
Multi-core job submission and grid resource

scheduling for ATLAS AthenaMP

D. Crooks3, P. Calafiura2, R. Harrington3, M. Jha4, T. Maeno5, S.
Purdie3, H. Severini6, S. Skipsey1, V. Tsulaia2, R. Walker7, A.
Washbrook3 on behalf of the ATLAS collaboration
1 Kelvin Building, Physics and Astronomy, University of Glasgow, Glasgow, G12 8QQ
2 Lawrence Berkeley National Lab, 1 Cyclotron Road, Berkeley, CA 94720, USA
3 School of Physics and Astronomy, The University of Edinburgh, James Clerk Maxwell
Building, Mayfield Road, Edinburgh, EH9 3JZ, United Kingdom
4 INFN CNAF and INFN Bologna, V.Le Berti Pichat 6/2, IT-40127 Bologna, Italy
5 Brookhaven National Laboratory, NY, USA
6 University of Oklahoma, 660 Parrington Oval, Norman, OK 73019, USA
7 Ludwig-Maximilians-Universitat Muchen, Munchen, Germany

E-mail: awashbro@ph.ed.ac.uk

Abstract. AthenaMP is the multi-core implementation of the ATLAS software framework
and allows the efficient sharing of memory pages between multiple threads of execution. This
has now been validated for production and delivers a significant reduction on overall memory
footprint with negligible CPU overhead. Before AthenaMP can be routinely run on the LHC
Computing Grid, it must be determined how the computing resources available to ATLAS can
best exploit the notable improvements delivered by switching to this multi-process model. A
study into the effectiveness and scalability of AthenaMP in a production environment will be
presented. Best practices for configuring the main LRMS implementations currently used by
Tier-2 sites will be identified in the context of multi-core job optimisation.

1. Introduction
ATLAS Monte Carlo simulation, data reprocessing and user analysis jobs are run successfully on
computing resources at over 100 computing sites worldwide on a variety of grid infrastructures.
As the number of CPU cores on worker nodes at these sites has increased it has been preferable
to allocate one job per core in order to maximise resources. Although the number of cores per
worker node has increased the ratio of device memory to number of cores per worker node has
remained constant. A value of 2 to 3 GB per CPU core is typical and is lower for sites taking
advantage of hyper-threading technology to double their effective core count per node.

The memory footprint of ATLAS pileup reconstruction jobs is expected to exceed the 2GB
per core due to the higher amount of pileup events expected in current and future data taking
conditions. The assumption of running one ATLAS job per core will be difficult to sustain
without memory limits on the worker node being reached and less jobs will have to be allocated
per worker node unless memory pressure can be mitigated. To address this issue, AthenaMP
- the multiprocess implementation of ATLAS Athena software framework - provides a method

of enabling maximum memory sharing between multiple Athena worker processes. Almost 80%
memory sharing can be achieved with negligible CPU overhead [1].

Although the advantages of using AthenaMP are clear, effort is now required to define the
best approach to reconfigure local resource management systems and scheduler software at grid
sites providing resources to ATLAS to run multicore jobs in a timely manner. In particular,
some care is needed to avoid scheduling contention for jobs requiring different CPU and memory
resources to run.

This note will look at how the increasing need for AthenaMP can be incorporated into the
ATLAS production system. The implementation and the main features of AthenaMP will be
outlined in section 2. In section 3 some of the issues faced for sites accepting multicore jobs
from ATLAS will be discussed. Section 4 will cover some of the possible multicore job scheduling
scenarios in further detail by modelling scheduling behaviour in a controlled environment. The
current status of multicore readiness in the production system will be described in Section 5.
Recommendations for wider deployment across grid infrastructures and future prospects in this
area will be outlined in section 6.

2. AthenaMP
AthenaMP [2] is an extension of the Athena software framework which provides a method of
maximum memory sharing between multiple Athena worker processes whilst retaining event
based parallelism. The underlying process creation and communication management to worker
processes is provided by the Python multiprocessing module [3]. By incorporating all multi-
process semantics into the existing Athena/Gaudi framework [4] there is no need for changes to
client code using AthenaMP.

2.1. Implementation and workflow
The multi-process mode of Athena is activated by either a command line switch or an
environment variable indicating the amount of cores to use (a setting of -1 utilises all the cores
on the host). A schematic of the job workflow for Athena and AthenaMP is shown in Figure 1.
The allocated number of worker processes is created prior to the main event loop. The fork()

routine then clones and shares the address space of the parent process with the worker processes
and the Linux kernel Copy On Write mechanism (CoW) ensures an efficient use of memory with
only the differences in memory between the worker and the master processes using up additional
memory space.

A bootstrap function handles I/O reinitialisation to allow each process to run in a separate
working directory with no communication required between processes. Input events are then
allocated via a shared queue and the master process remains idle until all events are processed.
Output files generated by worker processes are then merged before the finalisation step is run.
More details on the design of AthenaMP are provided in [2].

2.2. Running considerations
It is important to note that the performance does not scale linearly with N processes and it
is evident from Amdahl’s law [5] that any serialisation steps during execution will significantly
affect scaling ability. For AthenaMP, the main areas of serialisation are in the job initialisation
and file merging steps. Therefore undue latency or inefficiencies in these areas needs to be
minimised whilst retaining significant memory sharing ability.

The timing of the worker process fork() is crucial in order to enable the maximum amount
of memory to be shared. If the fork() call is made before data common to worker processes
(such as detector conditions data) is allocated into memory then an unnecessary duplication of
memory pages will result. Conversely, a late fork() call will result in a larger proportion of the
overall execution time to be run in serial mode. The optimal approach is found by processing

Figure 1. Job flow for serial and
multi-process implementations of the ATLAS
Athena framework

Figure 2. Job event throughput for an
increasing number of worker processes. The
number of input files is equal to the number
of processes.

the first input event before the fork() is called. A large amount of memory sharing is then
enabled with only a small serialisation penalty incurred.

In order to increase the proportion of the job in parallel mode it is desirable to increase the
length of the event loop. A common approach is to match the number of input files with the
number of processes. Figure 2 shows the event throughput (the number of events processed per
second per node) of a typical reconstruction job for a increasing number of worker processes.
As the number of files (and processes) increases the overall event throughput is comparable to
running N jobs in serial mode.

Although a longer event loop (and a higher number of input files) is preferable this will result
in an increase in processing time in the finalisation stage due to file merging. This effect can be
mitigated by choosing a faster merge algorithm which concatenates event data and metadata
files rather than full event validation.

In addition to the running modes described above there are a number of AthenaMP job
options that can affect execution time. Instead of an event queue it is possible to define a fixed
allocation of events for each worker process. However, due to large deviations in event processing
times causing an imbalance in worker process lifetimes this is now generally discarded in favour
of the event queue model. Worker processes can also be pinned to a predefined list of cores
rather than be allocated dynamically by the Linux scheduler. This is not well used at present
but could be potentially useful to mitigate undesirable NUMA effects.

3. AthenaMP on the ATLAS PanDA system
A recent series of simulation exercises at the ATLAS Tier-0 computing centre has validated
AthenaMP for production use. The next step in deployment is to ensure that AthenaMP can
run successfully and in a timely manner on the existing ATLAS computing infrastructure.

3.1. ATLAS PanDA System
A key component of the ATLAS distributed computing operations is the ATLAS Production and
Distributed Analysis system (PanDA) which provides robust workload management for Monte

Carlo simulation, data reprocessing and user analysis. A brokerage module in PanDA prioritises
and assigns tasks to site queues based on a number of factors such as CPU availability and input
data locality. The level of workload received by each grid site is managed by a pilot system [6].
One or more pilot factories installed in each regional cloud send jobs directly to grid computing
sites using Condor-G [7]. Once pilots are executed any available jobs from the PanDA server
brokered to the site are retrieved and the job payload is executed and monitored by the pilot.
The amount of pilot jobs sent to a site queue is determined by the number of current queued and
running pilots on the site queue. This provides an efficient self-regulating method of utilising
available ATLAS computing resources. More information on the PanDA system can be found
in [8].

3.2. Multicore site configuration
The use of AthenaMP will be incorporated into production operations as the memory footprint
of Athena reconstruction jobs increases. It will be necessary to continue running single core
jobs with an gradual introduction of AthenaMP tasks added to the system. For sites wishing to
pledge multicore resources to PanDA system there are two main issues to address:

(i) Should multicore jobs reserve all the cores available on a worker node (i.e. wholenode
execution)?

(ii) Should a dedicated set of resources be provided to new multicore queues?

For (i), wholenode execution allows runtime inspection of the worker node hardware to define
the number of cores for execution rather than relying on information from Panda configuration
or external information systems. The reservation of a entire worker node also guarantees that
memory and CPU resources will be dedicated to the AthenaMP job and not shared with other
jobs that may impact on execution. Furthermore, a wholenode job can still retain the option to
not use all cores if memory limitations are observed.

Although this appears to the simplest approach there are still some issues to address. The
number of cores is an important factor in determining optimum job length and so core count
may need to be included as part of any AthenaMP-based task definition. In addition, an
increasing amount of cores per node (with 64 core worker nodes already in production) reduces
job scheduling flexibility for the grid site.

For (ii), sites could partition a small but dedicated amount of resources for exclusive multicore
use. This modification requires minimal configuration changes to the existing PanDA model and
pilot jobs sent to these multicore queues can be scheduled and run in exactly the same manner
as for single core jobs.

An important issue arises when determining how many resources will need be reserved for
participating sites. It is clear that too conservative an estimate will result in a large waiting
time but arguably a larger problem occurs when the allocated resources are too generous. In
low usage periods, worker nodes attributed to a dedicated queue will be left unoccupied and
cannot be reassigned for single core jobs, or for any other users without continual intervention
by site administrators. This will impact on overall site throughput and has led candidate sites
to be initially conservative with multicore resource allocation.

3.3. Dynamic Resource Allocation
An alternative option to dedicated multicore resource allocation is to allow a site batch system
scheduler to dynamically assign resources by taking batch system load into account. This can
provide an efficient automated mechanism to enable the regulation of multicore use without
loss of overall job throughput. Although this is a more flexible approach than static allocation
of multicore resources there is the potential for scheduling contention which can cause undue
latency not evident in current production system.

The scheduling of jobs with different CPU and memory resource requirements is a well defined
problem which leading scheduler implementations already address successfully. In particular,
this scenario is well covered for efficient simultaneous execution of MPI jobs across multiple
cluster nodes. However additional factors have to be taken into account when considering
multicore job submission from the ATLAS production system:

• The job submission rate is dependent on batch system load

• The job lifetime depends upon external brokerage which in turn is decided in part by batch
system load

• Grid Job queues are not (in general) exclusive to ATLAS

The scheduling conditions anticipated from this new setup were modelled in a controlled
environment taking the above factors into consideration.

4. Multicore Scheduling Simulation
A testbed was used to model the submission of single core and multicore jobs of a site accepting
workload from the ATLAS PanDA system. The components of the testbed and workflow are
shown in Figure 3.

4.1. Testbed Configuration
The batch system and scheduler chosen for this simulation was Torque and Maui which is
a common resource manager and scheduling choice for many grid sites available to ATLAS.
A feature useful in Torque was the ability for a single node to host multiple batch client
instances [9]. This enabled a scaling up of computing resources from the original testbed size
to any appropriate test setting. Furthermore, the number of slots per node could be set to
any value. A testbed of 100 8-core “virtual” nodes was chosen to capture scheduling conditions
expected at a small Tier-2 site.

Although tools exist to evaluate scheduler response without the need for job submission [10] it
was necessary to include an approximation of job brokerage and pilot factory submission rates to
model realistic ATLAS PanDA submission patterns. Job submission and timing, pilot activation,
job brokerage and queue performance monitoring were controlled by a suite of steering scripts
created for this study.

Jobs submitted to the testbed batch queue were stored on a job list that was populated from
input files at the start of the test and then from ”pilot factories” throughout the test lifetime.
These approximations of pilot factories used the same submission algorithm currently used in
production. To emulate job brokerage it was not necessary to model the entire PanDA brokerage
system. Instead, a tally of the number of jobs available for processing was stored. If this tally
was non-zero then any pilots queued in the job list were switched from “idle” to “active” by
adjusting the job length to a nominal running time representative of job running in production.
The available job tally could be either refreshed at regular time intervals or boosted at discrete
points during the test run.

Scheduling patterns only become apparent after a number of hours into the test so it was
preferable to speed up the simulation by a global scaling factor. A 10x speedup was used for all
tests.

4.2. Observations
A number of simulations were run to identify common scheduling scenarios that could be
observed at sites that accept multicore pilot jobs running on the same resources as single core
jobs. In each test, a number of job and queue-based metrics were collected to evaluate relative
performance. Job utilisation, queue utilisation, average job wait, average pilot wait and a

!"#$%&'()#*'

+,-.&/'0%1)&2.3&)45'6378.&/'0%1)&*'

+,-.&/'94):/4.;/' !"#"#$

%&'#(")#*$

+,$

-./0*.1#*$%2$

-./0*.1#*32

()#<%*&'

45).67586$

+3%$

95*#&6$$
8"/:5885.;$

2.;<=$<)#$

>5).6?@&6.*A$%2$

>5).6?@&6.*A32

2.;<=$<)#$

B#86/#($$
3.;56.*5;=$

+,$

+,$ +,$

>C
D
%E
$

100 8-core “virtual” nodes!
(scale to any size)!

Speed-up factor!
(x10)!

Torque!

Maui!

F58"@)58@G.;$

Highcharts!

Pilot & queue status!
and performance !

Number of jobs per queue!
Refresh interval!

Number of PFs!
Idle time!
Depth!

Time to start!

Background job!
submission!

Job lifetime ~5h!
(gaussian spread)!

Figure 3. Scheduler Simulation steering script components

derived brokerage value were able to show how the testbed scheduler responded to different job
submission scenarios.

The average job wait measured the time jobs spent on the queue before being run on a
worker node. Note that this metric in isolation was not enough to fully describe the queue
performance due to the variation in pilot jobs submitted by a pilot factory at any given time.
To complement this metric the average pilot wait was used to measure the time interval for
any new pilot job to start running. Both wait times were calculated as averages over a 12
hour period. In addition, wait times for smaller time periods were collected to show short term
scheduler response patterns.

The brokerage value was a reflection of the CPU availability algorithm used to determine
brokerage decisions by the PanDA Server. A higher value denotes an increase in brokerage
weight which will consequently attract more jobs to be sent to a queue. This is evaluated by
considering the number of running and idle pilots and is averaged over a 3 hour period.

4.2.1. Scenario 1: Single Core Pilots The first simulation, shown in Figure 4, was a baseline
test with one single core pilot factory. For the first two hours of the test the queue was populated
with non-pilot jobs (“background jobs”) to fill the queue. This was in order to avoid edge effects
in the results due to synchronised job start and completion. Pilot jobs were included gradually
into the queue as slots were freed from completed background jobs. Once these pilot jobs fully
occupy the available slots it is seen that the number of queued jobs is regulated by the pilot
factory to a predefined depth. As the number of queued job falls below a set level it is then
replenished by another batch of jobs which then keeps the queue fully utilised. This submission

pattern continues through the remainder of the test.

4.2.2. Scenario 2: Single Core and Multicore Pilots Figure 5 outlines the simulation when a
multi core pilot factory is included 7 hours into the test. It is observed that submitted multicore
pilots reside on the queue for a number of hours before a whole node is allocated. In this time
the overall queue utilisation drops considerably. This is due to multicore jobs blocking resources
for lower priority single core jobs whilst a whole node becomes fully available. Although the
utilisation recovers after this initial phase the multicore utilisation is far greater than for single
core despite equal submission rates and scheduler weighting. In this scenario the multi core pilot
submission rate would have to be throttled to balance resource allocation.

4.2.3. Scenario 3: Multicore Idle Pilots In the scenario shown in Figure 6, an overall queue
utilisation drop is also observed even if there are no multicore jobs to be run on the queue. This
is because a pilot factory will still submit pilot jobs regardless of defined workload. Although
these jobs are short lived (approximately 5 minutes) they still have to potential to disrupt normal
utilisation patterns.

4.2.4. Scenario 4: Backfilling Figure 7 shows the effect of scheduling configuration tuning
away from a simple fifo model. In this case, backfilling has been enabled to allow single core
jobs to preempt higher priority multi core jobs where slots are available. This is in contrast to
scenario 2 where single core jobs are forced to wait for higher priority jobs to be cleared from
the queue. Indeed, this approach allows for a higher utilisation of single core jobs as a result.

Although 100% utilisation is not observed this is still a marked improvement and further
tuning using more detailed backfilling methods could yield improved results. In particular, the
a priori knowledge of job lifetime can be used directly by the scheduler to determine whether
a single core job can run within the timeframe of a node being drained for multicore use.
At present, job lifetime is not accurately provided through the pilot mechanism or from grid
middleware and so could be a significant factor to enable single core and multi core jobs to run
on the same resources.

5. Current Production Status
A number of grid sites have already pledged multicore resources to allow the testing of AthenaMP
jobs in the ATLAS PanDA system. A core count parameter for each new queue is used to
determine the number of worker processes that can created by an AthenaMP job. At this time
it is assumed that the core count value refers to the total number of cores on the worker node.

Multicore queues available to ATLAS reside on grid sites with a variety of hardware,
resource managers, scheduler implementations and queue definitions. The resources allocated
for AthenaMP operations has been decided by each site and is shown in Table 1.

In most cases a small amount of worker nodes has been partitioned for exclusive use with
the anticipation of an future increase given demand. The queues at GLASGOW and ECDF use
the same resources as advertised in single core queues. At ECDF, no additional batch queue
has been created. Instead, jobs submitted to this queue are prepended with appropriate batch
system flags to inform the scheduler that a whole node is required for execution.

6. Discussion
The requirements for successfully scheduling and running multicore jobs at grid sites is not
unique to ATLAS and is relevant for other LHC experiments and for other Virtual Organisations
(VOs), and common approaches in multicore job specification and resource advertising can be
captured by modifying existing middleware frameworks. The LCG Technical Evolution Group

Figure 4. Job utilisation and queue performance for single core pilots.

Figure 5. Queue utilisation and queue performance for single core and multi core pilots.

Figure 6. Queue utilisation and queue performance for single core and idle multi core pilots.

Figure 7. Queue utilisation and queue performance for single core and multi core pilots with
scheduler backfilling enabled.

Site Name Cores/Node LRMS Grid Excl. Mcore Queue Pledge
BNL (US) 8/24 Condor No Dedicated 50
ECDF (UK) 8/12 SGE No Shared N/A
Glasgow (UK) 8/12/64 Torque/Maui Yes Shared N/A
INFN-T1 (IT) 4 LSF Yes Dedicated 8
Lancaster (UK) 8 Torque/Maui Yes Dedicated 8
OSCER (US) 8 LSF No Shared N/A
RAL (UK) 8 Torque/Maui No Dedicated 15

Table 1. List of Grid sites used for ATLAS multicore testing. Sites that allow access to
resources through Grid submission only is shown in the Grid Excl. column. The Mcore Queue
column denotes which sites have partitioned resources for exclusive multicore use.

(TEG) has recommended that additional parameters are available in Job Description Languages
(JDLs) in each middleware stack. The number of requested cores, the total memory for the job
(or memory per core), wholenode availability, and the minimum and maximum number of cores
should be included. Most of these specifications are already available as part of MPI support
and could immediately be used for multicore job specification.

An additional recommendation is for sites to be able to advertise multicore queue status
through grid information systems such as AGIS. For example, if a site can accept wholenode jobs
and the maximum number of cores supported. Information publishing could also be extended
to include dynamic information indicating multicore readiness based on load conditions. For
example, an availability metric could indicate if load conditions are favourable for multicore
job submission. Advanced queue status and performance (as shown in Figures 4 to 7) could
potentially be useful especially for central job brokerage.

An approximation of job lifetime is a useful parameter to provide more efficient job scheduling
by backfilling single core jobs around potentially longer lived multicore jobs. At present a realistic
evaluation of job lifetime is not delivered as part of grid job submission. This functionality has
not been required to successfully process jobs which require identical resources to execute but
may have to be considered if the rate of multicore job submission increases.

In addition, grid accounting software will have to be validated to ensure that CPU efficiency,
CPU time and wallclock time for a multicore job is averaged over N cores. The assumption of
one core per job could lead sites to under-report usage which has important implications for the
CPU pledges sites make to VOs.

References
[1] ACAT 2011 Multicore in Production: Advantages and Limits of the Multi- Process Approach
[2] Binet S, Calafiura P, Snyder S, Wiedenmann W and Winklmeier F 2010 Harnessing multicores: strategies

and implementations in ATLAS J. Phys.: Conf. Ser. 219 042002
[3] The multiprocessing module, http://docs.python.org/library/multiprocessing.html
[4] Mato P 1998 Gaudi - architecture design document Tech. Rep. LHCb-98-064 Geneva
[5] Amdahl G 1967 Validity of the Single Processor Approach to Achieving Large-Scale Computing Capabilities

AFIPS Conference Proceedings (30) pp. 483-485
[6] The ATLAS PanDA Pilot in Operation, P. Nilsson, CHEP 2010, Taiwan, October 2010
[7] The Condor Project. http://www.cs.wisc.edu/condor
[8] Overview of ATLAS PanDA Workload Management, T. Maeno, CHEP 2010, Taiwan, October 2010
[9] Torque Multi-MOM http://www.clusterresources.com/torquedocs21/1.8multimom.shtml
[10] http://www.adaptivecomputing.com/resources/docs/maui/mauiadmin.php

