# The sensitivity to $\phi_s$ and $\Delta\Gamma_s$ at LHCb

#### Jeroen van Hunen

(for the LHCb collaboration)





### The LHCb experiment







# $\phi_s$ in the Standard Model





$$B_q^0$$
 mixing phase  $\equiv \phi_q \equiv 2 arg[V_{tq}^* V_{tb}]$   $\Longrightarrow$   $\phi_d = 2\beta$ 

If only SM box diagrams  $\phi_s = -2\chi$ 

If NP contributions in B<sub>s</sub> mixing

$$\phi_{\rm s} = \phi_{\rm s}^{SMbox} + \phi_{\rm s}^{NP}$$
 and  $\phi_{\rm s} \neq -2\chi$ 

$$x + \phi_s^{NA}$$

$$\phi_{\rm s} \neq -$$



# Measuring $\phi_s$ at LHCb



Thus : measure the  $B_s$  mixing phase  $\phi_s$  and see if it agrees with SM expectation from the box diagrams (check if  $\phi_s \leftrightarrow -2\chi = -2\lambda^2 \eta \cong -0.04$ )

These  $\boldsymbol{B}_s\text{-decays}$  have been used to determine the LHCb sensitivity to  $\boldsymbol{\varphi}_s$  :

| $B_s \rightarrow J/\psi(\mu^-\mu^+)\phi(K^+K^-)$                         | CP-odd and CP-even eigenstates                                                                               |
|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| $B_s \rightarrow \eta_c(h^-h^+h^-h^+)\phi(K^+K^-)$                       | CP-even eigenstate                                                                                           |
| $B_s \rightarrow J/\psi(\mu^-\mu^+) \eta(\gamma\gamma)$                  | CP-even eigenstate                                                                                           |
| $B_s \rightarrow J/\psi(\mu^-\mu^+) \eta(\pi^+\pi^-\pi^0(\gamma\gamma))$ | CP-even eigenstate                                                                                           |
| $B_s \rightarrow D_s (K^+K^-\pi^-) D_s (K^+K^-\pi^+)$                    | CP-even eigenstate                                                                                           |
| $B_s \rightarrow D_s^- (K^+ K^- \pi^-) \pi^+$                            | Flavour-specific decay (control channel needed for determination of $\Delta M_s$ and the wrong tag fraction) |



# CP asymmetry in $B_s \rightarrow \overline{c}c\overline{s}s$ decays



$$\mathcal{A}_{\mathrm{CP}}(t) = \frac{\Gamma[\overline{\mathrm{B}}_{\mathrm{s}}(t) \to f] - \Gamma[\mathrm{B}_{\mathrm{s}}(t) \to f]}{\Gamma[\overline{\mathrm{B}}_{\mathrm{s}}(t) \to f] + \Gamma[\mathrm{B}_{\mathrm{s}}(t) \to f]}$$

- CP eigenstates with eigenvalues:  $\eta_f = \pm 1$
- continued in the strength of the strength o
- $\bullet \overline{b} \to \overline{c} c \overline{s}$  is dominated by a single weak phase



$$\mathcal{A}_{\mathrm{CP}}^{\mathrm{mix\text{-}ind}}(t) = -\frac{\eta_f \sin \phi_{\,\mathrm{S}} \sin(\Delta M_{\,\mathrm{S}}\,t)}{\cosh(\Delta \Gamma_{\,\mathrm{S}}\,t/2) - \eta_f \cos \phi_{\,\mathrm{S}} \sinh(\Delta \Gamma_{\,\mathrm{S}}\,t/2)}$$

The time-dependent CP asymmetry allows us to measure  $\phi_s$  and  $\Delta\Gamma_s$  (but also untagged events give a sensitivity to  $\phi_s \Rightarrow \cos(\phi_s)$  term)



## **Angular analysis (CP-odd/CP-even separation)**



Complication for 
$$B_s \to J/\psi(\to \ell^+\ell^-) \ \phi(\to K^+K^-)$$



$$R_{\rm T} \equiv \frac{|A_{\perp}(0)|^2}{\sum_{f=0,\parallel,\perp} |A_f(0)|^2}$$

$$R_T = 0 \rightarrow CP \text{ even}$$

 $R_T = 0.5 \rightarrow \text{maximum dilution}$ (but still sensitivity to  $\phi_s$  since odd and even contributions have different  $\theta_{tr}$  distribution)

Measurements (Tevatron)  $\rightarrow$  $R_T \cong 0.2$ 

(full angular analysis, i.e. with 3 angles, started)

$$\frac{d\Gamma[B_{s}(t) \to f]}{d\cos\theta} \propto (|A_{0}(t)|^{2} + |A_{\parallel}(t)|^{2}) \frac{3}{8} (1 + \cos\theta) + |A_{\perp}(t)|^{2} \frac{3}{4} \sin\theta$$



#### The LHCb MC simulation







#### Results on the event selections



| Decay Channel                                                            | Yield                     | B/S  | $<\delta_{\tau}>$ | $\sigma_{ m mass}$ | W <sub>tag</sub> | $\varepsilon_{\mathrm{tag}}$ |
|--------------------------------------------------------------------------|---------------------------|------|-------------------|--------------------|------------------|------------------------------|
|                                                                          | (evts/2fb <sup>-1</sup> ) |      | (fs)              | $(\text{MeV/c}^2)$ | (%)              | (%)                          |
| $B_s \rightarrow J/\psi(\mu^-\mu^+)\phi(K^+K^-)$                         | 131k                      | 0.12 | 36                | 14                 | 33               | 57                           |
| $B_s \rightarrow \eta_c(h^-h^+h^-h^+)\phi(K^+K^-)$                       | 3.0k                      | 0.6  | 30                | 12                 | 31               | 66                           |
| $B_s \rightarrow J/\psi(\mu^-\mu^+) \eta(\pi^+\pi^-\pi^0(\gamma\gamma))$ | 3.0k                      | 3.0  | 34                | 20                 | 30               | 62                           |
| $B_s \rightarrow J/\psi(\mu^-\mu^+) \eta(\gamma\gamma)$                  | 8.5k                      | 2.0  | 37                | 34                 | 35               | 63                           |
| $B_s \rightarrow D_s(K^+K^-\pi^-) D_s(K^+K^-\pi^+)$                      | 4.0k                      | 0.3  | 56                | 6                  | 34               | 57                           |
| $B_s \rightarrow D_s (K^+ K^- \pi^-) \pi^+$                              | 120k                      | 0.4  | 40                | 14                 | 31               | 63                           |

In summary (important for the sensitivity to  $\phi_s$ ):

 $B_s \rightarrow J/\psi \phi$  : Large yield, but mixture of CP-odd and CP-even eigenstates  $B_s \rightarrow J/\psi \eta, B_s \rightarrow \eta_c \phi$  : Low yield, high background, but CP-even

: Low yield, worse proper time resolution, but CP-even



#### Results on the event selections







## **Toy MC**



The sensitivities for  $\phi_s$  and  $\Delta\Gamma_s$  are determined by making use of a fast parameterized MC. The results on the event selections from the full LHCb MC are used as input.

The CP parameters are extracted by performing a likelihood fit to the mass and the tagged and untagged proper-time distributions (and for  $B_s \rightarrow J/\psi \phi$  to the transversity angle,  $\theta_{tr}$ ).

The likelihood for the signal  $\overline{b} \to \overline{c}c\overline{s}$  transitions is simultaneously maximized with the control sample  $(B_s \to D_s \pi)$ . The wrong tag fraction  $(w_{tag})$  is assumed to be the same for the control and signal sample.

- $m_{\rm B_s} = 5369.6~{\rm MeV/c^2};$
- $\Delta M_{\rm s} = 17.5 \, {\rm ps}^{-1}$ ;
- $\phi_{\rm s} = -0.04 \, {\rm rad};$
- $\Delta\Gamma_{\rm s}/\Gamma_{\rm s}=0.15$ ;
- $1/\Gamma_{\rm s} = 1.45 \, {\rm ps}$
- $R_{\rm T}=0.2$ , for  $B_{\rm s}\to J/\psi \ \phi$

Performed ~200 toy experiments, where each experiment represents 2fb<sup>-1</sup> (10<sup>7</sup> seconds at  $2\times10^{32}\text{cm}^2\text{s}^{-1}$ ). The RMS of the  $\phi_s$  distribution is given as the sensitivity.

Standard model values are used as input



## The mass and $\theta_{tr}$ distributions





Projection of the likelihood on mass distribution for  $B_s \rightarrow J/\psi \phi$ .

The mass peak is modeled by an exponential (background) and a Gaussian (signal).



Projection of the likelihood on the transversity angle distribution for  $B_s \rightarrow J/\psi \phi$ .

Blue=total, red dotted = CP-even, red dashed = CP-odd, black=background (is assumed to be independent of  $cos(\theta_{tr})$ ).



## The tagged proper time distributions



$$R_{f}\left(t_{i}^{\mathrm{true}},q_{i};\omega_{\mathrm{tag}},\vec{\alpha}\right) \propto e^{-\Gamma_{\mathrm{s}}t_{i}^{\mathrm{true}}} \left\{ \cosh\frac{\Delta\Gamma_{\mathrm{s}}\,t_{i}^{\mathrm{true}}}{2} - \eta_{f}\cos\phi_{\mathrm{s}}\,\sinh\frac{\Delta\Gamma_{\mathrm{s}}\,t_{i}^{\mathrm{true}}}{2} \right.$$

$$\boxed{b \to \overline{\mathrm{ccs}}\left(\mathrm{CP-even}\right)} + \eta_{f}\,q_{i}\,D\,\sin\phi_{\mathrm{s}}\,\sin\left(\Delta M_{\mathrm{s}}\,t_{i}^{\mathrm{true}}\right)} \right\}$$

$$\boxed{\phi_{\mathrm{s}} = 5 \times \mathrm{SM}\,\mathrm{value}}$$



- Sensitivity to  $\phi_s$  depends on D (tagging dilution) = 1-2 $w_{tag}$
- But  $\Rightarrow$  also sensitivity to  $\phi_s$  with untagged events ( $w_{tag}$ =0.5, D=0) from the  $cos(\phi_s)$  term, especially if  $\phi_s$  is large.

- Red solid line : tagged as initially  $B_s^0$
- Blue dashed : tagged as initially  $\overline{B}^0_s$

(Wrong tag fraction is included)

#### Include:

- Trigger and Selection bias on  $\tau$
- Proper time resolution



## The tagged proper time distributions







Blue solid: Total

Red dotted: Signal

Black dashed: Background



 $B_s \rightarrow J/\psi \eta$ : larger background, worse proper time resolution  $\Rightarrow$  flattens the wiggles



Likelihood for the proper time distribution includes (from full MC):

- acceptance function
- per-event-error for the decay time
- tagging performance
- exponential background function



## Results on the sensitivity to $\phi_s$



| Channels (sensitivity to $\phi_s$ with 2 fb <sup>-1</sup> )             | $\sigma(\Phi_s)[rad]$ | $Weight \left( \frac{\sigma}{\sigma_i} \right)^2 \left[ \frac{9}{6} \right]$ |
|-------------------------------------------------------------------------|-----------------------|------------------------------------------------------------------------------|
| $B_S \rightarrow D_S (K^+ K^- \pi) D_S (K^+ K^- \pi^+)$                 | 0.133                 | 2.6                                                                          |
| $B_S \to J / \Psi(\mu^+ \mu^-) \eta(\pi^+ \pi^- \pi^0 (\gamma \gamma))$ | 0.142                 | 2.8                                                                          |
| $B_S \to J / \Psi(\mu^+\mu^-) \eta(\gamma \gamma)$                      | 0.109                 | 3.9                                                                          |
| $B_S \to \eta_C (h^- h^+ h^- h^+) \Phi(K^+ K^-)$                        | 0.108                 | 3.9                                                                          |
| Combined sensitivity for pure CP eigenstates                            | 0.059                 | 13.2                                                                         |
| $B_S \to J/\Psi(\mu^+\mu^-)\Phi(K^+K^-)$                                | 0.023                 | 86.8                                                                         |
| Combined sensitivity for all CP eigenstates                             | 0.021                 | 100.0                                                                        |

Total LHCb sensitivity with 10 fb<sup>-1</sup> :  $0.01 \text{ rad} \cong 0.6 \text{ degrees}$  (but statistical uncertainty only)

Additional studies ongoing:  $B_S \to J/\Psi \eta'(\pi^+\pi^-\eta(\gamma\gamma))$   $B_S^0 \to J/\Psi(\mu^+\mu^-)\eta'(\rho^0(\pi^+\pi^-)\gamma)$ 



## The sensitivity to B<sub>s</sub> mixing parameters



| Parameter                             | Sensitivity             | Channels                                                                                                         |
|---------------------------------------|-------------------------|------------------------------------------------------------------------------------------------------------------|
|                                       | with 2 fb <sup>-1</sup> |                                                                                                                  |
| $\phi_{\rm s}$                        | 0.021 rad               | $B_s \rightarrow J/\psi \phi, B_s \rightarrow \eta_c \phi, B_s \rightarrow J/\psi \eta, B_s \rightarrow D_s D_s$ |
| $\Delta\Gamma_{\rm s}/\Gamma_{\rm s}$ | 0.0092                  | $B_s \rightarrow J/\psi \phi$                                                                                    |
| $R_{T}$                               | 0.00040                 | $B_s \rightarrow J/\psi \phi$                                                                                    |
| $\Delta m_{_{ m S}}$                  | 0.007 ps <sup>-1</sup>  | $B_s \rightarrow D_s \pi^+$                                                                                      |
| W <sub>tag</sub>                      | 0.0036                  | $B_s \rightarrow D_s \pi^+$                                                                                      |

- $m_{\rm B_s} = 5369.6~{\rm MeV/c^2};$
- $\Delta M_{\rm s} = 17.5 \, {\rm ps}^{-1}$ ;
- $\phi_s = -0.04 \text{ rad};$
- $\Delta\Gamma_{\rm s}/\Gamma_{\rm s}=0.15$ ;
- $1/\Gamma_{\rm s} = 1.45 \, \rm ps;$
- $R_{\rm T}=0.2$ , for  ${\rm B_s} \to {\rm J}/\psi \ \phi$

Control channel only

Input to the likelihood fit



# Results on the sensitivity to $\phi_s$



The effect on the sensitivity of a degraded  $(\Sigma_{\tau}+10\%)$  or improved ( $\Sigma_{\tau}$ -10%) proper time resolution.

And the effect of a larger B/S



|                         | $\sigma(\phi_s)$ [ rad ] |                          |  |
|-------------------------|--------------------------|--------------------------|--|
| Scan                    | $B_s \to J/\psi \ \phi$  | $B_s \to \eta_c \; \phi$ |  |
| Nominal                 | 0.023                    | 0.108                    |  |
| $\Sigma_{\tau} + 10 \%$ | 0.025                    | 0.108                    |  |
| $\Sigma_{	au}-10~\%$    | 0.023                    | 0.103                    |  |
| B/S 	imes 2             | 0.025                    | 0.118                    |  |

Dependence of the  $\phi_s$ sensitivity on  $\phi_s$ 

(It has been checked that the sensitivity does not depend on the sign of  $\phi_s$ )







# Results on the sensitivity to $\phi_s$







Dependence of the  $\varphi_s$  sensitivity on  $\Delta\Gamma_s/\Gamma_s$  .

 $\Rightarrow$  Not very sensitive to  $\Delta\Gamma_{\rm s}/\Gamma_{\rm s}$ .





Dependence of the  $\phi_s$  sensitivity on the CP-odd fraction  $(R_T)$ .

 $\Rightarrow$  Sensitive to R<sub>T</sub>, but we still have a reasonable sensitivity if maximum dilution, i.e. R<sub>T</sub>=0.5.

(full angular analysis will reduce dependence)



#### Possible improvements for the sensitivity study



- Include the  $J/\psi \rightarrow e^+e^-$  events : ~20% increase of event yields
- Full angular analysis for  $B_s \rightarrow J/\psi \phi$
- Include additional  $B_s$  decays  $(J/\Psi \eta'(\pi^+\pi^-\eta(\gamma\gamma)), J/\Psi(\mu^+\mu^-)\eta'(\rho^0(\pi^+\pi^-)\gamma))$
- Perform a combined fit with all signal channels
- Study the systematic uncertainty
- Optimize the use of the control sample  $(B_s \to D_s \pi)$  for the determination of the tagging performance of the signal samples  $(B_s \to J/\psi \phi, \text{ etc.})$  by defining sub-samples with similar tagging performance.

•



#### **Conclusions**



#### The value of $\phi_s$ is not known precisely

- The LHCb sensitivity for  $\phi_s$  is 0.02 rad (~1.2 degrees) for 2 fb<sup>-1</sup>
- Small dependence of the sensitivity on  $\Delta \Gamma_s/\Gamma_s$  and  $\phi_s$
- $\bullet$  After a few years of data LHCb will be able to measure also a SM  $\varphi_s$
- $\bullet$  Already with a small data sample (0.2 fb-1) we have interesting results on  $\varphi_s$

We aim for a  $\phi_s$  result in 2008!



## **Backup: Tree and Penguin Diagrams**



