

Generating routing tables using a relational Database

Lana Abadie, CERN PhD student from University Pierre & Marie Curie (Paris VI), Laboratoire SAMOVAR RT2005 Conference

Objectives & requirements

- Configure a network (routing tables, DHCP config file, DNS configuration ...) composed of thousands of switches and networking components.
- Reduce the use of « Automatic» or « self-management » mode: deterministic behavior of any networking devices
- Keep track of all these routing tables, these config files to be able to recover everything in case of a network crash.

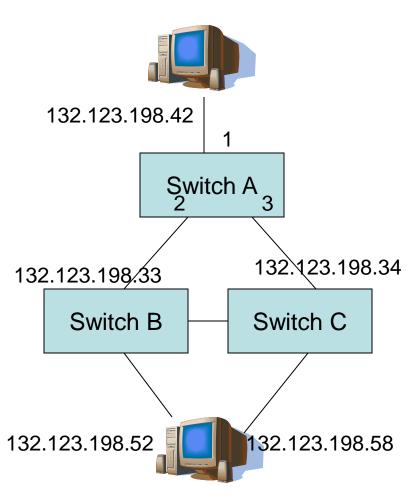
Network configuration use a database

- Database : good and safe technology to store information about large systems
- Information stored in the database should be:
 - Complete to be able to start up the network after a crash
 - Scalable to support any extension or removals in the network topology
 - Easy to maintain : (minimize the data inserted by users)
- Develop packages to load and save information required to configure the network

- 2 kinds of use cases in the network configuration
 - Generate config files (for the DHCP, DNS ...)
 - Generate routing tables (for switches)
- Focuses on generating routing tables
 - tables stored in a router or some other networking device (switch) that keeps track of routes to particular network host interfaces
 - 2 type of routing tables IP or MAC
 - One routing table for each switch in the network
 - Different types algorithms to determine the routes to take (default shortest path, i.e minimize devices crossed)

Properties of a routing table

- An IP (resp. MAC) routing table consists of the following entries:
 - IP (MAC) address of the next hop
 - Port number to forward the data
 - IP (MAC) address of the host node (or destination)
 - Subnet Mask (VLAN prefix)
 - Path length
- No ambiguity on the port to forward data: one single route per destination interface
- No cyclic paths (Data Acquisition, no redundant path)



Routing table concept

IP routing table for switch A						
Port	IP @	IP @	Subnet	Path		
nb	Next hop	destin.	mask	length		
1	132.123.	132.123.	255.255.	1		
	198.42	198.42	255.0			
2	132.123.	132.123.	255.255.	2		
	198.33	198.52	255.0			
3	132.123.	132.123.	255.255.	2		
	198.34	198.58	255.0			

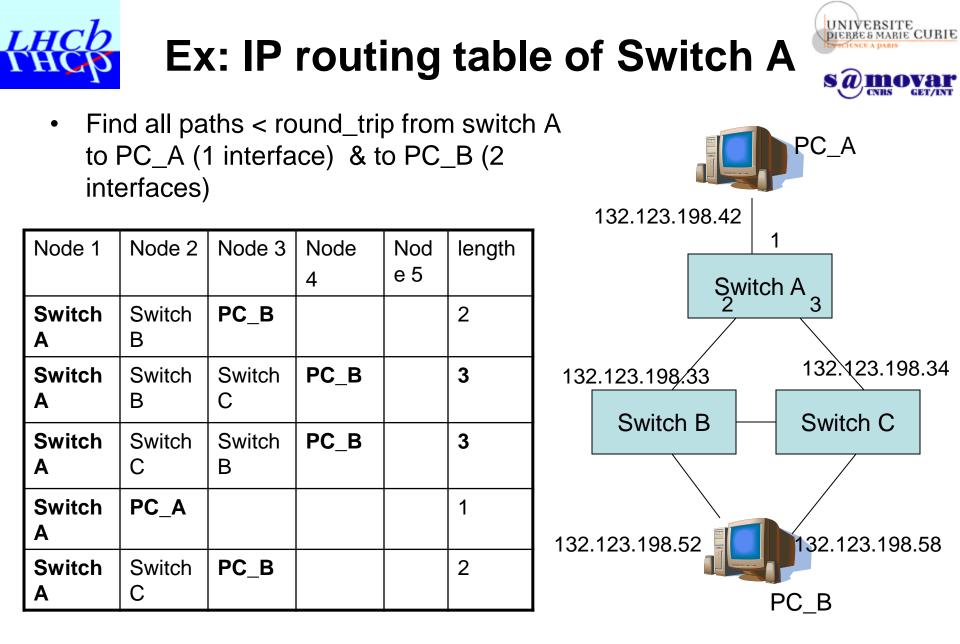
Network properties

Node properties:

- Host node : processes data (PCs...)
- Switch or intermediate node (switch, router...)
- Interface : a MAC and IP @ and a port number of a device

Link properties:

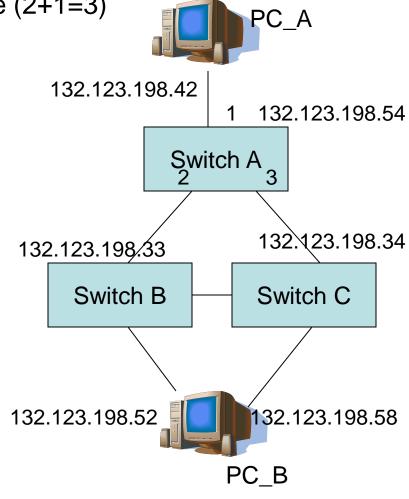
- Start and end
- Orientation : unidirectional or bidirectional
- Type : data, trigger...
- Status (functional or dead)


Enough information to generate a routing table

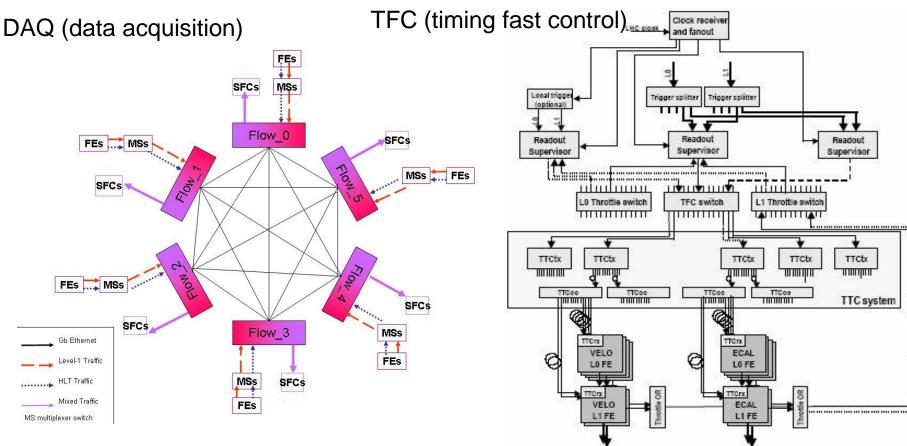
2 kinds of data stored in the database tables

- Data inserted by the user (can't be guessed)
 - List of the devices of the network, by specifying if it's a host node or not (device table)
 - All link properties (connectivity table)
 - List of interfaces (Ethernet & IP @, subnet mask, VLAN prefix, port number and device) (ip_ethernet table)
- **Data derived** from other information stored in the database:
 - Routing tables (routing_table) : one database table per switch

Ex: IP routing table of Switch A



Select the shortest one per host interface (2+1=3)


Node 1	Node 2	Node 3	length
Switch A	PC_A		1
Switch A	Switch C	PC_B	2
Switch A	Switch B	PC_B	2

Convert the name to IP @

Port nb	IP@ next hop	IP @ Destin.	length
1	132.123. 198.42	132.123. 198.42	1
2	132.123. 198.33	132.123. 198.52	2
3	132.123. 198.34	132.123. 198.58	2

2350 nodes and 4216 links

11 sec to create the routing table of Flow_3 (store in the database)

2058 nodes and 3063 links

2 sec to create the routing table for the TFC switch

UNIVERSITE Dierres marie CUBIE

- Implementation of a PL/SQL package to generate routing
- Tests done for the LHCb DAQ and TFC systems
- Need to do more tests : profiling !
- Try to improve performance: code review
- Extending the model with other routing algorithms