
GPU-Based Tracking Algorithms  
for the ATLAS High-Level Trigger 
Abstract 
GPU-accelerated event processing is one of the possible options for the ATLAS High-Level Trigger (HLT) upgrade for higher 
LHC luminosity. This poster presents data preparation and track finding algorithms specifically designed to run on a GPU using 
a “client-server” solution for hybrid CPU/GPU event processing and integration of the GPU algorithms into existing ATLAS HLT 
software. The resulting speed-up of event processing times obtained with high-luminosity simulated data is presented and 
discussed. 

Introduction 
The ATLAS HLT consists of the Level 2 Trigger and Event Filter. The most time-critical 
part is Level 2, with a target execution time of 40 ms per Region-Of-Interest (ROI). 
Meeting this target at higher LHC luminosities is difficult. One of the options is GPU-
based acceleration of the Level 2 algorithms. Technically, this is possible as HLT runs on 
dedicated farms which can be equipped with GPU cards. To study the feasibility of this 
option, Level 2 inner detector data preparation and track finding algorithms have been 
ported to GPUs using NVIDIA’s Compute Unified Device Architecture (CUDA).  

2. Parallel algorithms for Inner Detector data preparation 

6. Results and discussion 
Tests with high-luminosity 
simulated data show 
increased performance in 
data preparation and 
tracking. They also 
demonstrate the viability of 
the client-server CPU/GPU 
model. Overall rate of 
processing is significantly 
increased with the GPU, 
and the limiting factor is no 
longer processing time, but 
memory available to run 
instances of Athena on the 
host system. 

Dmitry Emeliyanov (STFC RAL) and Jacob Howard (University of Oxford) 

Computing in High Energy Physics, CHEP2012 

3. Combinatorial tracking algorithm in the Level 2 Trigger  

Algorithm 

Separation of code using NVIDIA CUDA (or any other GPU API) from the ATLAS 
event processing framework (Athena) is achieved via a “client-server” model, with 
a compute server based on NVIDIA CUDA, and CUDA-free clients. 

Algorithm 

AthenaComputeSvc 

Athena 0, Core 0 

Request Tracks 
Send Data 

Receive Tracks 

ComputeServer GPU 

CPU Proc. per Core 

Kernel 2 

Kernel 1 
Request for Track Finding on GPU 

Athena 1, Core 1 

Send Data 
Receive Tracks 

•  High-level abstraction of the GPU API via AthenaComputeSvc which: 
•  Provides a set of high-level routines: e.g. track finding – ported CPU-bound code 

which could benefit from GPU acceleration 

•  AthenaComputeSvc sends commands and data to the ComputeServer which 
starts the corresponding CUDA kernel on the GPU 

•  Multiprocessing server allows for sharing of the GPU between clients  

5. The “client-server” architecture for hybrid CPU/GPU processing  

1. Inner Detector data preparation in the Level 2 Trigger 

Data preparation for the ID has two primary steps: bytestream decoding and hit 
clustering:  

Conclusion and outlook 
Significant speed-up for both data preparation and track finding is observed and the client-server architecture viability demonstrated. Future goals include porting kernels 
and server code to OpenCL to perform tests with ATI FirePro cards and multi-core CPUs working as co-processors. 

The data preparation has significant parallelism at different levels: ROIs, detector 
modules, raw data words – all are ideal for GPU-based code. The original code is 
CPU-oriented – not completely suitable for parallel execution. Some of the 
algorithms, in particular, pixel clustering, had to be fully redesigned.   

4. GPU-accelerated SiTrack algorithm  

Decoding Clustering 
Decoding consists of converting the 
readout-optimized data format to a 
collection of hits in the silicon detectors 

Clustering groups adjacent hits into 
clusters which represent where a particle 
has passed through the silicon 

GPU decoding performs the same hit 
extraction as on the CPU, but maps the 
bytestream fragment from each readout 
buffer to a different CUDA block/streaming 
multiprocessor, decoding each word in the 
stream in parallel on a separate thread 

The GPU clustering procedure uses a 
cellular automaton to iteratively combine 
hits into groups.  All hits are assigned an 
initial tag and then retagged by adjacent 
hits with a higher tag index until the 
automaton stops evolving. 

Pixel 

SCT 
Readout 

Buffer 

   …Bytestream Fragment… 

Module Module … 

Bytestream Fragment 

GPU 
Core 

Thread 

Word 

Core 

Thread 

Word 

… … 

Initial Tagging Tag Replacement 

Automaton Stops Evolving Clusters Identified 

Track Reconstruction Full Processing Rate 

Data preparation time is reduced by a factor of 26 and 
shows very little dependence on input data volume 

Track finding also shows increased performance, though it is 
limited by the track merging/removal being run on the CPU 

Overall processing throughput is increased when using the 
GPU, limited only by the number of GPU multiprocessors 

The ATLAS SiTrack algorithm uses a 
combinatoric approach to track finding.  
Track seeds are formed using SPs from the 
two innermost detector layers. These seeds 
are then matched to SPs in outer layers to 
form triplets. Triplets with similar parameters 
are merged into track candidates. 
Candidates which share a large number of 
SPs are merged or removed based on the 
number of SPs they contain and their quality. 

Track seeds are formed 
from spacepoints in the 

innermost detector layers 

These seeds are extended 
by spacepoints in the outer 

layers to form triplets 

1. GPU-based seed formation 2. GPU-based seed extension 

3. GPU-based triplet merging 

til
e_

i 

Loop over layers 

3x32 
thread 
block 

thread (i,j) 

space- 
points 

seeds 

local buffer 

global triplet array 

local buffer 

global seed array tile_j 

triplets 

global triplet array tile_i tile_i+1 

1D thread block 

global track candidates array 

tile_i 
til

e_
j 

Layer 1 

Layer 2 
16x16 thread 

block 

thread (i,j) 

space- 
points se

ed
s 

local buffer 

gl
ob

al
 s

ee
d 

ar
ra

y 

Decoding, clustering, and spacepoint formation 

The last step of SiTrack, merging/removal of 
track candidates, is hard to parallelize and is 
run on CPU rather than on GPU.  

The ATLAS Inner Detector (ID) includes the Pixel and SCT subdetectors – large silicon 
trackers with thousands of detector modules.  

The Pixel and SCT data preparation chain 
consists of 
1.  Decoding of bytestream (raw data) to a 
series of pixel and SCT strip hits 
2.  Clustering of pixels and strip hits 
3.  Formation of spacepoints (SP) in 3D  
 space from pixel clusters and pairs of  
 SCT clusters 

Each SiTrack 
step is split 
among 
threads 
arranged into 
1-D or 2-D 
blocks, with 
each thread 
working on a 
small subset 
of input data 
(spacepoints, 
seeds, or 
triplets). Fast 
local buffers 
are used to 
hide latency of 
the global 
GPU memory. 


