores, this denominator is significant enough
to make a practical difference in decoding time.

The GPU version of the clustering kernel is run on the output of the decoding kernel. The
GPU clustering algorithm is a cellular automaton similar to the algorithm used to cluster energy
deposits in the LHCb calorimeter [6]. At the beginning of the algorithm, each hit is ‘tagged’
with an arbitrary but unique index (in this case the thread index). Each thread then iterates
over all other hits, re-tagging the other hits if they are adjacent and have a smaller tag, and
stopping its execution if another hit is adjacent and has a larger tag. This assures that there is
at most one thread responsible for computing a given cluster. Once the state of the automaton
no longer evolves, clustering is complete. This procedure is detailed in Figure 4. The complexity
of this algorithm is O(%), where n is the number of active pixels, L is the average cluster size,
and m is the number of threads on the device.

1 3 5 !
3 3 5 -i 5| 5
5 — 5 — 5
7 77 7T 7

Figure 4. Evolution of cellular automaton clustering for a two-dimensional pixel array.

3.2. GPU-accelerated SiTrack algorithm

Due to the intrinsic parallel nature of the SiTrack algorithm, porting most of its steps to
GPUs is relatively straightforward. From the very beginning of the algorithm workflow,
combinining spacepoints results in data-parallel track seeds, whose further processing can be
done independently.

The GPU-based seed formation is illustrated in Figure 5. For a given pair of detector layers
(L1, Lo) there is a 16 x 16 block of threads which perform seed generation. Spacepoints from
each layer are divided into 16 “tiles” and a thread (i, j) combines spacepoints contained in the
i-th tile from the layer L1 with spacepoints in the j-th tile from the layer Lo. Seeds formed by
the threads are stored in the common block-local buffer which is subsequently copied into an
array in the global device memory.

1. GPU-based seed formation 2. GPU-based seed extension

Layer 2 tile | —
L | global seed array | tile j | |
Layer 1
! m Loop over layers m local buffer
shaces thread (1)) -— —

points

/

space- -~ seeds
points

16

tile 1

thread (1))
thread ~ E/
block] =
3x32

local buffer

il thread

block

| global seed array | | |

3. GPU-based triplet merging

global triplet array | l |
|g|oba|triplet array tile i |tile_i+1 | |
177
[1D thread block gl Il lg] =l |

| global track array

Figure 5. The design of the GPU-accelerated tracking algorithm.

The GPU-based seed extension and triplet formation also employ tile-based parallelization.
As can be seen from Figure 5, 3 x 32 blocks of threads match tiles of 32 seeds with tiles of 3
spacepoints so that each thread handles a unique “seed-spacepoints” combination.

Finally, one-dimensional blocks of threads are used to merge triplets and create track
candidates. At this stage, each thread handles a few triplet trees.

The last step of the SiTrack algorithm, clone track merging and removal, requires formation of
pair-wise track candidate combinations which are then globally sorted in accordance with some
track similarity measure. Due to strong data-dependence, this step is difficult to parallelize and,
in this study, it was executed serially on a CPU.

3.3. Client-server architecture for hybrid CPU/GPU event processing
The implementation of GPU-based algorithms in the ATLAS Level 2 trigger requires careful
consideration to integrate with existing trigger software while maintaining performance.

The ATLAS event processing and trigger software use a custom framework called “Athena”,
which is based on the “GAUDI” framework, originally developed for LHCb [7]. The Athena
framework allows the trigger system to be emulated on existing data or Monte Carlo samples.
However, the Athena framework has several limitations, which include a complex build system,
high memory usage, and difficult threading. To avoid the complexities of integrating CUDA
with Athena and to allow multiple instances of Athena to interact with a single GPU, a special
“client-server” system was developed for this study.

The “client-server” solution illustrated in Figure 6 includes a multi-process server which
executes GPU kernels and a few client processes which can request data be processed on the
GPU using a specific algorithm. This solution allows Athena-based applications to utilize the
GPU without adding any extra library dependencies since all client-server calls are made through

a standardized POSIX interface. To maximize performance, the server runs on the same machine

m Athena 1, Core 1 ComputeServer GPU

I \leraul Athena 0, Core 0 T T T

AthenaComputeSvc

Request Tracks Request for Track Finding on GPU
Send Data | Send Data
Receive Tracks

CPU Proc. per Core

vy v

Receive Tracks

Figure 6. The “client-server” GPU/CPU processing model.

as the client processes and the memory shared between server and client processes is used for
fast inter-process data transfer.

4. Results and Discussion

The tests of the GPU-accelerated algorithms and the “client-server” framework were conducted
on a machine running Scientific Linux 5, Athena 17.1.0, and CUDA 4.0. The machine
specifications are listed in Table 2.

Table 2. Test machine specifications.

Component Specification
CPU Dual Quad-Core Intel Xeon E5620 @ 2.40 GHz
Memory 24 GB
GPU NVIDIA Tesla C2050 @ 1.3 GHz, 3 GB RAM

The data used for testing were high-luminosity Monte Carlo samples which simulate post-
upgrade detector conditions.

As can be seen from Figure 7, the GPU-based processing results in an approximately 26x
decrease in data preparation processing time for high-luminosity ¢¢ samples. As expected from
the complexity analysis, the GPU processing time has very little dependence on input data
volume. This is a common feature of GPU-based algorithms, and the processing time is limited
only by the available bandwidth of the PCI Express bus and the multiplicity of processing cores
on the GPU, both of which improve “for free” with new hardware once the algorithm has been
parallelized.

Track reconstruction timing also shows improvement with respect to the CPU. Figure 8 shows
a modest 2-3x speedup when using the GPU-based parallel algorithms. The computation time
still has a large dependency on data input volume because the clone track merging/removal step
of SiTrack is still performed on the CPU in all cases. These parts of the SiTrack algorithm are
not dominant contributors to processing time when data preparation and tracking are run on
the CPU, but when running the parallelized algorithms on the GPU, these steps take several

times longer to run than the entirety of the GPU-parallelized portion. This behavior is a rather
straightforward demonstration of the performance limits imposed by Amdahl’s Law.

& 500 g - - ‘ ‘ ‘ -
S E H 34 ° 4 £ 1200 H 34
£, 4505 Monte Carlo, tt @ 2x 10°* cm? s 00° 3 £ Monte Carlo, tt @ 2x 10°* cm? 5!
(0] C & 3 e
£ 4005 o CPU: E5620 @ 2.4 GHz 028 E & 1000 o CPU: E5620 @ 2.4 GHz B
& 350F ® GPU: Tesla C2050 E e o GPU: Tesla C2050
8 a0k E £ 800 -
3 E ROl size, ¢ x 1: 3 g RO size, ¢ x1: 0.6 x 0.6 +
a E = 06x0.6 E g
£ 200 = 15x15 E ;
a E x26 speed-up 7 5 400— |
1 505 = Full detector P! p e ke + +
100E- E 200 —
50 E
Om,,,w Ll L P epemeneEpEORIRaS ot 0% | 0 I I
0 0.05 01 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 1 2 3 4 5
Input data volume [MB] Number of input spacepoints, x 10°
Figure 7. Performance improvement for Figure 8. Performance improvement for
data preparation steps. tracking steps.

The total performance benefit of the data preparation and tracking steps used in conjunction
with the “client-server” framework is demonstrated in Figure 9. It shows a nearly linear increase
in event throughput as a function of trigger job multiplicity, but does demonstrate a saturation
effect, most likely due to the limited number of streaming multiprocessors on the GPU. This does
imply a limitation to the client-server model, though the more pressing constraint in practice
is the number of trigger jobs which can be run on each machine, as they put high demand on
system memory.

T T T T T T T

80— Monte Carlo, tt @ 2x 10% cm2 s |
ROl size, ¢ x1: 0.6 x 0.6 ’
—e— Dual 4-core E5620 .

| —e=With shared GPU

60

40—

Rol processing rate [Hz]

0 | | | | | | | |

Number of parallel jobs

Figure 9. Total processing throughput as
a function of trigger job multiplicity for the
“tauNoCut” trigger menu item.

5. Conclusion

We have demonstrated the viability and potential performance benefits of using GPU-based
algorithms for data preparation and tracking in the ATLAS Level 2 trigger. We have presented
parallelization strategies for existing serial algorithms and a strategy for implementing these
algorithms into the existing trigger framework. Tests with high-luminosity simulated data have

shown increased performance in data preparation and tracking, and demonstrated the viability
of the parallelization and implementation strategies.

Future work will focus on porting the implementation to OpenCL to allow testing on a wider
variety of hardware, including ATT FirePro cards and many-core CPUs.

References

[1] ATLAS Collaboration, The ATLAS experiment at the CERN Large Hadron Collider. JINST 3 (2008) S08003.

[2] ATLAS Collaboration, Expected Performance of the ATLAS Experiment: Detector, Trigger, and Physics,
2009.

[3] 1. Buck et al., Scalable Parallel Programming with CUDA, Queue 6, 2 (March 2008), 40-53.

[4] C. Bee, et al., The raw event format in the ATLAS Trigger and DAQ. Technical Report ATL-DAQ-98-129,
CERN, Geneva, Oct 1998.

[5] S. Armstrong, et al., Algorithms for the ATLAS High-Level Trigger, IEEE Trans. Nucl. Sci., Vol. 51, No. 3,
2004.

[6] V. Breton, et al., A clustering algorithm for the LHCbD electromagnetic calorimeter using a cellular automaton.
Technical Report LHCb-2001-123, CERN, Geneva, Sep 2001.

[7] G.Barrand, et al, GAUDI - A software architecture and framework for building LHCb data processing
applications, Computer Physics Communications 140 (2001) 45-55.

