The sensitivity to ϕ_s and $\Delta\Gamma_s$ at LHCb #### Jeroen van Hunen (for the LHCb collaboration) ### The LHCb experiment # ϕ_s in the Standard Model $$B_q^0$$ mixing phase $\equiv \phi_q \equiv 2 arg[V_{tq}^* V_{tb}]$ \Longrightarrow $\phi_d = 2\beta$ If only SM box diagrams $\phi_s = -2\chi$ If NP contributions in B_s mixing $$\phi_{\rm s} = \phi_{\rm s}^{SMbox} + \phi_{\rm s}^{NP}$$ and $\phi_{\rm s} \neq -2\chi$ $$x + \phi_s^{NA}$$ $$\phi_{\rm s} \neq -$$ # Measuring ϕ_s at LHCb Thus : measure the B_s mixing phase ϕ_s and see if it agrees with SM expectation from the box diagrams (check if $\phi_s \leftrightarrow -2\chi = -2\lambda^2 \eta \cong -0.04$) These $\boldsymbol{B}_s\text{-decays}$ have been used to determine the LHCb sensitivity to $\boldsymbol{\varphi}_s$: | $B_s \rightarrow J/\psi(\mu^-\mu^+)\phi(K^+K^-)$ | CP-odd and CP-even eigenstates | |--|--| | $B_s \rightarrow \eta_c(h^-h^+h^-h^+)\phi(K^+K^-)$ | CP-even eigenstate | | $B_s \rightarrow J/\psi(\mu^-\mu^+) \eta(\gamma\gamma)$ | CP-even eigenstate | | $B_s \rightarrow J/\psi(\mu^-\mu^+) \eta(\pi^+\pi^-\pi^0(\gamma\gamma))$ | CP-even eigenstate | | $B_s \rightarrow D_s (K^+K^-\pi^-) D_s (K^+K^-\pi^+)$ | CP-even eigenstate | | $B_s \rightarrow D_s^- (K^+ K^- \pi^-) \pi^+$ | Flavour-specific decay (control channel needed for determination of ΔM_s and the wrong tag fraction) | # CP asymmetry in $B_s \rightarrow \overline{c}c\overline{s}s$ decays $$\mathcal{A}_{\mathrm{CP}}(t) = \frac{\Gamma[\overline{\mathrm{B}}_{\mathrm{s}}(t) \to f] - \Gamma[\mathrm{B}_{\mathrm{s}}(t) \to f]}{\Gamma[\overline{\mathrm{B}}_{\mathrm{s}}(t) \to f] + \Gamma[\mathrm{B}_{\mathrm{s}}(t) \to f]}$$ - CP eigenstates with eigenvalues: $\eta_f = \pm 1$ - continued in the strength of o - $\bullet \overline{b} \to \overline{c} c \overline{s}$ is dominated by a single weak phase $$\mathcal{A}_{\mathrm{CP}}^{\mathrm{mix\text{-}ind}}(t) = -\frac{\eta_f \sin \phi_{\,\mathrm{S}} \sin(\Delta M_{\,\mathrm{S}}\,t)}{\cosh(\Delta \Gamma_{\,\mathrm{S}}\,t/2) - \eta_f \cos \phi_{\,\mathrm{S}} \sinh(\Delta \Gamma_{\,\mathrm{S}}\,t/2)}$$ The time-dependent CP asymmetry allows us to measure ϕ_s and $\Delta\Gamma_s$ (but also untagged events give a sensitivity to $\phi_s \Rightarrow \cos(\phi_s)$ term) ## **Angular analysis (CP-odd/CP-even separation)** Complication for $$B_s \to J/\psi(\to \ell^+\ell^-) \ \phi(\to K^+K^-)$$ $$R_{\rm T} \equiv \frac{|A_{\perp}(0)|^2}{\sum_{f=0,\parallel,\perp} |A_f(0)|^2}$$ $$R_T = 0 \rightarrow CP \text{ even}$$ $R_T = 0.5 \rightarrow \text{maximum dilution}$ (but still sensitivity to ϕ_s since odd and even contributions have different θ_{tr} distribution) Measurements (Tevatron) \rightarrow $R_T \cong 0.2$ (full angular analysis, i.e. with 3 angles, started) $$\frac{d\Gamma[B_{s}(t) \to f]}{d\cos\theta} \propto (|A_{0}(t)|^{2} + |A_{\parallel}(t)|^{2}) \frac{3}{8} (1 + \cos\theta) + |A_{\perp}(t)|^{2} \frac{3}{4} \sin\theta$$ #### The LHCb MC simulation #### Results on the event selections | Decay Channel | Yield | B/S | $<\delta_{\tau}>$ | $\sigma_{ m mass}$ | W _{tag} | $\varepsilon_{\mathrm{tag}}$ | |--|---------------------------|------|-------------------|--------------------|------------------|------------------------------| | | (evts/2fb ⁻¹) | | (fs) | (MeV/c^2) | (%) | (%) | | $B_s \rightarrow J/\psi(\mu^-\mu^+)\phi(K^+K^-)$ | 131k | 0.12 | 36 | 14 | 33 | 57 | | $B_s \rightarrow \eta_c(h^-h^+h^-h^+)\phi(K^+K^-)$ | 3.0k | 0.6 | 30 | 12 | 31 | 66 | | $B_s \rightarrow J/\psi(\mu^-\mu^+) \eta(\pi^+\pi^-\pi^0(\gamma\gamma))$ | 3.0k | 3.0 | 34 | 20 | 30 | 62 | | $B_s \rightarrow J/\psi(\mu^-\mu^+) \eta(\gamma\gamma)$ | 8.5k | 2.0 | 37 | 34 | 35 | 63 | | $B_s \rightarrow D_s(K^+K^-\pi^-) D_s(K^+K^-\pi^+)$ | 4.0k | 0.3 | 56 | 6 | 34 | 57 | | $B_s \rightarrow D_s (K^+ K^- \pi^-) \pi^+$ | 120k | 0.4 | 40 | 14 | 31 | 63 | In summary (important for the sensitivity to ϕ_s): $B_s \rightarrow J/\psi \phi$: Large yield, but mixture of CP-odd and CP-even eigenstates $B_s \rightarrow J/\psi \eta, B_s \rightarrow \eta_c \phi$: Low yield, high background, but CP-even : Low yield, worse proper time resolution, but CP-even #### Results on the event selections ## **Toy MC** The sensitivities for ϕ_s and $\Delta\Gamma_s$ are determined by making use of a fast parameterized MC. The results on the event selections from the full LHCb MC are used as input. The CP parameters are extracted by performing a likelihood fit to the mass and the tagged and untagged proper-time distributions (and for $B_s \rightarrow J/\psi \phi$ to the transversity angle, θ_{tr}). The likelihood for the signal $\overline{b} \to \overline{c}c\overline{s}$ transitions is simultaneously maximized with the control sample $(B_s \to D_s \pi)$. The wrong tag fraction (w_{tag}) is assumed to be the same for the control and signal sample. - $m_{\rm B_s} = 5369.6~{\rm MeV/c^2};$ - $\Delta M_{\rm s} = 17.5 \, {\rm ps}^{-1}$; - $\phi_{\rm s} = -0.04 \, {\rm rad};$ - $\Delta\Gamma_{\rm s}/\Gamma_{\rm s}=0.15$; - $1/\Gamma_{\rm s} = 1.45 \, {\rm ps}$ - $R_{\rm T}=0.2$, for $B_{\rm s}\to J/\psi \ \phi$ Performed ~200 toy experiments, where each experiment represents 2fb⁻¹ (10⁷ seconds at $2\times10^{32}\text{cm}^2\text{s}^{-1}$). The RMS of the ϕ_s distribution is given as the sensitivity. Standard model values are used as input ## The mass and θ_{tr} distributions Projection of the likelihood on mass distribution for $B_s \rightarrow J/\psi \phi$. The mass peak is modeled by an exponential (background) and a Gaussian (signal). Projection of the likelihood on the transversity angle distribution for $B_s \rightarrow J/\psi \phi$. Blue=total, red dotted = CP-even, red dashed = CP-odd, black=background (is assumed to be independent of $cos(\theta_{tr})$). ## The tagged proper time distributions $$R_{f}\left(t_{i}^{\mathrm{true}},q_{i};\omega_{\mathrm{tag}},\vec{\alpha}\right) \propto e^{-\Gamma_{\mathrm{s}}t_{i}^{\mathrm{true}}} \left\{ \cosh\frac{\Delta\Gamma_{\mathrm{s}}\,t_{i}^{\mathrm{true}}}{2} - \eta_{f}\cos\phi_{\mathrm{s}}\,\sinh\frac{\Delta\Gamma_{\mathrm{s}}\,t_{i}^{\mathrm{true}}}{2} \right.$$ $$\boxed{b \to \overline{\mathrm{ccs}}\left(\mathrm{CP-even}\right)} + \eta_{f}\,q_{i}\,D\,\sin\phi_{\mathrm{s}}\,\sin\left(\Delta M_{\mathrm{s}}\,t_{i}^{\mathrm{true}}\right)} \right\}$$ $$\boxed{\phi_{\mathrm{s}} = 5 \times \mathrm{SM}\,\mathrm{value}}$$ - Sensitivity to ϕ_s depends on D (tagging dilution) = 1-2 w_{tag} - But \Rightarrow also sensitivity to ϕ_s with untagged events (w_{tag} =0.5, D=0) from the $cos(\phi_s)$ term, especially if ϕ_s is large. - Red solid line : tagged as initially B_s^0 - Blue dashed : tagged as initially \overline{B}^0_s (Wrong tag fraction is included) #### Include: - Trigger and Selection bias on τ - Proper time resolution ## The tagged proper time distributions Blue solid: Total Red dotted: Signal Black dashed: Background $B_s \rightarrow J/\psi \eta$: larger background, worse proper time resolution \Rightarrow flattens the wiggles Likelihood for the proper time distribution includes (from full MC): - acceptance function - per-event-error for the decay time - tagging performance - exponential background function ## Results on the sensitivity to ϕ_s | Channels (sensitivity to ϕ_s with 2 fb ⁻¹) | $\sigma(\Phi_s)[rad]$ | $Weight \left(\frac{\sigma}{\sigma_i} \right)^2 \left[\frac{9}{6} \right]$ | |---|-----------------------|--| | $B_S \rightarrow D_S (K^+ K^- \pi) D_S (K^+ K^- \pi^+)$ | 0.133 | 2.6 | | $B_S \to J / \Psi(\mu^+ \mu^-) \eta(\pi^+ \pi^- \pi^0 (\gamma \gamma))$ | 0.142 | 2.8 | | $B_S \to J / \Psi(\mu^+\mu^-) \eta(\gamma \gamma)$ | 0.109 | 3.9 | | $B_S \to \eta_C (h^- h^+ h^- h^+) \Phi(K^+ K^-)$ | 0.108 | 3.9 | | Combined sensitivity for pure CP eigenstates | 0.059 | 13.2 | | $B_S \to J/\Psi(\mu^+\mu^-)\Phi(K^+K^-)$ | 0.023 | 86.8 | | Combined sensitivity for all CP eigenstates | 0.021 | 100.0 | Total LHCb sensitivity with 10 fb⁻¹ : $0.01 \text{ rad} \cong 0.6 \text{ degrees}$ (but statistical uncertainty only) Additional studies ongoing: $B_S \to J/\Psi \eta'(\pi^+\pi^-\eta(\gamma\gamma))$ $B_S^0 \to J/\Psi(\mu^+\mu^-)\eta'(\rho^0(\pi^+\pi^-)\gamma)$ ## The sensitivity to B_s mixing parameters | Parameter | Sensitivity | Channels | |---------------------------------------|-------------------------|--| | | with 2 fb ⁻¹ | | | $\phi_{\rm s}$ | 0.021 rad | $B_s \rightarrow J/\psi \phi, B_s \rightarrow \eta_c \phi, B_s \rightarrow J/\psi \eta, B_s \rightarrow D_s D_s$ | | $\Delta\Gamma_{\rm s}/\Gamma_{\rm s}$ | 0.0092 | $B_s \rightarrow J/\psi \phi$ | | R_{T} | 0.00040 | $B_s \rightarrow J/\psi \phi$ | | $\Delta m_{_{ m S}}$ | 0.007 ps ⁻¹ | $B_s \rightarrow D_s \pi^+$ | | W _{tag} | 0.0036 | $B_s \rightarrow D_s \pi^+$ | - $m_{\rm B_s} = 5369.6~{\rm MeV/c^2};$ - $\Delta M_{\rm s} = 17.5 \, {\rm ps}^{-1}$; - $\phi_s = -0.04 \text{ rad};$ - $\Delta\Gamma_{\rm s}/\Gamma_{\rm s}=0.15$; - $1/\Gamma_{\rm s} = 1.45 \, \rm ps;$ - $R_{\rm T}=0.2$, for ${\rm B_s} \to {\rm J}/\psi \ \phi$ Control channel only Input to the likelihood fit # Results on the sensitivity to ϕ_s The effect on the sensitivity of a degraded $(\Sigma_{\tau}+10\%)$ or improved (Σ_{τ} -10%) proper time resolution. And the effect of a larger B/S | | $\sigma(\phi_s)$ [rad] | | | |-------------------------|--------------------------|--------------------------|--| | Scan | $B_s \to J/\psi \ \phi$ | $B_s \to \eta_c \; \phi$ | | | Nominal | 0.023 | 0.108 | | | $\Sigma_{\tau} + 10 \%$ | 0.025 | 0.108 | | | $\Sigma_{ au}-10~\%$ | 0.023 | 0.103 | | | B/S imes 2 | 0.025 | 0.118 | | Dependence of the ϕ_s sensitivity on ϕ_s (It has been checked that the sensitivity does not depend on the sign of ϕ_s) # Results on the sensitivity to ϕ_s Dependence of the φ_s sensitivity on $\Delta\Gamma_s/\Gamma_s$. \Rightarrow Not very sensitive to $\Delta\Gamma_{\rm s}/\Gamma_{\rm s}$. Dependence of the ϕ_s sensitivity on the CP-odd fraction (R_T) . \Rightarrow Sensitive to R_T, but we still have a reasonable sensitivity if maximum dilution, i.e. R_T=0.5. (full angular analysis will reduce dependence) #### Possible improvements for the sensitivity study - Include the $J/\psi \rightarrow e^+e^-$ events : ~20% increase of event yields - Full angular analysis for $B_s \rightarrow J/\psi \phi$ - Include additional B_s decays $(J/\Psi \eta'(\pi^+\pi^-\eta(\gamma\gamma)), J/\Psi(\mu^+\mu^-)\eta'(\rho^0(\pi^+\pi^-)\gamma))$ - Perform a combined fit with all signal channels - Study the systematic uncertainty - Optimize the use of the control sample $(B_s \to D_s \pi)$ for the determination of the tagging performance of the signal samples $(B_s \to J/\psi \phi, \text{ etc.})$ by defining sub-samples with similar tagging performance. • #### **Conclusions** #### The value of ϕ_s is not known precisely - The LHCb sensitivity for ϕ_s is 0.02 rad (~1.2 degrees) for 2 fb⁻¹ - Small dependence of the sensitivity on $\Delta \Gamma_s/\Gamma_s$ and ϕ_s - \bullet After a few years of data LHCb will be able to measure also a SM φ_s - \bullet Already with a small data sample (0.2 fb-1) we have interesting results on φ_s We aim for a ϕ_s result in 2008! ## **Backup: Tree and Penguin Diagrams**