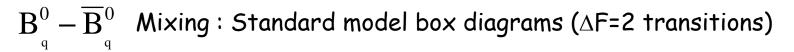
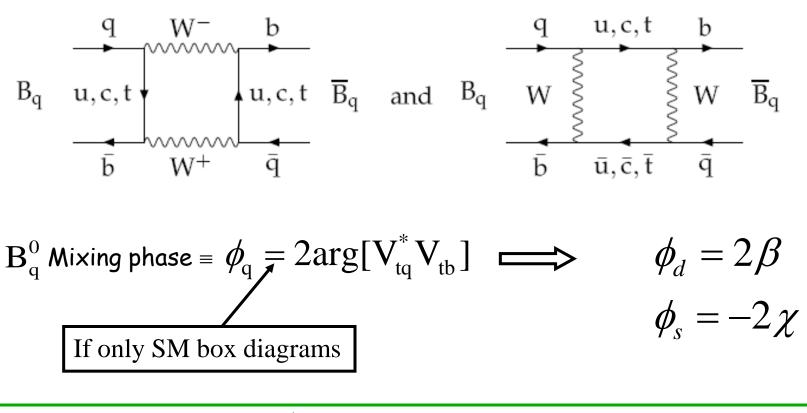

The sensitivity for ϕ_s at LHCb

ϕ_{s} in the standard model

B_d -system well measured, but B_s -system (ΔM_s , $\Delta \Gamma_s$, χ , |p/q|) not fully explored

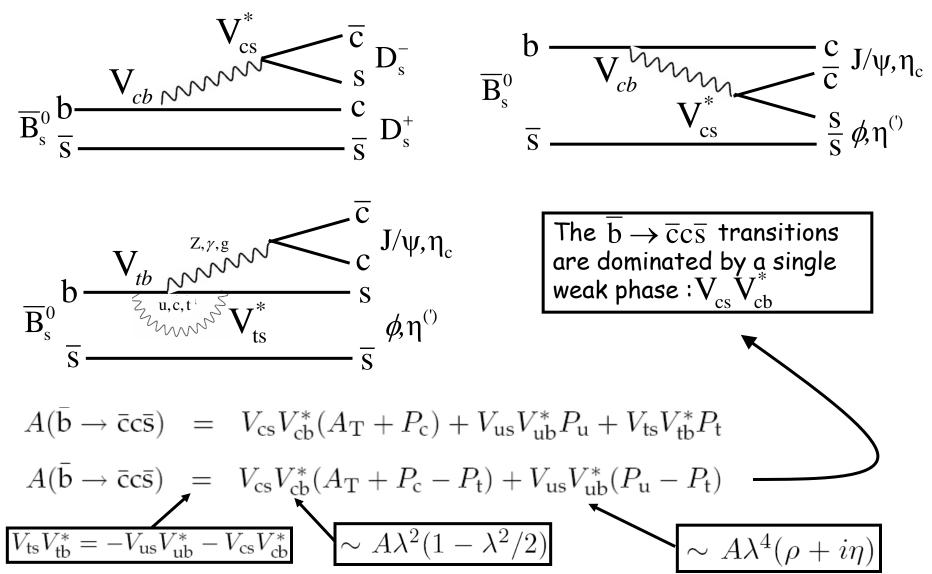

Monday, October 30, 2006


DPF / JPS 2006, Honolulu, Hawaii

If NP contributions $\Rightarrow \phi_{s} = \phi_{s}^{SMbox} + \phi_{s}^{NP}$ and $\phi_{s} \neq -2\chi$

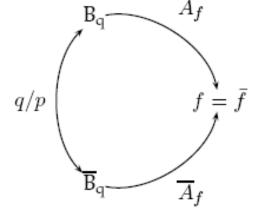
Measuring ϕ_s at LHCb

Thus : measure the B_s mixing phase ϕ_s and see if it agrees with SM expectation from the box diagrams (check if $\phi_s \leftrightarrow -2\chi = -2\lambda^2 \eta \cong -0.04$)


The following B_s-decays have been used to determine the LHCb sensitivity to φ_s :

$B_s \rightarrow J/\psi(\mu^-\mu^+)\phi(K^+K^-)$	CP-odd and CP-even eigenstates
$B_s \rightarrow \eta_c (h^- h^+ h^- h^+) \phi(K^+ K^-)$	CP-even eigenstate
$B_s \rightarrow J/\psi(\mu^-\mu^+) \eta(\gamma\gamma)$	CP-even eigenstate
$B_s \rightarrow J/\psi(\mu^-\mu^+) \eta(\pi^+\pi^-\pi^0(\gamma\gamma))$	CP-even eigenstate
B _s \rightarrow J/ψ (μ ⁻ μ ⁺)η'(π ⁺ π ⁻ η (γγ))	CP-even eigenstate
$B_{s} \rightarrow D_{s} (K^{+} K^{-} \pi^{-}) D_{s} (K^{+} K^{-} \pi^{+})$	CP-even eigenstate
$B_{s} \rightarrow D_{s} (K^{+} K^{-} \pi^{-}) \pi^{+}$	ΔM_s determination, Control Channel

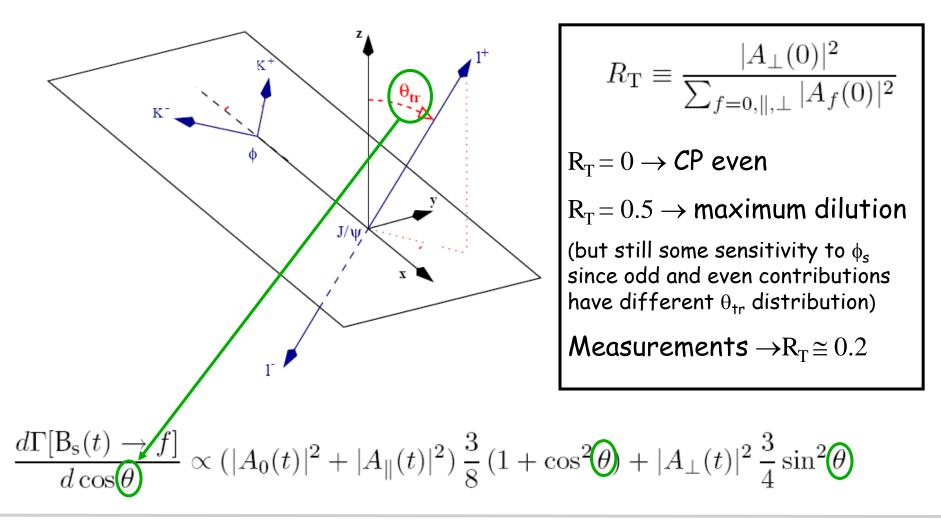
Tree and Penguin Diagrams


CP asymmetry

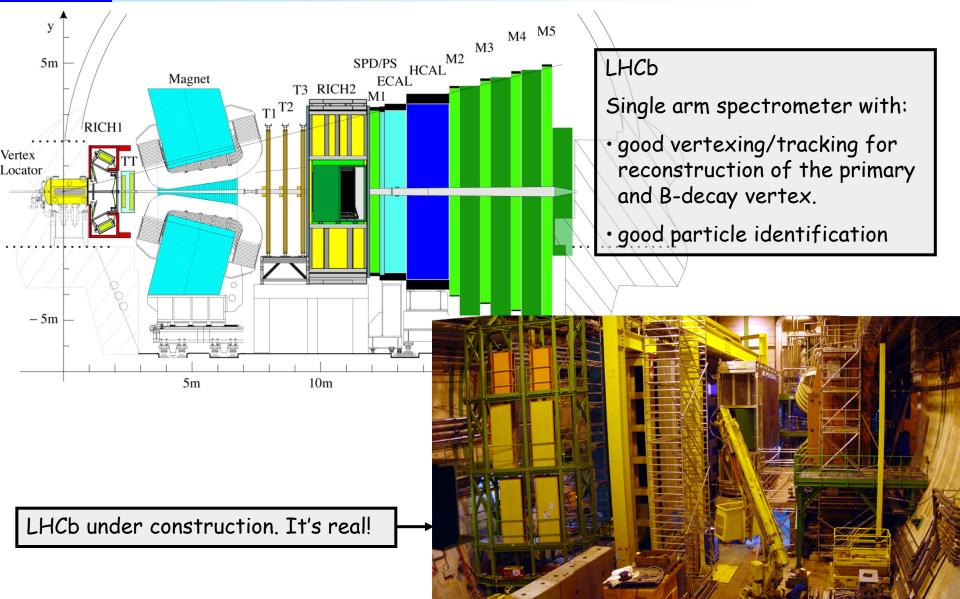
$$\mathcal{A}_{\rm CP}(t) = \frac{\Gamma[\overline{\rm B}_{\rm s}(t) \to f] - \Gamma[{\rm B}_{\rm s}(t) \to f]}{\Gamma[\overline{\rm B}_{\rm s}(t) \to f] + \Gamma[{\rm B}_{\rm s}(t) \to f]}$$

• CP eigenstates with eigenvalues: η_{f} = ± 1

- \mathcal{SP} : interference in mixing and decay (no direct \mathcal{SP})
- + $\overline{b} \to \overline{c} c \overline{s}$ is dominated by a single weak phase


$$\mathcal{A}_{\rm CP}^{\rm mix-ind}(t) = -\frac{\eta_f \sin \phi_q \sin(\Delta M_q t)}{\cosh(\Delta \Gamma_q t/2) - \eta_f \cos \phi_q \sinh(\Delta \Gamma_q t/2)}$$

The time dependent CP asymmetry allows us to measure ϕ_s .



Complication for:
$$B_s \to J/\psi(\to \ell^+\ell^-) \ \phi(\to K^+K^-)$$

The LHCb experiment

LH

The LHCb MC simulation

The results in the next slides have been obtained with the latest (DCO4) LHCb

Monte Carlo simulation.

- Very detailed and realistic detector and material description
- Full pattern recognition, trigger simulation (also HLT), and offline event selection .
- Realistic detector inefficiencies, noise hits, and effects of events from the previous bunch crossings

Monday, October 30, 2006

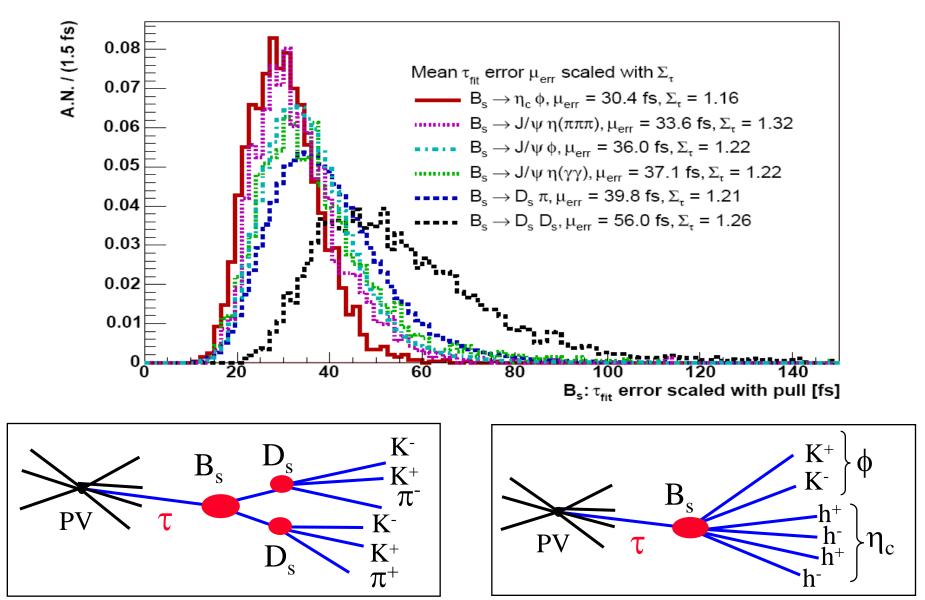
Results on the event selections

	Yield (10 ³ /2 fb ⁻¹)	B/S	$<\delta_{\tau}>$ (fs)	σ _{mass} (MeV/c ²)	W _{tag} (%)	8 _{tag} (%)
$B_s \rightarrow J/\psi(\mu^-\mu^+)\phi(K^+K^-)$	131	0.12	36	14	33	57
$B_s \rightarrow \eta_c (h^- h^+ h^- h^+) \phi(K^+ K^-)$	3	0.6	30	12	31	66
$B_s \rightarrow J/\psi(\mu^-\mu^+) \eta(\gamma\gamma)$	8.5	2.0	37	34	35	63
B _s \rightarrow J/ψ(μ ⁻ μ ⁺) η(π ⁺ π ⁻ π ⁰ (γγ))	3.0	3.0	34	20	30	62
B _s \rightarrow J/ψ (μ ⁻ μ ⁺) η'(π ⁺ π ⁻ η (γγ))	2.2	2.0	32	19	31	64
$B_{s} \rightarrow D_{s}(K^{+}K^{-}\pi^{-}) D_{s}(K^{+}K^{-}\pi^{+})$	4.0	0.3	56	6	34	57
$B_s \rightarrow D_s (K^+ K^- \pi^-) \pi^+$	120	0.4	40	14	31	63

The sensitivity to ϕ_s :

 $B_s \rightarrow J/\psi \phi$: Large yield, but mixture of CP-odd and CP-even eigenstates.

 $B_s \rightarrow J/\psi \eta^{(\prime)}$, $B_s \rightarrow \eta_c \phi$: Low yield, high background, but CP-even.


 $B_s \rightarrow D_s D_s$: Low yield, worse proper time resolution, but CP-even (FSI?)

Results on the event selections

The Sensitivity is determined by making use of a fast parameterized MC. As input the results from the full LHCb MC are used.

The CP parameters are extracted by performing a likelihood fit to the mass and proper time distributions (and to the transversity angle for $B_s \rightarrow J/\psi\phi$).

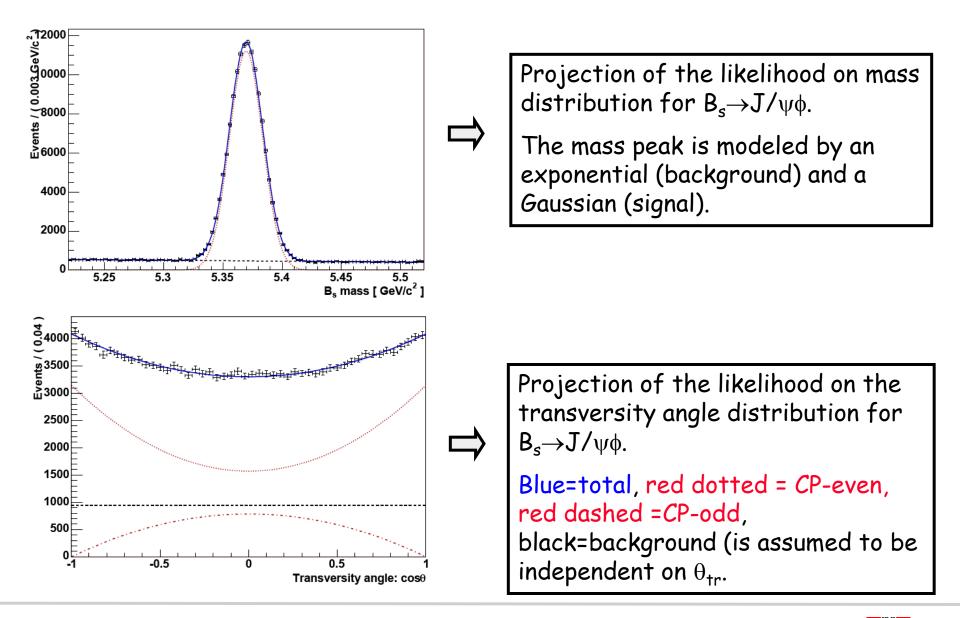
The likelihood for the signal $\overline{b} \rightarrow \overline{c} c \overline{s}$ transitions is simultaneously optimized with the control sample ($B_s \rightarrow D_s \pi$). The tagging performance is assumed to be the same for the control and signal sample. The statistical uncertainty of control channel is thus included.

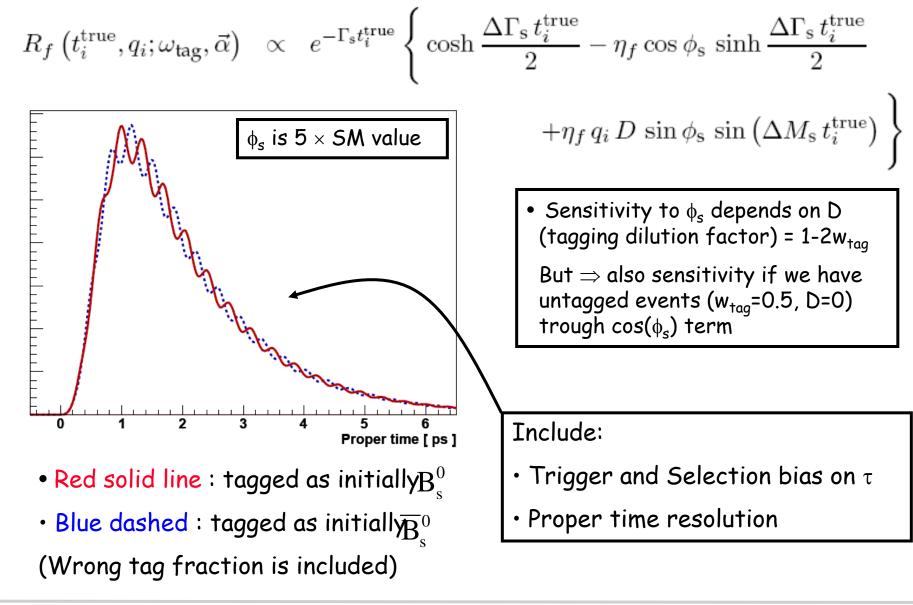
- $m_{\rm B_s} = 5369.6 \,\,{\rm MeV/c^2};$
- $\Delta M_{\rm s} = 17.5 \ {\rm ps}^{-1}$;
- $\phi_{\rm s} = -0.04 \text{ rad};$
- $\Delta\Gamma_{\rm s}/\Gamma_{\rm s}=0.15;$

•
$$\tau_{\rm s} = 1/\Gamma_{\rm s} = 1.45 \, {\rm ps};$$

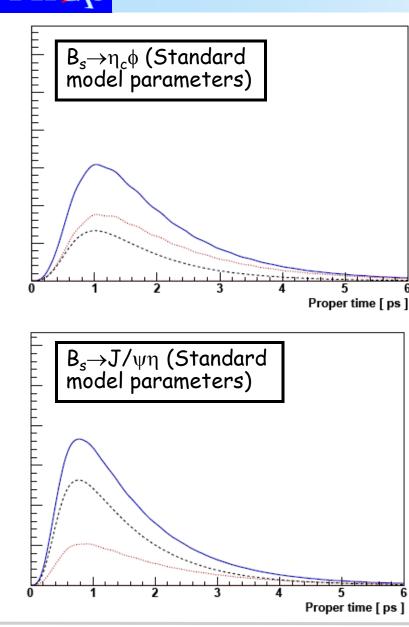
•
$$R_{\rm T} = 0.2$$
, for ${
m B_s}
ightarrow {
m J}/\psi ~\phi$

Perform ~200 toy experiments, where each experiment represents ~one LHCb year of data taking (2fb⁻¹ at 2×10^{32} cm²s⁻¹). The RMS of the ϕ_s distribution is given as the sensitivity.


Standard model values are used as input


Modeling the mass and θ_{tr} distributions

Modeling the tagged proper time distributions



LHC

Modeling the tagged proper time distributions

Projection of the likelihood on the proper time distribution

Blue solid : Total

Red dotted : Signal

Black dashed : Background

 $B_{s}{\rightarrow}J/\psi\eta$: higher background \Rightarrow flattens the wiggles

Likelihood for the proper time distribution includes:

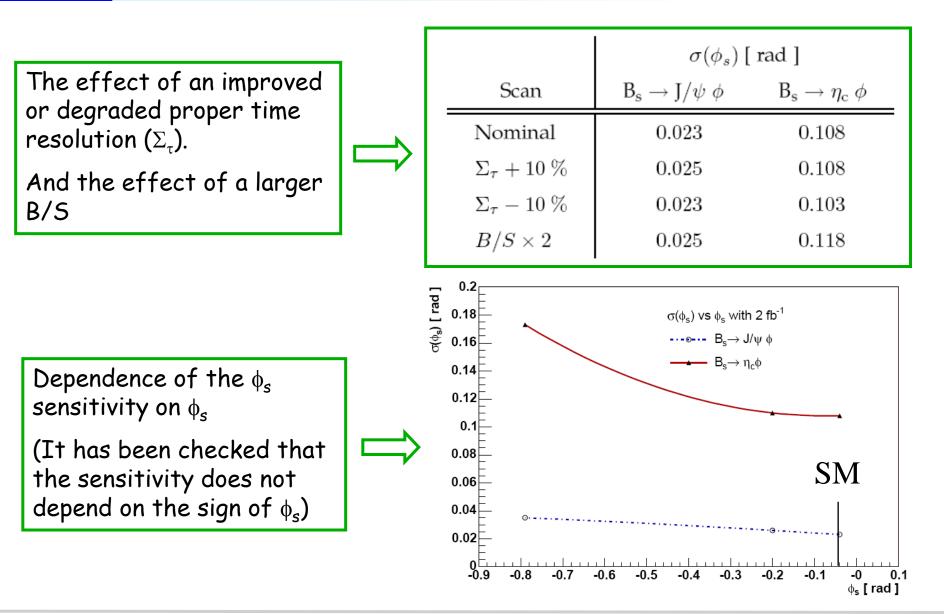
- acceptance function (full MC)
- per-event-error for the proper time (full MC)
- tagging performance
- exponential background function

Results on the sensitivity to ϕ_{s}

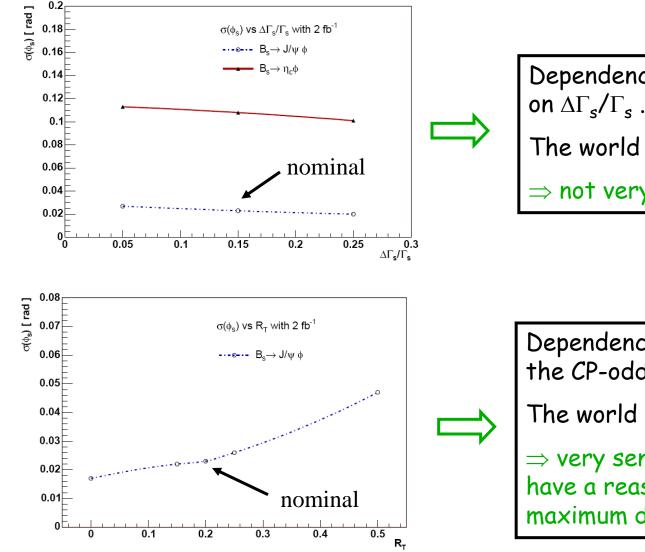
The LHCb sensitivity for φ_{s} with 2 fb^{-1}

Channels		$\sigma(\Phi_s)[rad]$	Weight $\left(\frac{\sigma}{\sigma_i} \right)$) ² [%]
$B_{S} \rightarrow D_{S} \left(K^{+} K^{-} \pi \right) D_{S} \left(K^{+} K^{-} \pi^{+} \right)$		0.133	2.6	
$B_{S} \rightarrow J / \Psi(\mu^{+}\mu^{-})\eta(\pi^{+}\pi^{-}\pi^{0}(\gamma\gamma))$		0.142	2.8	
$B_{S} \rightarrow J / \Psi(\mu^{+}\mu^{-})\eta(\gamma\gamma)$		0.109	3.9	
$B_s \to \eta_c (h^- h^+ h^- h^+) \Phi(K^+ K^-)$		0.108	3.9	
Combined sensitivity for pure CP eigenstates		0.059	13.2	
$B_s \rightarrow J/\Psi(\mu^+\mu^-)\Phi(K^+K^-)$		0.023	86.8	
Combined sensitivity for all CP eigenstates		0.021	100.00	
An additional study (Sergio Jimenez Otero), but $\Delta\Gamma_s/\Gamma_s$ = 0.10, Δm_s =20ps ⁻¹				
$B_s → J/ψη'(π^+π^-η (γγ)) σ(φ_s)$	= 0.20	rad		
Total LHCb sensitivity with 10 fb ⁻¹ : 0.01 rad =0.6 degrees (but statistical uncertainty only)				
DDE / IDS 2006, Henclulu, Hence	:	Deter Fauland		(PAL

LHCb The sensitivity for ϕ_s , ΔM_s , $\Delta \Gamma_s / \Gamma_s$, R_T , w_{tag} with 2fb⁻¹


Parameter	Sensitivity	Channel
$\phi_{\rm s}$ [rad]	0.021	$J/\psi \phi$, $\eta_c \phi$, $J/\psi \eta (\gamma \gamma)$, $J/\psi \eta (\pi \pi \pi)$, $D_s D_s$
$\Delta\Gamma_{\rm s}/\Gamma_{\rm s}$	0.0092	$\mathrm{J}/\psi~\phi$
$\Delta M_{ m s}$ [$ m ps^{-1}$]	0.007	$D_s \pi$ (alone)
$\omega_{ m tag}$	0.0036	$D_s \pi$ (alone)
R_{T}	0.00040	$J/\psi \phi$
• $m_{\rm B_s} = 5369.6 \text{ MeV/c}^2;$ • $\Delta M_{\rm s} = 17.5 \text{ ps}^{-1};$ • $\phi_{\rm s} = -0.04 \text{ rad};$ • $\Delta \Gamma_{\rm s}/\Gamma_{\rm s} = 0.15;$ • $\tau_{\rm s} = 1/\Gamma_{\rm s} = 1.45 \text{ ps};$ • $R_{\rm T} = 0.2, \text{ for } {\rm B_s} \rightarrow {\rm J}/\psi \phi$		Only Control sample used, no signal.

Results on the sensitivity to ϕ_{s}



Peter Fauland

Results on the sensitivity to ϕ_{s}

Dependence of the ϕ_s sensitivity on $\Delta\Gamma_s/\Gamma_s$.

The world average is 0.14±0.06.

 \Rightarrow not very sensitive to $\Delta\Gamma_s/\Gamma_s$.

Dependence of the φ_s sensitivity on the CP-odd fraction (R_T) .

The world average is 0.167±0.041.

 \Rightarrow very sensitive to R_T, but we still have a reasonable sensitivity if maximum dilution (i.e. R_T=0.5)

- Include the $J/\psi \rightarrow e^+e^-$ events : ~20% increase of event yields
- Full angular analysis for $B_s \rightarrow J/\psi \phi$
- Perform a combined fit with all signal channels
- Study the systematic uncertainty (extract proper time resolution from data)
- Optimize the use of the control sample $(B_s \rightarrow D_s \pi)$ for the determination of the tagging performance of the signal samples $(B_s \rightarrow J/\psi\phi, B_s \rightarrow \eta_c\phi, B_s \rightarrow J/\psi\eta^{(\prime)}, B_s \rightarrow D_s D_s)$ (define sub-samples with the similar tagging performance)

LH

The value of ϕ_s is unknown!

- · The LHCb sensitivity for ϕ_s is 0.02 rad for 2 fb^-1
- $\boldsymbol{\cdot}$ Small dependence of the sensitivity on $\Delta\Gamma_{s}/\Gamma_{s}$ and ϕ_{s} .
- \cdot After a few years of data LHCb will be able to measure also a SM $\phi_s.$
- Already with a small data sample (~0.2 fb⁻¹) we will have interesting results on ϕ_s . We aim for a ϕ_s result in 2008!

LH

Thank You ...

DPF / JPS 2006, Honolulu, Hawaii

Peter Fauland

Backup slides

$$\begin{aligned} R\left(\mathsf{B}_{\mathsf{s}}(t) \to f\right) &= (1 - \omega_{\mathsf{tag}}) \cdot \Gamma\left(\mathsf{B}_{\mathsf{s}}(t) \to f\right) + \omega_{\mathsf{tag}} \cdot \Gamma\left(\overline{\mathsf{B}}_{\mathsf{s}}(t) \to f\right) \\ R\left(\overline{\mathsf{B}}_{\mathsf{s}}(t) \to f\right) &= \omega_{\mathsf{tag}} \cdot \Gamma\left(\mathsf{B}_{\mathsf{s}}(t) \to f\right) + (1 - \omega_{\mathsf{tag}}) \cdot \Gamma\left(\overline{\mathsf{B}}_{\mathsf{s}}(t) \to f\right) \end{aligned}$$

$$\begin{split} R[\mathbf{B}_{\mathrm{s}}(t) \to f] &= N_f \, |A_f^{(\mathrm{s})}(0)|^2 \, e^{-\Gamma_{\mathrm{s}} t} \left\{ \begin{array}{l} \cosh \frac{\Delta \Gamma_{\mathrm{s}} t}{2} - \eta_f \cos \phi_{\mathrm{s}} \, \sinh \frac{\Delta \Gamma_{\mathrm{s}} t}{2} \\ &+ \eta_f \, D \, \sin \phi_{\mathrm{s}} \, \sin \left(\Delta M_{\mathrm{s}} t \right) \right\}, \\ R[\overline{\mathbf{B}}_{\mathrm{s}}(t) \to f] &= N_f \, |A_f^{(\mathrm{s})}(0)|^2 \, e^{-\Gamma_{\mathrm{s}} t} \left\{ \begin{array}{l} \cosh \frac{\Delta \Gamma_{\mathrm{s}} t}{2} - \eta_f \cos \phi_{\mathrm{s}} \, \sinh \frac{\Delta \Gamma_{\mathrm{s}} t}{2} \\ &- \eta_f \, D \, \sin \phi_{\mathrm{s}} \, \sin \left(\Delta M_{\mathrm{s}} t \right) \right\}. \end{split}$$

Peter Fauland