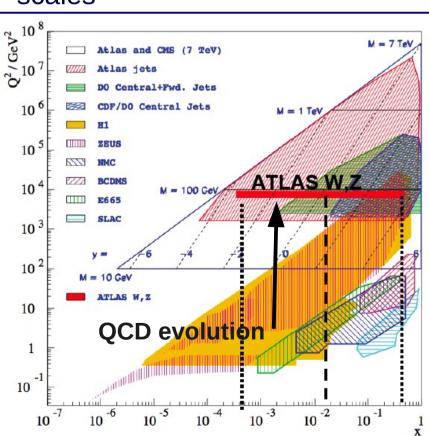

Measurements of W/Z production with the ATLAS detector

Jean-Baptiste Sauvan Université Paris-Sud, LAL On behalf of the ATLAS collaboration

DIS 2012, Bonn 03/28/12

W/Z measurements in ATLAS

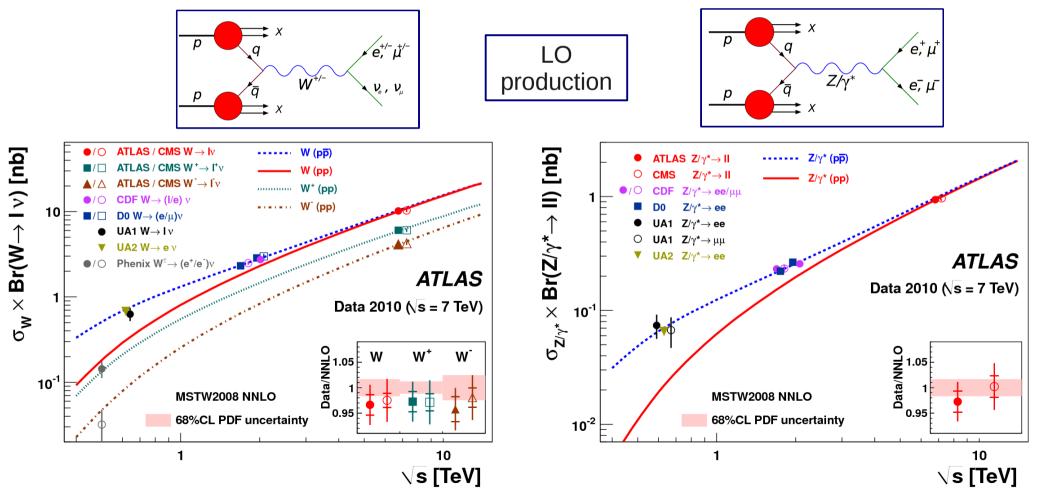
QCD sector


- ➡ W, Z integrated cross sections
- ➡ W, Z cross-section ratios
- ➡ W, Z differential cross sections
- Electroweak sector
 - L Cross section ratios in e/µ decay channels \rightarrow lepton universality
 - ➡ W polarisation

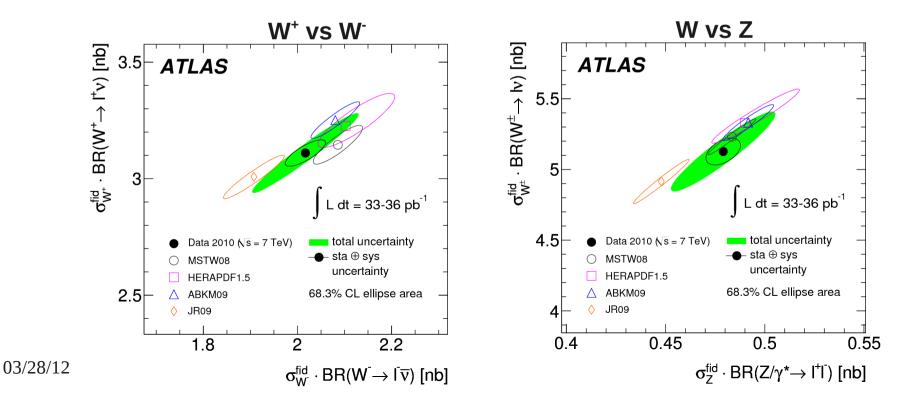
Motivations

- Low x → dominance of gluon and sea quark scattering
 - Can contribute to further constrain this region
- Support the validity of QCD evolution from low scales to higher scales

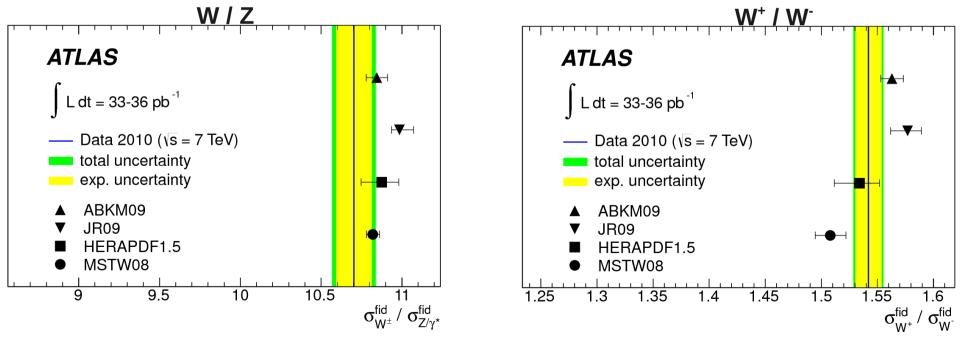
Test pQCD predictions


- └ Up to NNLO
- And phenomenological models:
 - Matrix elements + Parton shower
 - Soft gluon resummations
- Test lepton universality
- **τ** polarisation in W \rightarrow τν
 - Important for characterization of new phenomena

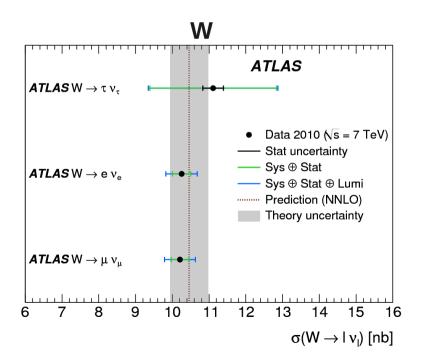
W, Z cross section measurements

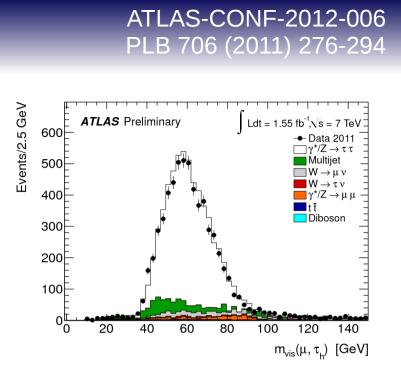

- W, Z cross sections measured with \sim 35pb⁻¹ (2010 dataset)
 - L Integrated over the fiducial regions and extrapolated to the full kinematic range
 - **L** Differential cross sections as a function of the lepton η and the Z boson rapidity:
 - W: |η_|| ≤ 2.5

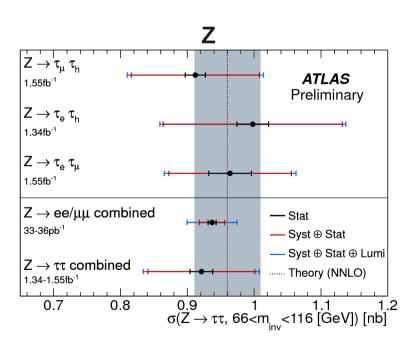
- Z: $|y_z| \le 2.4$, with and extension to $|y_z| \le 3.6$ using forward electrons


W and Z inclusive cross-sections

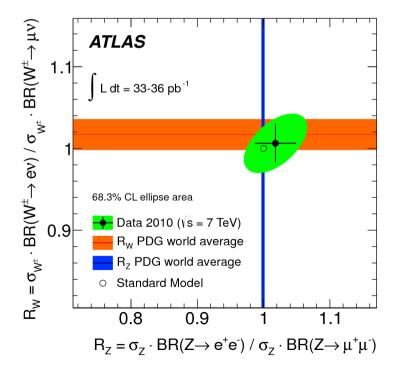
- Assuming lepton universality, e and μ cross sections are combined.
 - ↓ Reach accuracy of a few % dominated by luminosity measurement (3.4%)
- Comparison with NNLO predictions (FEWZ) with various PDF sets
 - Good agreement
 - Some differences visible between different PDFs (68% CL)
 - Validity of QCD evolution from low scales (mainly DIS from HERA) to W, Z scales

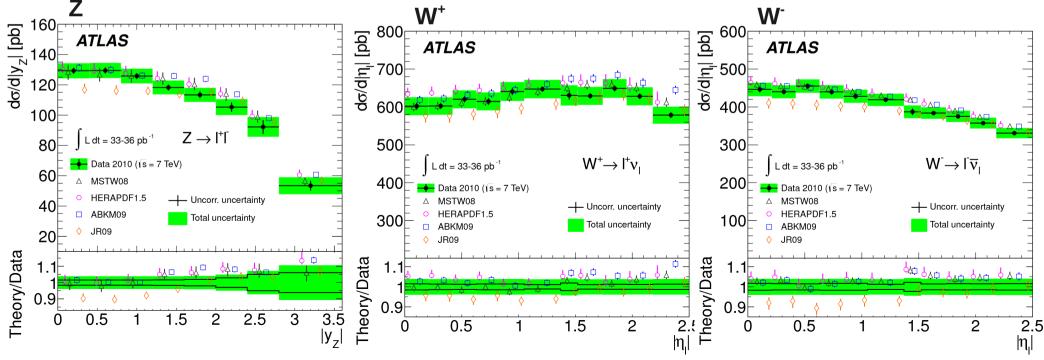



Cross section ratios


- Correlation due to luminosity measurement cancels in the ratio of the cross sections
- (W⁺+W)/Z ratio rather insensitive to PDFs (provided that the sea is flavour symmetric)
 - Agreement with measurement \rightarrow flavour-independent light-quark sea (at high scale, x~0.01)
 - Charge-dependent ratios (e.g. W⁺/W⁻) more sensitive to u/d differences
 - More significant deviations between PDF sets

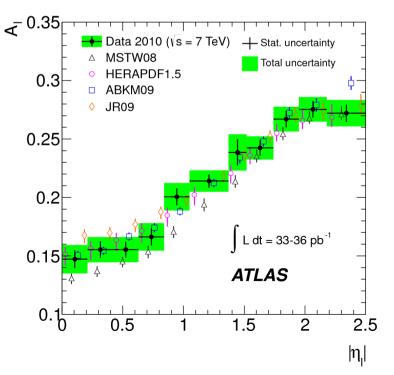
- Provides a validation of τ reconstruction and identification
- Latest Z cross-section results use Ih and Il channels:
 - ↓ ~10% systematic uncertainty
- Production cross section in the different W/Z leptonic decays are consistent



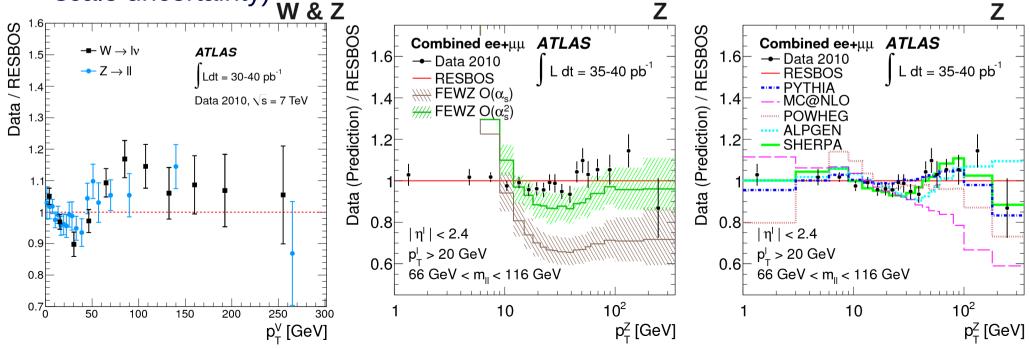

Lepton universality

- Ratios of e and μ cross sections evaluated in a common fiducial region
- R_w = 1.006 ± 0.024 to be compared with the world average 1.017 ± 0.019
- e-µ universality is also confirmed in Z decays:
 - L→ 1.018 ± 0.031
 - ▶ World average (dominated by LEP): 0.9991 ± 0.0024

W & Z rapidity differential measurement


- Boson rapidity y directly linked to parton momentum fractions $x_{1,2} = M_{W,Z} / \sqrt{s} \cdot e^{\pm y}$
- For W, the pseudo-rapidity of the charged lepton is used
- Comparison with NNLO predictions using NNLO PDF sets.
 - Some tension with all PDF sets (especially JR09 and ABKM09)
 - W/Z LHC measurements can provide additional constraints on PDFs, especially on the strange quark density (see talk by U. Klein in "Structure functions" session).

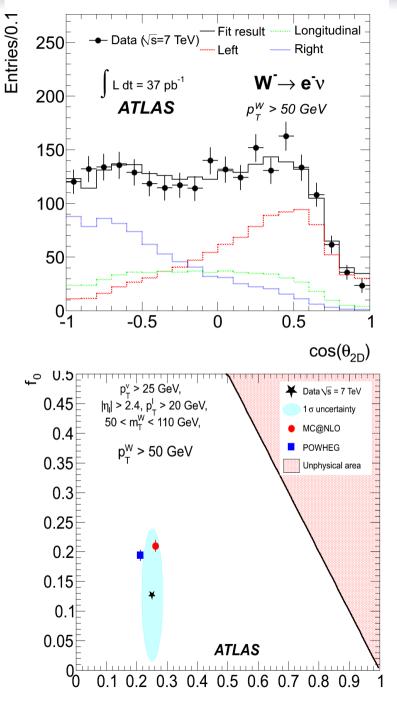
W charge asymmetry


- Cannot reconstruct the W kinematics completely: the charge lepton asymmetry is used
- Some tension with MSTW08 and JR09
- Good agreement with ABKM09
 - But discrepancies for individual cross-sections (previous slide)
 - Points to fortuitous cancellation in the asymmetry measurement
 - ➡ More information in the individual cross sections (with correlations)

$$A_l = \frac{\sigma_{W^+}^{\text{fid}} - \sigma_{W^-}^{\text{fid}}}{\sigma_{W^+}^{\text{fid}} + \sigma_{W^-}^{\text{fid}}}$$

W & Z p_T differential measurement arXiv:1108.6308

- Non-zero p_{τ} generated through ISR
 - Low p_{τ} : multiple soft/collinear partons \rightarrow logarithmic resummations, PS
 - L High p_{τ} : ≥ 1 hard partons → test O(α_s^2) calculations, NLO ME, tree-level LO ME
- Good description for RESBOS, ALPGEN, SHERPA, and also PYTHIA
- MC@NLO (interfaced with HERWIG+JIMMY) and POWHEG (interfaced with PYTHIA) deviate at low and high p₁
- Z p_T: pQCD prediction at O(α_s^2) undershoots the data by ~10% (similar to the scale uncertainty)

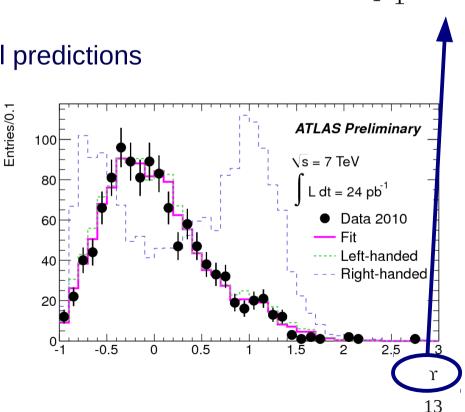

arXiv:1203.2165

W polarisation

- W bosons can be produced in 3 polarisation states: f_L, f_R, f_0
 - L LO \rightarrow right- and left-handed (predominantly left-handed)
 - $\$ NLO \rightarrow longitudinal polarisation also possible
- Measured at significant p_T (sensitive to the gluon PDF): 35 GeV < p_T^w < 50 GeV & p_T^w > 50 GeV
 - L Makes use of the transverse helicity angle:

$$\cos \theta_{2D} = \frac{\vec{p}_T^l \cdot \vec{p}_T^W}{|\vec{p}_T^l| \cdot |\vec{p}_T^W|}$$

- \vec{p}_T^l in the transverse W rest frame
- \vec{p}_T^W in the laboratory frame


- L Distributions fitted with templates representing each polarisation state
- Good agreement with NLO

τ polarisation

- Measurement of τ polarisation in hadronic τ decay from W $\rightarrow \tau v$
 - L Degree of parity violation in the tau production mechanism
 - For $W \rightarrow \tau v$, the predicted value is -1 (parity is maximally violated in the charged-current weak decays)
- Use 1-prong decays:
 - Look at energy sharing between charged an neutral pions $\Upsilon = \frac{E_T^{\pi} E_T^{\pi}}{n^{tau}}$
 - $P_{\tau} = -1.06 \pm 0.04 (stat.)^{+0.05}_{-0.07} (sys.)$
 - In agreement with the Standard Model predictions
- The method can be applied to the characterization of new phenomena
 - \downarrow SM H $\rightarrow \tau\tau$
 - MSSM charged Higgs

L ...

ATLAS-CONF-2012-009

Summary & Conclusion

- High production rate of W and Z bosons enable detailed studies
 - ↓ Precise differential cross sections → impact on our knowledge of proton structure
 - L Test of pQCD predictions and phenomenological models
 - ↓ W polarisation is found to be consistent with NLO calculations
- Ability to measure Z $\rightarrow \tau\tau$ and W $\rightarrow \tau\nu$
 - Integrated cross section
- Ongoing effort for publication of W/Z results based on the full 2011 dataset