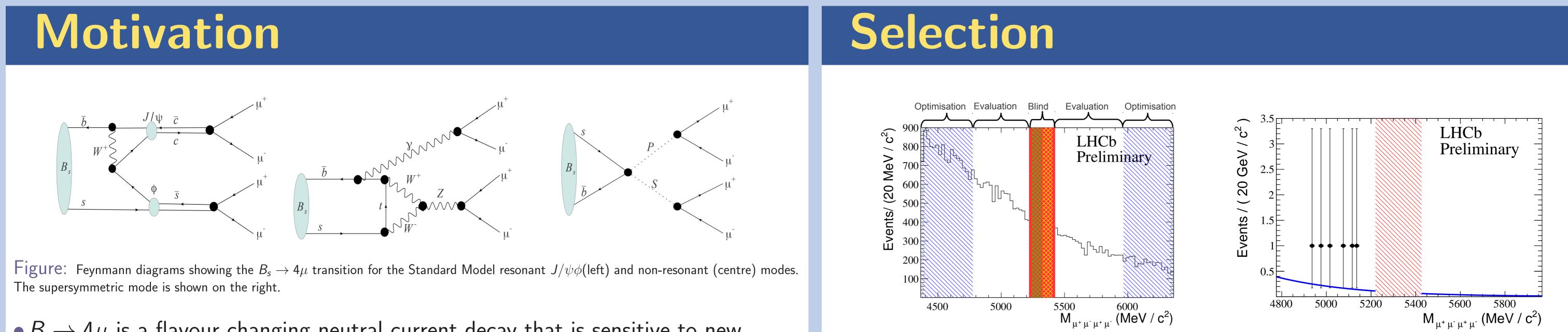

Search for the rare decays $B_s^0 ightarrow \mu^+ \mu^- \mu^+ \mu^-$ LHCD HCS and $B^0 \rightarrow \mu^+ \mu^- \mu^+ \mu^-$ at LHCb Indrek Sepp on behalf of the LHCb collaboration


Overview

• A search is made for the decays $B_s^0 o \mu^+ \mu^- \mu^+ \mu^-$ and $B^0 o \mu^+ \mu^- \mu^+ \mu^-$ using 1.0 fb⁻¹ of integrated luminosity collected with the LHCb detector in 2011

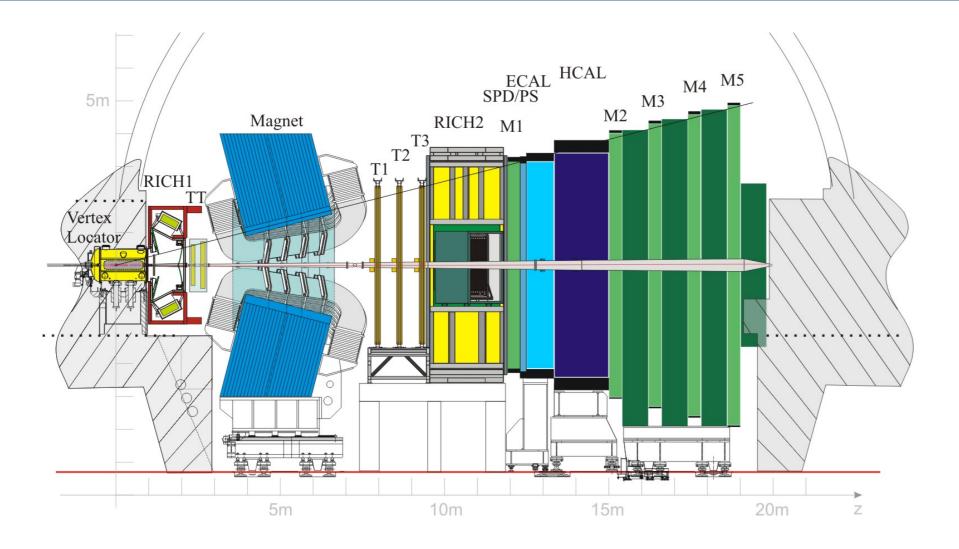
• One signal candidate is observed in the B_d channel, and no signal candidates are observed in the B_s channel

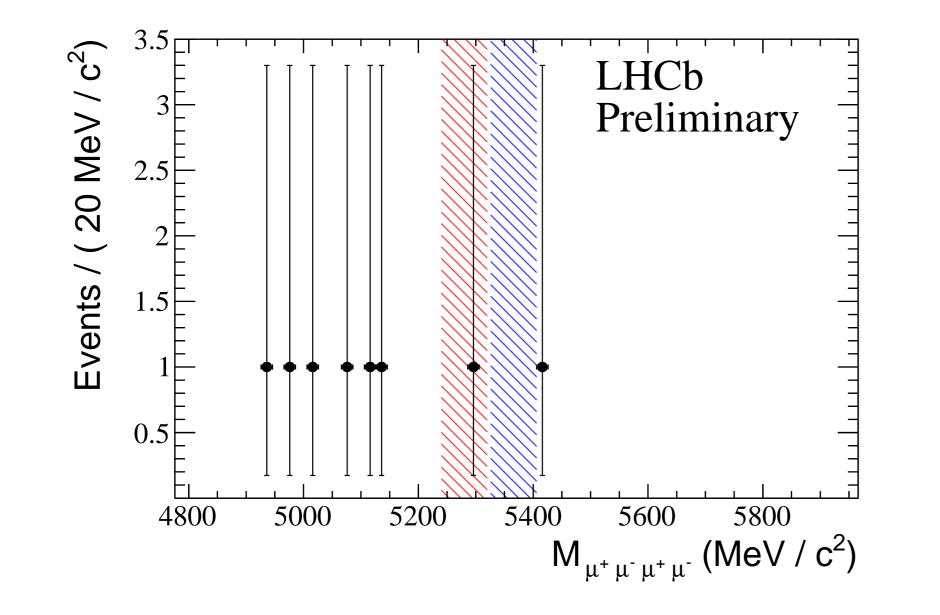
Consistent with the expected backgrounds

• 95% CL branching fractions are set at $\mathcal{B}(\mathsf{B}^0_{ ext{s}} o \mu^+ \mu^- \mu^+ \mu^-) < 1.3 imes 10^{-8}$ and $\mathcal{B}(\mathsf{B}^0 o \mu^+ \mu^- \mu^+ \mu^-) < 5.4 imes 10^{-9}$

- $B \rightarrow 4\mu$ is a flavour changing neutral current decay that is sensitive to new physics
- Standard Model decay modes:
- ▶ Resonant mode: $B_s \rightarrow (J/\psi \rightarrow \mu\mu)(\phi \rightarrow \mu\mu)$, $\mathcal{B} = (2.3 \pm 0.9) \times 10^{-8}$ Non-resonant mode: $B_s \to 4\mu$, predicted $\mathcal{B} < 10^{-10}$, new physics can enhance \mathcal{B}
- Supersymmetric mode: $B_s \rightarrow (P \rightarrow \mu \mu)(S \rightarrow \mu \mu)^1$ $\blacktriangleright S$: scalar sGoldstino, *P*: pseudoscalar sGoldstino

The LHCb Detector




Figure: Left: Non-resonant $M_{4\mu}$ distribution before selection, the coloured regions indicate: the optimisation sideband (blue); the evaluation sideband (white); the blinded region (red); the B_s signal window (yellow); the B_d signal window (green). Center: Non-resonant $M_{4\mu}$ distribution after selection, the red region indicates the blind region. Right: Resonant $M_{4\mu}$ invariant mass plot after selection, the blue region indicates the B_s signal window.

- Used $B_s \rightarrow J/\psi \phi \rightarrow 4\mu$ mode as a signal proxy
- Mass windows applied around J/ψ and ϕ masses
- ▶ These are vetoed for the non-resonant $B \rightarrow 4\mu$ mode
- Cuts were tuned to maximise $S/\sqrt{S+B}$
 - ► S (signal) = number of events in $B_s \rightarrow J/\psi \phi$ window
 - $\blacktriangleright B$ (background) = number of events in the optimisation sideband
- Evaluation sideband used to make unbiased evaluation of the background
- Cuts were applied on:
 - ► The quality of the *B* decay vertex
- ► The difference in the log-likelihood of the muons being assigned a muon or kaon hypothesis against a pion hypothesis
- ► The consistency of the *B* to originate from the primary vertex
- ► The consistency of the final state particles to originate from a secondary vertex
- After selection, 6 background events observed in evaluation sideband

Figure: Cross-section of the LHCb detector

- Ring imaging cherenkov detectors (RICH1,2) give > 90% $K \pi$ seperation in $2 - 100 \ GeV$ momentum range
- Muon chambers provide $\sim 99\%$ muon identification efficiency
- Tracker provides B_d mass resolution of 17 MeV for $B_d \rightarrow J/\psi K^*$ channel

Results

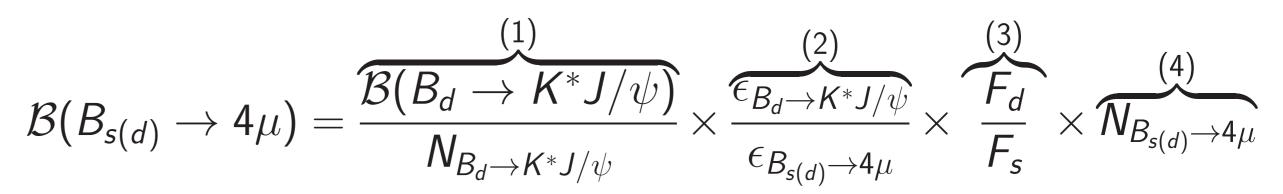
Fit background with exponential PDF \rightarrow expect $0.30^{+0.22}_{-0.20}$ ($0.38^{+0.23}_{-0.17}$) events in the $B_s(B_d)$ signal window

Normalisation



Figure: The invariant mass distribution of $B_d \to J/\psi K^*$ events after selection. PDFs for the B^0 and B_s^0 signal distributions are shown in black and red respectively.

• Use $B_d^0 \rightarrow J/\psi(\rightarrow \mu^+\mu^-)K^{*0}(\rightarrow K^+\pi^-)$ as a normalisation channel to convert the $B \rightarrow 4\mu$ yield into a branching fraction • Has a similar topology to $B \rightarrow 4\mu$, high statistics and a well measured \mathcal{B}


Figure: The unblinded non-resonant $M_{4\mu}$ invariant mass plot, the blue (red) region indicates the B_s (B_d) signal window.

- After unblinding, observe 1 event in B_d window, zero in B_s window Consistent with background expectation
- Use CL_s method to set 95 % CL limits on the branching fraction

 $ightarrow \mathcal{B}(\mathsf{B}^0_{\mathrm{s}}
ightarrow \mu^+\mu^-\mu^+\mu^-) < 1.28 imes 10^{-8}$

					1		•				
	RIRU		, , +	- , , -	╴╻╻┽	- , , -	-)	/	5 36	\sim	10-9
(-7	μ	μ	μ	μ			J.JU		TO

¹S. Demidov and D. Gorbunov, Flavor violating processes with sgoldstino pair produc- tion, arXiv:1112.5230 ²The LHCb Collaboration, R. Aaij et al., Measurement of b hadron production fractions in 7 TeV pp collisions, arXiv:1111.2357. Same kinematic cuts applied to control and signal channels

- (1) $N_{B_d \to K^* J/\psi}$: Control channel yield, extracted from fit to mass plot Fit model: double gaussian+radiative tail PDF's around B_s and B_d masses, exponential background
 - $\blacktriangleright B_d \rightarrow K^* J/\psi$ yield = 35476 ± 286 events
- (2) The relative efficiency of reconstructing control over signal channel events, taken from MC
- (3) Production fraction of B_d over B_s in the LHCb acceptance (not used for $B_d \rightarrow 4\mu$ mode) • Measured value = 3.7 ± 0.3^2

(4) The signal yield, taken by counting events in the $B_{s(d)}$ signal window