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We use the duality between color and kinematics to simplify the construction of the complete four-loop

four-point amplitude of N ¼ 4 super-Yang-Mills theory, including the nonplanar contributions. The

duality completely determines the amplitude’s integrand in terms of just two planar graphs. The existence

of a manifestly dual gauge-theory amplitude trivializes the construction of the corresponding N ¼ 8

supergravity integrand, whose graph numerators are double copies (squares) of the N ¼ 4 super-Yang-

Mills numerators. The success of this procedure provides further nontrivial evidence that the duality and

double-copy properties hold at loop level. The new form of the four-loop four-point supergravity

amplitude makes manifest the same ultraviolet power counting as the corresponding N ¼ 4 super-

Yang-Mills amplitude. We determine the amplitude’s ultraviolet pole in the critical dimension of

D ¼ 11=2, the same dimension as for N ¼ 4 super-Yang-Mills theory. Strikingly, exactly the same

combination of vacuum integrals (after simplification) describes the ultraviolet divergence of N ¼ 8

supergravity as the subleading-in-1=N2
c single-trace divergence in N ¼ 4 super-Yang-Mills theory.
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I. INTRODUCTION

The past few years have brought remarkable advances in
understanding scattering amplitudes in the maximally
supersymmetric N ¼ 4 super-Yang-Mills (sYM) theory
[1] in the planar limit of a large number of colors. It may
soon be possible to completely determine all planar scat-
tering amplitudes in this theory, for all values of the
coupling, going far beyond the (now thoroughly under-
stood) cases of four and five external gluons [2]. Much of
this progress has been surveyed recently [3]. Planar scat-
tering amplitudes exhibit a new symmetry known as dual
conformal symmetry [4,5], which severely restricts their
structure. Together with supersymmetry and (position
space) conformal symmetry, dual conformal invariance
gives rise to a Yangian [6]—an algebraic structure common
in integrable models. Indeed, it is widely believed that
several aspects of the planar sector ofN ¼ 4 sYM theory
are controlled by an integrable model (see e.g. Ref. [7]).

In contrast, much less is known about the non-
planar sector—the subject of the present paper. Consider
N ¼ 4 sYM theory for the gauge group SUðNcÞ. In the
limit Nc ! 1, the nonplanar, or subleading-color, contri-
butions are suppressed by powers of 1=Nc. Once one takes
into account these corrections, for finite Nc, the scattering
amplitudes no longer appear to possess dual conformal
symmetry, nor do they demonstrate any obvious integra-
bility properties.

Understanding the subleading-color terms is critical to a
complete description of the behavior of gauge theories. For
example, many types of color correlations are suppressed
in the large-Nc limit. Furthermore, the information pro-
vided by the full-color expression forN ¼ 4 sYM ampli-
tudes, expressed in terms of their loop-momentum
integrands, can be used to construct corresponding ampli-
tudes [8–11] inN ¼ 8 supergravity [12]. From each set of
amplitudes one can extract information about ultraviolet
(UV) divergences in the respective theory.
The UV properties of N ¼ 8 supergravity have been

the focus of intense investigation. There have been several
recent reviews of the situation [13]. Long ago, an N ¼ 8
supersymmetric local counterterm at three loops in D ¼ 4
was proposed [14–18]. An explicit computation of the
three-loop four-graviton amplitude first revealed that the
counterterm has a vanishing coefficient [9]. Subsequently
it was realized [19] that this counterterm is forbidden in
D ¼ 4 by the E7ð7Þ duality symmetry [12]. Other analyses

have extended the finiteness constraints from E7ð7Þ and

linearized supersymmetry, such that the first potential
divergence in D ¼ 4 is now at seven loops [20–23].
Finiteness until this loop order happens to agree with an
earlier naive power counting, based on the assumption of
an off-shell N ¼ 8 superspace [24]. A potential seven-
loop divergence is also suggested by other approaches,
including an analysis of string theory dualities [25], a
first-quantized world-line approach [26], and light-cone
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supergraphs [27]. However, it has also been argued that the
theory may remain finite beyond seven loops [28].

In this paper, we will show how a conjectured duality
between color and kinematics [29,30] provides a powerful
method for computing subleading-color terms in N ¼ 4
sYM amplitudes, in a way that makes the construction
of the corresponding N ¼ 8 supergravity amplitudes
extremely simple. Also, the N ¼ 8 result is expressed
in a form that makes manifest the true ultraviolet behavior
of the amplitude (when continued to higher space-time
dimension D). Thus this method provides unprecedented
access to the precise coefficients of potential counter-
terms in N ¼ 8 supergravity, as well as in its higher-
dimensional versions. It may eventually offer a means for
settling the question of whether additional UV cancella-
tions exist in N ¼ 8 supergravity, beyond the known or
expected ones. Perhaps even more importantly, the method
gives a means for constructing complete amplitudes,
allowing for detailed studies of their symmetries and
properties.

A key point is that when the color-kinematics duality
holds manifestly, it locks the nonplanar contributions to the
planar ones. The nonplanar contributions are essential for
evaluating gravity amplitudes, because in gravity theories
no separation exists between planar and nonplanar contri-
butions. This duality allows one to efficiently export infor-
mation from the planar sector, e.g. that provided by dual
conformal symmetry, to the much more intricate nonplanar
sector.

A second key point is the claim [30] that if a duality-
respecting representation of N ¼ 4 sYM amplitudes can
be found, then the loop-momentum integrands of the
corresponding N ¼ 8 supergravity amplitudes can be
obtained simply by taking the graphs of N ¼ 4 sYM
theory, dropping the color factors, and squaring their
kinematic numerators. This double-copy property is a
loop-level generalization of the corresponding tree-level
property [29], equivalent to the Kawai-Lewellen-Tye
(KLT) relations between gravity and gauge-theory ampli-
tudes [31]. Using the color-kinematics duality, followed by
the double-copy property, advances in constructing inte-
grands for the planar sector of gauge theory can be carried
over to the nonplanar sector, and then on to gravity. The
color-kinematic duality and the gravity double-copy
property do not appear to require supersymmetry, although
amplitudes in supersymmetric theories are generally much
simpler to work with than nonsupersymmetric amplitudes.
Another important aspect of the duality is that it appears to
hold in any dimension, thus making it compatible with
dimensional regularization.

In this paper we will exploit the color-kinematic duality
to construct the complete four-loop four-point amplitudes
of N ¼ 4 sYM theory and N ¼ 8 supergravity. Both
amplitudes were constructed previously by us [10,11];
however, the present construction is considerably more

efficient, and makes various properties of the amplitudes
more manifest. The color-kinematic duality relations allow
us to express the four-loop loop-momentum integrands, for
83 different cubic (trivalent) graphs, as functionals of
the integrands of just two planar graphs. For the one-,
two-, and three-loop four-point [30,32], and the one- and
two-loop five-point cases [33], the duality is even more
restrictive: a single planar graph suffices to determine all
the others. As it is becoming increasingly simple to con-
struct planar amplitudes, a particularly attractive aspect of
using the color-kinematic duality is that it determines non-
planar contributions from planar ones. Perhaps even more
remarkable, in terms of measuring the redundancy found in
local gauge-theory scattering amplitudes, we shall find that
the entire nontrivial dynamical information in the four-
loop four-point amplitude is contained in a single non-
planar graph; all other graphs are related to this one by
the duality.
While a general proof of the duality conjecture is yet to

be given beyond tree level, the four-loop construction we
offer in this paper provides further evidence in favor of it,
in the form of a highly nontrivial example. In this work, we
have confirmed the duality-based construction by verifying
that the integrand matches a complete (spanning) set of
generalized unitarity cuts.
Based on the double-copy structure of supergravity am-

plitudes, we will give a new representation of the four-loop
four-point N ¼ 8 supergravity amplitude. This construc-
tion provides a direct multiloop confirmation of the
double-copy property, because we verify the generalized
unitarity cuts for the new form of the supergravity ampli-
tude, against the cuts of the known expression [10], origi-
nally constructed using the KLT relations. We also explore
the ultraviolet properties of the amplitude inD> 4 dimen-
sions. An essential feature of the new representation is that
the UV behavior is manifest: Individual integrals diverge
logarithmically in precisely the same critical dimensionDc

as their sum. This property did not hold for the previous
form of the amplitude [10]. The critical dimension is also
the same as that for the planar and single-trace sectors of
N ¼ 4 sYM theory. In a previous paper [10], we showed
that the supergravity amplitude is finite for D< 11=2,
which is also the bound obeyed by N ¼ 4 sYM theory.
However, the previous form of the amplitude did not dis-
play this bound manifestly. To see the cancellation of
potential UV divergences, the integrals had to be expanded
a few orders in powers of the external momenta. The lack
of manifest UV behavior in that representation made it
difficult to carry out the required integration in D ¼ 11=2
and to determine whether the amplitude actually does
diverge in this dimension. With the new form, this task is
greatly simplified, allowing us to carry it out here.
Because of the double-copy construction, the numera-

tors of the integrands for the N ¼ 8 supergravity
amplitude are perfect squares. However, they multiply
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propagator denominators that do not have definite signs.
Therefore, individual integrals contributing to the ampli-
tude can have different signs. To probe whether or not the
four-loop amplitude diverges in D ¼ 11=2, it is necessary
to actually evaluate the UV divergences in the loop inte-
grals in this dimension. Using the double-copy form of the
four-loop four-point amplitude we do so, finding that the
N ¼ 8 finiteness bound is in fact saturated at D ¼ 11=2
at four loops, which matches the behavior ofN ¼ 4 sYM
theory. Moreover, we calculate the precise coefficient of
the N ¼ 8 supergravity divergence. We find that it
exactly matches the coefficient of the divergence of the
1=N2

c-suppressed single-trace term in the four-loop four-
point amplitude of N ¼ 4 sYM theory, up to an overall
rational factor. Although this property is most striking
at four loops, only emerging after a number of simplifi-
cations, it is consistent with lower-loop behavior.
Presumably this consistent connection is a clue for unrav-
eling the general UV properties of N ¼ 8 supergravity.

Regularization is a crucial point in the construction of
loop-level amplitudes in massless theories, because such
amplitudes are usually either infrared or UV divergent. The
issue of regularization has been studied in some detail in
the context of unitarity cuts in Ref. [34], where the six-
dimensional helicity formalism [35] was suggested as a
general means for implementing either dimensional regu-
larization [36] or a massive infrared regulator equivalent to
the one in Ref. [37]. In the present paper we take advantage
of an earlier construction of the four-loop four-point am-
plitude of N ¼ 4 sYM theory, which provides expres-
sions with demonstrated validity for D � 6 [11,34]. In this
paper, we compare the D-dimensional unitarity cuts of the
new results with the cuts of the earlier results. We find
exact agreement, confirming the new representations.

This paper is organized as follows. In Sec. II we explain
our strategy for constructing multiloop integrands, illus-
trating it with the three-loop four-point N ¼ 4 sYM
amplitude. In Sec. III (and Appendix B) we present the
new forms of the four-loop integrands of N ¼ 4 sYM
theory and N ¼ 8 supergravity. We also outline their
construction. In Sec. IV, we obtain the explicit value of
the UV divergence of the N ¼ 8 supergravity amplitude
in D ¼ 11=2 and discuss its properties. We also determine
the UV divergence of the color double-trace terms in the
four-loop N ¼ 4 sYM amplitude in D ¼ 6. (We had
found earlier [11] that the double-trace divergence can-
celed in the next possible lower dimension,D ¼ 11=2.) We
give our conclusions and outlook in Sec. V. Several appen-
dixes are included. Appendix A gives functional defining
relations between the numerators in the four-loop four-
point amplitude, which are derived from the Jacobi rela-
tions after imposing some auxiliary conditions valid for
N ¼ 4 sYM theory. Appendix B presents the analytic
expressions for the numerators. Appendix C gives the
values of the vacuum integrals entering the UV divergence

for the supergravity amplitude in the critical dimension, as
well as expressions for the vacuum integrals’ numerators.
Explicit expressions for the color factors for each contri-
bution to the full four-loop amplitude may be found online
[38], where we also provide plain-text, computer-readable
versions of the numerator factors and the kinematic dual
Jacobi relations that they obey.

II. CONSTRUCTING MULTILOOP INTEGRANDS

The unitarity method [11,39–41] has become a general-
purpose tool for constructing multiloop amplitudes in
gauge and gravity theories. In this section we demonstrate
how one can dramatically reduce the complexity of
unitarity-based calculations for gauge theories by assum-
ing the conjectured duality between color and kinematics
[29,30]. This duality reduces the construction of an ampli-
tude at the integrand level to the determination of the
numerator factors for a small set of graphs, which we
call master graphs. For the four-loop four-point N ¼ 4
sYM amplitude, it suffices to use just two planar master
graphs. Alternatively, a single nonplanar master graph is
sufficient.
Given the duality-satisfying form of the N ¼ 4 sYM

amplitude, the N ¼ 8 supergravity amplitude can be
written down immediately by squaring the N ¼ 4 sYM
numerator factors. We confirm the correctness of the
derived gauge and gravity amplitudes using a spanning
set of generalized unitarity cuts, showing that they agree
with our previous forms [10,11] on these cuts.

A. Duality between color and kinematics

In general, a massless m-point L-loop gauge-theory

amplitude AðLÞ
m in D space-time dimensions, with all

particles in the adjoint representation, may be written as

AðLÞ
m ¼ iLgm�2þ2L

X
i2�

Z YL
l¼1

dDpl

ð2�ÞD
1

Si

niCiQ
�i

p2
�i

; (2.1)

where g is the gauge coupling constant. The sum runs over
the complete set � of m-point L-loop graphs with only
cubic (trivalent) vertices, including all permutations of
external legs. In each term, the product in the denominator
runs over all propagators of the corresponding cubic graph.
The integrations are over the independent loop momenta
pl. The coefficients Ci are the color factors obtained from
the gauge-group structure constants by dressing every
three-vertex in the graph with a factor

~fabc ¼ i
ffiffiffi
2

p
fabc ¼ Trð½Ta; Tb�TcÞ; (2.2)

where the Hermitian generators of the gauge group are
normalized via TrðTaTbÞ ¼ �ab. The coefficients ni are
kinematic numerator factors depending on momenta,
polarization vectors, and spinors. For supersymmetric am-
plitudes in an on-shell superspace, the numerators will also
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contain Grassmann parameters. The symmetry factors Si of
each graph remove any overcount introduced by summing
over all permutations of external legs, as well as any
internal automorphisms—symmetries of a graph with
external legs fixed. This form of the amplitude may be
obtained from representations involving higher-point con-

tact interactions (as long as they are built out of ~fabc’s).
One reexpresses all contact terms as the product between a
propagator and its inverse; i.e. one inserts 1 ¼ p2

�i
=p2

�i
,

and assigns the inverse propagator p2
�i

to be part of a

numerator factor ni. The duality conjecture [29,30] states
that there should exist a representation of the amplitude
where the numerator factors ni satisfy equations in one-to-
one correspondence with the Jacobi identities of the color
factors. Explicitly, it requires that

Ci ¼ Cj þ Ck ) ni ¼ nj þ nk; (2.3)

where the first relation holds, thanks to the usual color
Jacobi identity, for any triplet ði; j; kÞ of graphs which are
identical within the gray region in Fig. 1. Moreover, the
numerator factors carry the same antisymmetry properties
as color factors, i.e. if a color factor changes sign under the
interchange of two legs, then so does the corresponding
kinematic numerator factor:

Ci ! �Ci ) ni ! �ni: (2.4)

These relations are conjectured to hold to all multiplicities,
to all loop orders in a weak-coupling expansion, and in any
dimension in both supersymmetric and nonsupersymmet-
ric Yang-Mills theory. Such relations were noticed long
ago for four-point tree amplitudes [42]. Beyond the four-
point level, the relations are rather nontrivial and only work
after appropriate rearrangements of the amplitudes.

While the sign of the complete numerator factor Cini of
a graph is unambiguous, the sign of each factor, as well as
the signs in Eq. (2.3), may be changed as a consequence of
the relations (2.4) by simply interchanging two lines at any
vertex. This ambiguity reflects the different possible sign
conventions in Jacobi identities. In this paper, the sign of
each color factor Ci (and implicitly of ni) is fixed by the

corresponding graph figure: for each integral,Ci is built out

of the structure constants ~fabc corresponding to each tri-
valent vertex, with legs a, b, and c ordered clockwise in the
plane of the figure.
The kinematic version of the Jacobi identity (2.3) is the

key equation for the duality. At loop level, this equation
relates graph numerators at the integrand level, as illus-
trated in Fig. 1. Therefore it is important to properly line up
both external and internal momenta. There is one such
equation for every propagator of every graph. Of course,
many of the equations are simply related to each other by
automorphic symmetries of graphs, and the fact that any
given equation can be obtained starting from each of the
three contributing graphs. Simultaneous consideration of
all relations gives a system of linear functional equations
that the amplitude’s numerators should obey. As we will
see, only a tiny subset of the possible equations needs to be
used when solving the system. Once a tentative solution is
found, one must verify that the full set of equations is
satisfied, in order to have a duality-satisfying representa-
tion of the amplitude. The existence of at least one solution
consistent with the unitarity cuts is the critical assumption
of the conjecture. Indeed, as we will see, the system of
equations at four loops is quite nontrivial and the emer-
gence of a solution is striking.
There is by now substantial evidence in favor of the

duality, especially at tree level (L ¼ 0) [43–46], where
explicit representations of the numerators in terms of par-
tial amplitudes are known for any number of external legs
[47]. A consequence of this duality is the existence of
nontrivial relations between the color-ordered partial tree
amplitudes of gauge theory [29], which have been proven
both from field theory [48] and string theory [49] perspec-
tives. These relations were important in the recent con-
struction of all open-string tree amplitudes [50]. A partial
Lagrangian understanding of the duality has also been
given [45]. An alternative trace-based presentation of the
duality relation (2.3), which emphasizes its group-theoretic
structure, was described recently [51].
While less is known at loop level, several nontrivial tests

have been carried out. In particular, it has been confirmed
that the duality holds for the three-loop four-point ampli-
tude of N ¼ 4 sYM theory [30]. (The one- and
two-loop four-point amplitudes [8,52,53] in this theory
also manifestly satisfy the duality.) Similarly, the duality-
satisfying five-point one-, two-, and three-loop amplitudes
of N ¼ 4 sYM theory have recently been constructed
[33]. The color-kinematic duality is also known to hold
[30] for the two-loop four-point identical-helicity ampli-
tude of pure Yang-Mills theory [54]. At present there is no
proof that the system of equations generated by the duality
(2.3) always has a solution consistent with the unitarity
cuts of a given theory, so it needs to be checked case by
case. In Sec. III we will find a solution for the four-loop
four-point amplitude of N ¼ 4 sYM theory.

FIG. 1 (color online). Pictorial Jacobi relation for a group of
three graphs. The graphs can represent color factors or numerator
factors. Except for the connections to the central (pink) lines, the
graphs are identical in the three cases, as indicated by the
common (momentum or color) labels a, b, c, and d. The gray
area represents some unspecified subgraph which is identical in
all three graphs.
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Perhaps more surprising than the duality itself is a con-
sequent relation between gauge and gravity amplitudes.
Once the gauge-theory amplitudes are arranged into a
form satisfying Eq. (2.3), the numerator factors of the

corresponding L-loop gravity amplitudes, MðLÞ
m , can be

obtained simply by multiplying together two copies of
gauge-theory numerator factors [29,30],

MðLÞ
m ¼ iLþ1

�
�

2

�
m�2þ2LX

i2�

Z YL
l¼1

dDpl

ð2�ÞD
1

Si

ni~niQ
�i

p2
�i

; (2.5)

where � is the gravitational coupling. The ~ni represent
numerator factors of a second gauge-theory amplitude
and the sum runs over the same set of graphs as in
Eq. (2.1). At least one family of numerators (ni or ~ni)
must satisfy the duality (2.3). The construction (2.5) is
expected to hold in a large class of gravity theories, in-
cluding all theories that are the low-energy limits of string
theories. At tree level, this double-copy property encodes
the KLT relations between gravity and gauge-theory am-
plitudes [31]. For N ¼ 8 supergravity both ni and ~ni are
numerators of N ¼ 4 sYM theory.

The double-copy formula (2.5) has been proven [45] for
both pure gravity and for N ¼ 8 supergravity tree ampli-
tudes, under the assumption that the duality (2.3) holds in
the corresponding gauge theories, pure Yang-Mills and
N ¼ 4 sYM theory, respectively. The nontrivial part of
the loop-level conjecture is the existence of a representa-
tion of gauge-theory amplitudes that satisfies the duality
constraints. The double-copy property was explicitly
checked for the three-loop four-point amplitude of
N ¼ 8 supergravity in Ref. [30] by comparing Eq. (2.5)
against a spanning set of unitarity cuts of the previously
calculated amplitude [9,55]. Here we perform a similar
check for the four-loop four-point amplitude of N ¼ 8
supergravity, using the maximal cut method [41,55]. The
duality and double-copy property have also been con-
firmed in one- and two-loop five-point amplitudes in
N ¼ 8 supergravity [33]. For less-than-maximal super-
gravities, the double-copy property has been checked ex-
plicitly for the one-loop four- and five-graviton amplitudes
of N ¼ 4, 5, and 6 supergravity [56] by showing it
matches known results [57]. In the two-loop four-graviton
amplitudes in these theories, it has been verified to be
consistent with the known infrared divergences and other
properties [58]. The double-copy property also leads to
some interesting relations between certain N � 4 super-
gravity and subleading-color sYM amplitudes [59].

B. Calculational setup

We now demonstrate how the conjectured duality be-
tween color and kinematics streamlines the construction of
integrands of multiloop gauge-theory amplitudes. We first
give an overview of the procedure and illustrate it with the

three-loop four-point amplitude, before turning to the four-
loop case in the following section.
To start the construction we enumerate the graphs with

only cubic vertices that can appear in a particular ampli-
tude. Although this step can be carried out in many differ-
ent ways, we describe one that conveniently also generates
the needed duality relations: We assume we have a given
set of known cubic graphs (e.g. at four loops we can start
with the planar cubic graphs given in Ref. [5]). Any miss-
ing graphs can then be generated by applying the Jacobi
relations (2.3) to the set of known graphs. New graphs
generated in this way are then added to the list of known
ones. This process continues recursively, until no further
graphs or relations are found. At the end of the process all
cubic graphs related via the duality are known, and all
duality relations (2.3) have been written down.
The next step is to solve the relations thus generated.

This is the most complicated part of the construction. We
can, however, simplify the step by dividing it up into two
separate parts, the first of which is straightforward. First
use a subset of the duality relations to express all numera-
tor factors in terms of the numerators of a judiciously
chosen small set of graphs, which we call master graphs.
We identify master graphs by systematically eliminating
numerator factors from the duality relations, via a func-
tional analog of the standard row reduction of systems of
linear equations. This problem is analogous to the reduc-
tion of loop integrals to a set of master integrals using the
Laporta algorithm [60]. In both cases, there is freedom to
change the order in which the linear equations are solved.
Here, there is a freedom in the choice of master graphs,
which is equivalent to a choice of path in solving the
system of duality relations. In all cases we have examined,
it is convenient to choose the master graphs to be planar
(although such a restriction does not necessarily yield the
smallest set). This choice has the advantage that the planar
contributions are relatively simple and well studied in the
literature. In particular, the planar contributions to the four-
loop four-point amplitude have a fairly simple form [5].
For the three-loop four-point N ¼ 4 sYM amplitude we
only need a single master graph [30,32]. In Sec. III, we will
find that at four loops we can express all numerators in
terms of the numerators of only two planar master graphs
(or a single nonplanar master graph).
After the reduction of the system of duality constraints,

our task is to find explicit expressions for the master
numerators. As with any functional equations, a good
strategy is to write down Ansätze for the master numer-
ators. The Ansätze are then constrained using input from
unitarity cuts, as well as symmetry requirements on both
the master numerators and on the numerators derived from
them through the duality relations.
In addition to the duality relations (2.3) and unitarity

cuts, we may add extra constraints on numerator factors,
motivated by our prejudices about the structure and
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properties of the amplitude. Although not necessary, such
constraints, when well chosen, can greatly facilitate the
construction. To find the four-loop four-pointN ¼ 4 sYM
amplitude we use the following auxiliary constraints,
which are known to be valid for the duality-satisfying
numerators at three loops [30]:

(1) One-loop tadpole, bubble and triangle subgraphs do
not appear in any graph.

(2) A one-loop n-gon subgraph carries no more than
n� 4 powers of loop momentum for that loop.

(3) After extracting an overall factor of stAtree
4 , the

numerators are polynomials in D-dimensional
Lorentz products of the independent loop and exter-
nal momenta.

(4) Numerators carry the same relabeling symmetries as
the graphs.

We will assume that these observations carry over to the
four-loop four-point amplitude. If one of these auxiliary
conditions had turned out to be too restrictive, it would
have led to an inconsistency with either the unitarity cuts or
the duality relations. We would then have removed con-
ditions one by one until a consistent solution were found.
As we shall see in Sec. III, these auxiliary constraints are
quite helpful for quickly finding a duality-satisfying rep-
resentation for the four-loop four-point amplitude. A sur-
prisingly small subset of generalized unitarity cuts is then
sufficient to completely determine this amplitude.

The specific auxiliary constraints that should be imposed
depend on the problem at hand. The third constraint is
clearly specific to the four-point amplitude, and should be
modified for higher-point amplitudes because they have a
more complicated structure. For the five-point case,
however, a simple generalization has been found [33],
involving prefactors that are proportional [44] to linear
combinations of five-point tree amplitudes. For amplitudes
in less supersymmetric theories, the first and second con-
ditions should be relaxed (in addition to the third one),
because one-loop triangle and bubble subgraphs are known
to appear in such theories.

C. Three-loop warmup

To illustrate the above procedure in some detail, we
reconstruct the well-studied three-loop four-point ampli-
tude ofN ¼ 4 sYM theory. This amplitude was originally
constructed in Refs. [9,55]. A form compatible with the
duality (2.3) was then found [30]. Here we describe how to
streamline the construction of the latter form, before fol-
lowing a similar procedure at four loops.

A straightforward enumeration shows that there are 17
distinct cubic graphs with three loops and four external
legs, which do not have one-loop triangle or bubble (or
tadpole) subgraphs. Only 12 contribute to the amplitude, as
shown in Ref. [30]. These 12 nonvanishing graphs, shown
in Fig. 2, are sufficient for explaining the construction.

(Had we kept all 17 graphs, the construction would be
only slightly more involved, with the result that the numer-
ators of the additional five graphs vanish.)
Each numerator depends on three independent external

momenta, labeled by k1, k2, and k3, and on (at most) three
independent loop momenta, labeled by l5, l6, and l7, as
well as on the external states. The Mandelstam variables
are s ¼ ðk1 þ k2Þ2, t ¼ ðk1 þ k4Þ2, and u ¼ ðk1 þ k3Þ2.
We denote the color-ordered tree-level amplitude by
Atree
4 � Atree

4 ð1; 2; 3; 4Þ. The four-point amplitudes ofN ¼
4 sYM theory are special. Supersymmetry Ward identities
fix the external state dependence, and imply that an overall
prefactor of Atree

4 , or equivalently the crossing-symmetric
prefactor stAtree

4 [9,55], can be extracted from every nu-

merator factor nðxÞ, leaving behind new numerator factors

NðxÞ that depend only on the momenta,

nðxÞ ¼ stAtree
4 ð1; 2; 3; 4ÞNðxÞ;

NðxÞ � NðxÞðk1; k2; k3; l5; l6; l7Þ:
(2.6)

Here (x) refers to the label for each graph in Fig. 2. This
result has been argued to be valid in any dimensionD � 10
[11], justifying the third assumption above for these am-
plitudes. The homogeneity of the Jacobi relations implies

that they hold for NðxÞ just as for nðxÞ. The crossing sym-
metry of stAtree

4 implies that the symmetry properties of

NðxÞ are the same as those of nðxÞ.

FIG. 2 (color online). The 12 nonvanishing graphs used in the
construction of theN ¼ 4 sYM andN ¼ 8 supergravity three-
loop four-point amplitude. The shaded (pink) lines mark the
application of the duality relation used to determine the numera-
tor of the graph. The external momenta are outgoing and the
arrows mark the directions of the labeled loop momenta.
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Next, we write down a subset of the duality relations that allows us to identify the master graphs [32]. For the three-loop
four-point amplitude, one such restricted set of duality relations is

NðaÞ ¼ NðbÞðk1; k2; k3; l5; l6; l7Þ;
NðbÞ ¼ NðdÞðk1; k2; k3; l5; l6; l7Þ;
NðcÞ ¼ NðaÞðk1; k2; k3; l5; l6; l7Þ;
NðdÞ ¼ NðhÞðk3; k1; k2; l7; l6; k1;3 � l5 þ l6 � l7Þ þ NðhÞðk3; k2; k1; l7; l6; k2;3 þ l5 � l7Þ;
NðfÞ ¼ NðeÞðk1; k2; k3; l5; l6; l7Þ;
NðgÞ ¼ NðeÞðk1; k2; k3; l5; l6; l7Þ;
NðhÞ ¼ �NðgÞðk1; k2; k3; l5; l6; k1;2 � l5 � l7Þ � NðiÞðk4; k3; k2; l6 � l5; l5 � l6 þ l7 � k1;2; l6Þ;
NðiÞ ¼ NðeÞðk1; k2; k3; l5; l7; l6Þ � NðeÞðk3; k2; k1;�k4 � l5 � l6;�l6 � l7; l6Þ;
NðjÞ ¼ NðeÞðk1; k2; k3; l5; l6; l7Þ � NðeÞðk2; k1; k3; l5; l6; l7Þ;
NðkÞ ¼ NðfÞðk1; k2; k3; l5; l6; l7Þ � NðfÞðk2; k1; k3; l5; l6; l7Þ;
NðlÞ ¼ NðgÞðk1; k2; k3; l5; l6; l7Þ � NðgÞðk2; k1; k3; l5; l6; l7Þ; (2.7)

where ki;j � ki þ kj. For convenience we have suppressed
the canonical arguments ðk1; k2; k3; l5; l6; l7Þ of the numer-
ators on the left-hand sides of Eqs. (2.7), as wewill often do
in the remainder of the paper. Each relation specifying an
NðxÞ is generated by considering the dual Jacobi relations
focusing around the lightly colored (pink) line labeled Jx in
Fig. 2. In general, the duality condition relates triplets of
numerators; sometimes, however, one or two of the numer-
ators vanish because the associated graph has a one-loop
triangle subgraph forbidden by our auxiliary constraints.
Specifically, for five of the above equations, the duality sets
pairs of numerators equal; this occurs because the third
term in the triplet of numerators of Eq. (2.3) vanishes due
to the presence of a triangle subgraph. The above system
can be used to express any numerator factor in terms of
combinations of the numerator NðeÞ, with various different
arguments. Thus, graph (e) can be taken as the sole master
graph. This is a convenient choice, but not the only pos-
sible one; for example, either graph (f) or (g) can also be
used as a single master graph. None of the remaining nine
graphs, however, can act alone as a master graph.

One valid numerator factor (consistent with unitarity
cuts) for graph (e) is the ‘‘rung-rule’’ numerator [53],

NðeÞ
rr ¼ sðl5 þ k4Þ2: (2.8)

With this numerator, the graph possesses dual conformal
symmetry. However, it turns out that this numerator is
incompatible with the duality between color and kinemat-
ics (2.3).

We are therefore looking for a modification of NðeÞ
consistent with both the maximal cut of the graph and
with the duality constraints (2.7). We start by requiring
that the maximal cut of graph (e) is correct, and that the
auxiliary constraints in Sec. II B are satisfied. That is,

the numerator NðeÞ has mass dimension four and possesses

the symmetry of the graph; no loop momentum for any box

subgraph in (e) appears in it (ruling out l6 and l7); and N
ðeÞ

is at most quadratic in the pentagon loop momenta l5. (This
last condition is looser than the second auxiliary constraint
in Sec. II B; we will tighten it shortly.) The symmetry

condition implies that NðeÞ should be invariant under

fk1 $ k2; k3 $ k4; l5 ! k1 þ k2 � l5g: (2.9)

The most general polynomial consistent with these con-
straints is of the form,

NðeÞ ¼ sðl5 þ k4Þ2 þ ð�sþ �tÞl25 þ ð�sþ �tÞðl5 � k1Þ2
þ ð�sþ �tÞðl5 � k1 � k2Þ2; (2.10)

where the four parameters �, �, �, and � are to be
determined by further constraints. All added terms are
proportional to inverse propagators and therefore vanish
on the maximal cut. Thus, since Eq. (2.8) is consistent with
the maximal cuts so is Eq. (2.10).
According to the second auxiliary constraint in Sec. II B,

the numerator of a pentagon subgraph should be at most
linear in the corresponding loop momentum, not quadratic
as assumed above. Therefore the coefficient of l25 in

Eq. (2.10) should vanish, yielding the relations � ¼ �1�
2� and � ¼ �2�. Consequently, the Ansatz for NðeÞ is
reduced to

NðeÞ ¼ sð�45 þ �15Þ þ ð�sþ �tÞðsþ �15 � �25Þ; (2.11)

where we use the notation,

�ij � 2ki � lj ði � 4; j � 5Þ;
�ij � 2li � lj ði; j � 5Þ: (2.12)

Now there are just two undetermined parameters, � and �.
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To determine one of the remaining parameters we use
the properties of graph (j), and the expression for its
numerator in terms of the numerator of graph (e), which
is given by the 9th duality constraint in Eq. (2.7). Inserting
Eq. (2.11) into this relation leads to

NðjÞ ¼ sð1þ 2�� �Þð�15 � �25Þ þ �sðt� uÞ: (2.13)

Because the smallest loop in graph (j) carrying l5 is a box
subgraph, our auxiliary constraints require that thismomen-

tum be absent from NðeÞ. Setting the first term in Eq. (2.13)
to zero implies that � ¼ 1þ 2�, which in turn leads to

NðeÞ ¼ sð�45 þ �15Þ þ ð�ðt� uÞ þ tÞðsþ �15 � �25Þ;
(2.14)

NðjÞ ¼ ð1þ 2�Þðt� uÞs; (2.15)

leaving undetermined a single parameter �.
There are a variety of ways to determine the final

parameter. For example, one can use planar cuts to enforce
that the planar part of the amplitude is correctly repro-
duced. A particularly instructive method is to use the dual-
ity relations to obtain the numerator for planar graph (a) in

terms of master numeratorNðeÞ. The numeratorNðaÞ is quite
simple once we impose the condition that a one-loop box
subgraph cannot carry loopmomentum. Since three indepen-
dent one-loop subgraphs of graph (a) are boxes, the numerator

NðaÞ cannot depend on any loopmomenta. Indeed, the iterated
two-particle cuts, or equivalently the rung insertion rule [53],
immediately fix this contribution to be

NðaÞ ¼ s2: (2.16)

Solving the duality relations (2.7) to express NðaÞ in terms of

NðeÞ we find

NðaÞ ¼ NðeÞðk1; k2; k4;�k3 þ l5 � l6 þ l7; l5 � l6;�l5Þ
þ NðeÞðk2; k1; k4;�k3 � l5 þ l7;�l5; l5 � l6Þ
� NðeÞðk4; k1; k2; l6 � l7; l6; l5 � l6Þ
� NðeÞðk4; k2; k1; l6 � l7; l6;�l5Þ
� NðeÞðk3; k1; k2; l7; l6; l5 � l6Þ
� NðeÞðk3; k2; k1; l7; l6;�l5Þ: (2.17)

Plugging in the value of the numerator factor NðeÞ in
Eq. (2.14), we obtain

NðaÞ ¼ s2 þ ð1þ 3�Þ½ð�16 � �46Þs� 2ð�17 þ �37Þs
þ ð�16 � 2�17 � �26 þ 2�27Þtþ 4ut�: (2.18)

Demanding that this expressionmatches the numerator factor

NðaÞ given in Eq. (2.16), or alternatively that it is independent
of loop momenta, fixes the final parameter to be � ¼ �1=3.
This constraint completely determines the numerator of
graph (e) to be

NðeÞ ¼ sð�45 þ �15Þ þ 1
3ðt� sÞðsþ �15 � �25Þ; (2.19)

matching the result of Ref. [30].
Remarkably, numerator (e) in Eq. (2.19) generates all

other numerators NðxÞ, via Eq. (2.7), giving us the entire
integrand at three loops. For all graphs, the resulting nu-
merators reproduce the expressions quoted in Ref. [30],
and the resulting amplitude matches previous expressions
[9,55] on all D-dimensional unitarity cuts. As already
noted, it is highly nontrivial to have a consistent solution
where all duality relations hold, all numerators have the
graph symmetries, and all unitarity cuts are correct.

Squaring these numerators NðxÞ, using Eq. (2.5), immedi-
ately yields the numerators for the three-loop four-point
N ¼ 8 supergravity amplitude. This form has also been
confirmed against previous expressions [9,55] on a span-
ning set of D-dimensional unitarity cuts [30].
We shall use the same streamlined strategy to construct

the four-loop four-point amplitude in Sec. III. Before
carrying out this construction, however, we need to address
an important subtlety that appears in the construction of the
three-loop amplitude and affects the four-loop construction
as well.

D. Comment on one-particle-reducible
graphs and snails

Beyond tree level, the on-shell three-point amplitudes
of N ¼ 4 sYM theory vanish. The appearance of one-
particle reducible (1PR) graphs in the three-loop four-
point amplitude may therefore seem surprising. Indeed,
graphs (i), ( j), and (k) of Fig. 2 do not appear in the original
representations of the same amplitude [9,55]. The exis-
tence of 1PR graphs may seem to imply that the three-point
amplitude is nonvanishing. However, these graphs’ numer-
ators are proportional to the Mandelstam invariant s, which
is also the inverse propagator for the sole line on which the
graph is 1PR. Thus, the superficially 1PR graphs are in fact
just one-particle-irreducible (1PI) contact graphs. Even
though they are kinematically equivalent to 1PI graphs,
the noncontact form of graphs (i), ( j), and (k) in Fig. 2 is
needed to describe easily their color structure, and to allow
the amplitude to obey the duality (2.3) between color and
kinematics. As we shall see, this feature continues at four
loops, where we encounter, not only graphs with three-
point subgraphs, but also nontrivial two-point subgraphs.
Some of these graphs contain four-loop two-point bubble
subgraphs on external legs, and must be treated with par-
ticular care.
At first sight, it may appear surprising that two- and

three-point subgraphs show up; indeed in N ¼ 4 sYM
theory we expect the vanishing of on-shell two- and three-
point loop amplitudes. This property has been known in
string theory for some time [61]. By taking the low-energy
limit, it should hold in field theory as well. A direct field
theory argument for the vanishing of the on-shell two-point
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function can be made as follows: Quite generally, a
(diagonal) on-shell two-point loop contribution represents
a correction to the mass of the corresponding field. Gauge
invariance forbids such a term from being generated in the
gluon two-point function. The chirality of N ¼ 4 sYM
gluinos forbids such mass terms from being generated by
perturbative quantum effects for fermions as well. Thus,
gluon and gluino two-point functions vanish on shell.
Manifest off-shell N ¼ 1 supersymmetry, which can be
maintained, then implies that the scalar field two-point
function also vanishes on shell.

We can also argue that three-point amplitudes vanish on
shell. Because N ¼ 4 supersymmetry relates all such
amplitudes to each other, it suffices to focus on the scat-
tering amplitude of two fermions and one scalar. Up to an
SUð4Þ R-symmetry transformation, we may further assume
that neither of the fermions is the N ¼ 1 superpartner of
the gluon. Thus we consider only the interaction between
N ¼ 1 matter multiplets. Conservation of the matter
R-symmetry subgroup SUð3Þ requires that the three-field
interaction is controlled by SUð3Þ invariance, and thus is
either holomorphic or antiholomorphic. Now, in the effec-
tive action language, the three-point amplitude originates
either from terms in the superpotential or the Kähler
potential. Because of the perturbative nonrenormalization
of the superpotential [62], only the tree amplitude comes
from the former. A nonvanishing loop amplitude can only
originate from a correction to the Kähler potential. For this
case, a nonvanishing full superspace integral and Lorentz
invariance require that the product of three chiral super-
fields containing the relevant wave functions must be
accompanied by at least two additional superderivatives.
In turn, this implies that the product of one scalar and two
fermion wave functions is always accompanied by an
external momentum invariant, originating from the super-
space integration measure. For massless fields, any such
product vanishes on shell. Thus, all quantum corrections to
three-point amplitudes in N ¼ 4 sYM theory vanish on
shell, completing the argument.

While these arguments confirm the vanishing of two- and
three-point amplitudes at one loop and beyond, we empha-
size that this does not mean that we cannot have graphs with
two- and three-point subgraphs. However, when such
graphs appear they should always carry factors that make
their contributions vanish whenever legs are cut (placed on
shell) to isolate two- and three-point subamplitudes.
Indeed, we shall find that at four points, through four loops,
all such graphs with three- or four-point subgraphs can be
absorbed as contact terms in other graphs. This property is
consistent with the fact that previous representations of the
three- and four-loop amplitudes [9,11,55] do not use any
1PR graphs with two- or three-point loop subgraphs.

At L loops, the four-point amplitude in N ¼ 4 sYM
theory is expected to have a representation with at most
2ðL� 2Þ powers of the loop momentum in the numerator

of each 1PI cubic graph [8,63]. At three loops, this power
counting allows for cancellation of one internal propagator,
as in graphs (i), ( j), and (k) of Fig. 2. However, it precludes
the existence of two-point graphs or propagator corrections
(and tadpole graphs), which would require two inverse
propagators or four powers of the loop momentum in the
numerator. On the other hand, at four loops and beyond,
such graphs can and indeed do appear. Propagator correc-
tions can be of two types:
(1) on internal legs, as shown in Fig. 3(a), or
(2) on external legs, as shown in Fig. 3(c).

In both cases the graph’s numerators must contain momen-
tum invariants that cancel out the unwanted poles, so that
they are kinematically equivalent to the 1PI graphs shown
in Figs. 3(b) and 3(d), respectively.
For case 1, this cancellation is straightforward because

the momentum invariant is nonvanishing for generic on-
shell kinematics. For case 2, the external leg corrections,
the mechanism is more subtle. On the one hand, because
the amplitudes have on-shell external legs, a propagator in
Fig. 3(c) diverges: 1=ðk1 þ k2 þ k3Þ2 ¼ 1=0. On the other
hand, from the vanishing of the on-shell two-point function
we expect that the numerator of Fig. 3(c) is proportional to
k24 ¼ 0. In order to resolve this 0=0 ambiguity, we need to

regulate the external leg by taking k24 � 0, and cancel

factors of k24 between the numerator and the denominator.

This procedure yields the ‘‘snail graph’’1 in Fig. 3(d),
which is perfectly well behaved at the level of the inte-
grand, even with all external momenta on shell.
It is important to note that the snail graph in Fig. 3(d)

contains a scale-free integral, which vanishes by the usual
rules of dimensional regularization. We cannot, however,
simply ignore these contributions. In dimensional regulari-
zation, scale-free integrals evaluate to zero because of

FIG. 3. (a) and (c) are generic propagator correction graphs
that can appear at four loops and beyond if we have a cubic
organization of graphs. (b) and (d) are rewritings of these graphs,
which make explicit that in N ¼ 4 sYM theory numerator
factors always cancel the propagators that are external to the
loops in the four-point amplitude.

1With suitable imagination, the graph resembles a snail (as
much as a penguin diagram resembles a penguin).
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cancellations between infrared and UV singularities.
Ignoring the snail graph contributions in N ¼ 4 sYM
theory would lead to incorrect values for the UV divergen-
ces.2 Since we are interested in this paper in the coefficient
of the UV divergences, these snail graphs must be included.

While enforcing the duality constraints (2.3) brings the
phenomenon of snail graphs to the forefront, we emphasize
that the potential appearance of such contributions to am-
plitudes is independent of the color-kinematic duality.
Snail contributions can in principle occur within any rep-
resentation; it is therefore important to always check the
unitarity cuts for such contributions. Because snails are
associated with external leg contributions, ordinary unitar-
ity cuts fail to detect them, and generalized cuts are re-
quired. The momenta of the states crossing the cut must
either be complex, or else have an indefinite sign of their
energy. (We have examined such cuts and have confirmed
thereby that no snail contributions are present in the rep-
resentation found in Ref. [11].)

Although the snail contributions are important for
N ¼ 4 sYM amplitudes, they will not infect the corre-
sponding N ¼ 8 supergravity amplitudes. This may be
understood heuristically as a consequence of the double-
copy formula (2.5). In N ¼ 4 sYM theory, graphs of the
form in Fig. 3(c) carry a factor of 0 in their numerator to
cancel the 1=0 from the propagator. In N ¼ 8 super-
gravity we get a second factor of 0 from the second
copy, making the numerator vanish faster than the denomi-
nator, and giving a vanishing snail contribution. Below we
confirm this heuristic argument directly from unitarity cuts.

Finally, we remark that very similar considerations ap-
pear in the analysis of inverse derivative factors arising
from the collision of vertex operators in the discussion of
nonrenormalization conditions for amplitudes in super-
string theory; see Sec. 3.2 of Ref. [64].

III. THE FOUR-LOOP FOUR-POINT INTEGRAND

We now turn to the construction of the four-loop four-
point amplitude and follow the same strategy as described
in the previous section for the corresponding three-loop
amplitude.

A. Overview of the result

We will find that, in terms of a set of 85 distinct cubic
graphs, the four-loop sYM amplitude is given by

Að4Þ
4 ¼ g10stAtree

4

X
S4

X85
i¼1

Z �Y8
j¼5

dDlj

ð2�ÞD
�
1

Si

Niðkj; ljÞCiQ
13
�i¼1 p

2
�i

;

(3.1)

where l5, l6, l7, and l8 are the four independent loop mo-
menta and k1, k2, and k3 are the three independent external
momenta. The two planar master graphs mentioned earlier
are shown in Fig. 4. The complete set of 85 graphs is
depicted in Figs. 5–11. The p�i

are the momenta of the

internal propagators (corresponding to the internal lines of
each graph i), and are linear combinations of the indepen-
dent loop momenta lj and the external momenta km. In the

case of 1PR graphs, some p�i
will depend only on the ext-

ernal momenta. As usual, dDlj=ð2�ÞD is theD-dimensional

integration measure for the jth loop momentum. The nu-
merator factors Niðkj; ljÞ are polynomial in both internal

and external momenta and are given in Appendix B. The
color factors Ci � C

a1a2a3a4
i are collected online [38], but

they can also be read directly off the figures. The full
amplitude is obtained by summing over the group S4 of
24 permutations of the external leg labels. Overcounts are
removed by the symmetry factors Si, which include both
external symmetry factors (related to the overcount from
the sum over S4), as well as any internal symmetry factors
associated with automorphisms of the graphs holding
the external legs fixed. As at three loops, we extract the
crossing-symmetric, S4-invariant prefactor stAtree

4 , which

contains all dependence on the external states. [Notice that
we have used a slightly different notation for the indepen-
dent loop momenta lj in Eq. (3.1), compared with pl in

Eq. (2.1).]
Out of the 85 integrals in Eq. (3.1), graphs 50 and 79 are

somewhat peculiar: Their integrands are nonvanishing, but
they integrate to zero. The vanishing of their integrals can
be seen from symmetry considerations alone. For example,
graph 50 has a symmetry exchanging legs 1 and 4, and
legs 2 and 3, flipping the graph across a vertical midline. It
is easy to check that the color graph C50 picks up a minus
sign under this operation; therefore the kinematic integrand
must also be antisymmetric, causing the integral to vanish.
In fact, as the duality between color and kinematics might
suggest, the color factors C50 and C79 vanish after the
internal color sum is carried out (for any gauge group G).
However, both graphs give nonvanishing contributions to
the N ¼ 8 supergravity amplitude. Therefore we retain
them here. (While the vanishing gauge-theory integrals are
odd under the above relabeling of the loop momenta, the
double-copy property makes the gravity integrals even
under the same relabeling.)
As we discussed in Sec. II D, graphs 83–85 (displayed

in Fig. 11) superficially appear as propagator corrections
on external legs. These graphs give rise to the snail
contributions described there, after an external propa-
gator is canceled by a corresponding factor in the
numerator.
Using the double-copy relation (2.5), the four-loop four-

point N ¼ 8 supergravity amplitude is obtained simply

by trading the color factor Ci for ~ni ¼ st ~Atree
4 Ni in Eq. (3.1).

Employing the relation s2t2Atree
4

~Atree
4 ¼ istuMtree

4 and

2In QCD, propagator corrections on external legs can be
ignored because the UV divergences are known a priori. It is
therefore quite simple to restore the missing terms. In N ¼ 4
sYM theory, UV divergences in D> 4 are unknown a priori.
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changing the gauge coupling to the gravitational cou-
pling, we have

Mð4Þ
4 ¼ �

�
�

2

�
10
stuMtree

4

X
S4

X82
i¼1

Z �Y8
j¼5

dDlj

ð2�ÞD
�
1

Si

� N2
i ðkj; ljÞQ
13
�i¼1 p

2
�i

; (3.2)

where Niðkj; ljÞ are the gauge-theory numerator factors

given in Appendix B. In contrast to the sYM amplitudes,
potential snail contributions from graphs 83–85 vanish
identically, as expected from our heuristic argument in
Sec. II D, and confirmed by an analysis of the unitarity
cuts.
The symmetry factors appearing in Eqs. (3.1) and (3.2)

are given explicitly as

X85
i¼1

1

Si
Ii ¼ 1

4
I1 þ 1

4
I2 þ 1

16
I3 þ 1

4
I4 þ 1

8
I5 þ 1

2
I6 þ 1

2
I7 þ I8 þ 1

4
I9 þ 1

4
I10 þ 1

2
I11 þ 1

4
I12 þ 1

2
I13 þ 1

2
I14 þ 1

4
I15 þ I16

þ 1

2
I17 þ I18 þ I19 þ I20 þ I21 þ I22 þ I23 þ 1

2
I24 þ I25 þ I26 þ 1

2
I27 þ 1

4
I28 þ I29 þ 1

2
I30 þ 1

2
I31 þ I32

þ I33 þ 1

2
I34 þ I35 þ I36 þ 1

2
I37 þ 1

4
I38 þ 1

2
I39 þ 1

4
I40 þ 1

2
I41 þ I42 þ I43 þ 1

2
I44 þ 1

4
I45 þ 1

2
I46 þ 1

8
I47

þ 1

2
I48 þ 1

2
I49 þ 1

8
I50 þ 1

2
I51 þ I52 þ 1

4
I53 þ 1

2
I54 þ 1

2
I55 þ 1

2
I56 þ 1

2
I57 þ 1

2
I58 þ 1

2
I59 þ 1

2
I60 þ 1

4
I61

þ 1

2
I62 þ 1

2
I63 þ 1

2
I64 þ 1

2
I65 þ 1

4
I66 þ 1

2
I67 þ 1

4
I68 þ 1

4
I69 þ 1

2
I70 þ 1

8
I71 þ 1

2
I72 þ 1

2
I73 þ 1

4
I74 þ 1

4
I75

þ 1

2
I76 þ 1

2
I77 þ 1

4
I78 þ 1

8
I79 þ 1

16
I80 þ 1

8
I81 þ 1

16
I82 þ 1

4
I83 þ 1

2
I84 þ 1

4
I85;

(3.3)

where Ii should be interpreted only as placeholders for the
graphs, including both the numerator or color factors, in
either theory.

B. The calculation

As at three loops, the construction of the amplitude
begins by writing down a sufficient number of duality
constraints so that a set of master numerators can be
identified. We have constructed a set of duality equations
similar to the three-loop ones of Eq. (2.7). In Appendix A
we collect a set of simplified equations derived from these
duality constraints by imposing the four auxiliary con-
straints presented in Sec. II B. Because of these additional
simplifications, the duality equations in the Appendix are
valid only for N ¼ 4 sYM theory. The duality equations
allow us to express all nonsnail numerators directly as
linear combinations of the numerators N18 and N28. The
corresponding graphs are shown in Fig. 4; we will choose
them as the master graphs.

It is interesting to note that as an alternative we can use a
single nonplanar master graph that does the same job, such
as graph 33 (or equivalently 35 or 36, which have identical
numerators up to a sign). However, we prefer to use planar
graphs as master graphs because their numerators have a
somewhat simpler structure. If we choose planar graphs as
master graphs then the minimal number is two. In our
treatment the snail contributions are only given partially
in terms of the master numerators, because the latter are
specified using on-shell external kinematics, whereas the

numerators of the former require an off-shell regularization
to be nonvanishing.
Our next task is to determine the master numerators. To

this end we begin by constructing an Ansatz for the nu-
merator factors N18 and N28 that satisfies the auxiliary
constraints discussed in Sec. II B and a restricted set of
duality relations. We then constrain the Ansatz by demand-
ing that other duality relations are satisfied, and that the
numerator factors of the other integrals obey the auxiliary
constraints. For both graphs, the numerator must be inde-
pendent of loop momenta l7 and l8 because they are
assigned to one-loop box subgraphs, whose momenta
should not appear in their numerators. Similarly, momenta

FIG. 4. The planar master graphs, 18 and 28. The numerators
and color factors of all other graphs are generated from the
numerators and color factors of these two graphs through kine-
matic Jacobi relations.
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l5 and l6 are assigned to one-loop pentagon subgraphs, so
N18 and N28 should be no more than linear in these mo-
menta, according to our auxiliary constraints. Thus, each of
the two master numerators should be a polynomial built
from the monomials,

M ¼ fs3; st2; s2t; t3; �i5s2; �i5t2; �i5st; �i6s2; �i6t2; �i6st;
�i5�j6s; �i5�j6t; �56s

2; �56t
2; �56stg; (3.4)

where i ¼ 1, 2, 3 labels the three independent external
momenta, k1, k2, and k3. In total this gives us a polynomial
with 43 terms for each master graph. Labeling the mono-
mials consecutively as Mj, and including arbitrary coeffi-

cients, we have as our starting Ansatz,

N18 ¼
X43
j¼1

ajMj; N28 ¼
X43
j¼1

bjMj: (3.5)

The 86 free coefficients aj and bj are to be determined

from various consistency conditions obtained from the

color-kinematic duality, graph symmetries, and unitarity
cuts. The number of free parameters that need to be deter-
mined in this construction is remarkably small, considering
the expected analytic complexity of amplitudes at four
loops.
Using the 86-parameter Ansatz and the solution to the

restricted set of duality constraints listed in Appendix A
gives us expressions for the numerator factors of any of the
82 nonsnail graphs appearing in the amplitude. (The snail
graphs will be determined below in terms of the nonsnail
graphs using generalized unitarity cuts.) These expressions
do not yet satisfy all duality constraints; thus far we have
imposed only the relatively few relations in Appendix A
sufficient to determine all numerators in terms of the
master numerators, but we have not yet accounted for
the complete set of duality relations. To further constrain
the master Ansatz we could require that all other dual
Jacobi relations are satisfied; there are on the order of
13� 85 such functional relations (not all independent).
An alternate strategy, which we follow here, is to first

FIG. 5. Cubic graphs 1 to 11 that contribute to the four-loop four-point amplitude of N ¼ 4 sYM theory and N ¼ 8 supergravity.
The labels 1 to 4 indicate the legs carrying external momenta k1 to k4. The labels 5 to 8 indicate the propagators carrying the
independent loop momenta l5 to l8. The arrows indicate the direction of the momentum. The graphs also specify the color factor of the
graph, simply by dressing each cubic vertex with an ~fabc, respecting the clockwise ordering of lines at each vertex.
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impose the consistency constraints on the numerators
of the graphs derived from N18 and N28 through
Eqs. (A4) and (A5). After obtaining a complete solution
for all 86 parameters appearing in the Ansatz, we then
verify that they indeed satisfy all remaining duality rela-
tions and unitarity cuts. An advantage of this strategy is
that it allows us to illustrate the remarkably small number
of unitarity cuts needed to find the complete amplitude,
including nonplanar contributions.

As we shall see, to construct the complete amplitude we
need only information about the unitarity cuts of the four-
loop planar amplitude, obtained previously in Refs. [5,11].
The list of constraints needed to fix all 86 parameters in
the Ansatz, thus determining the amplitude, is remarkably
short. It is sufficient to enforce the following:

(1) the graph automorphism symmetries on numerators
N12, N14, and N28;

(2) the maximal cut of graph 12;
(3) the next-to-maximal cut of graph 14, where l5 is the

off-shell leg. Graph 68 also contributes to this cut.

Strikingly, only two rather simple planar cuts are needed to
fully determine the amplitude. Let us now discuss some
details of fixing the parameters.
We start by analyzing the consequences of the symme-

tries of the master graph 28: This graph is invariant under
two independent transformations:

fk1 $ k3; l5 ! k2 � l5; l6 ! k4 � l6; l7 $ l8g; (3.6)

and

fk2 $ k4; l5 $ l6; l7 ! k1 � l7; l8 ! k3 � l8g: (3.7)

Imposing the invariance of numerator N28 under Eqs. (3.6)
and (3.7) reduces the number of its unknown coefficients
from 43 to 14. The other master graph, graph 18, does not
have any such automorphism relations; we are therefore
left to determine a total of 57 parameters.
We then impose similar symmetry conditions on N12,

which may be written in terms of N18 and N28 as

FIG. 6. Cubic graphs 12 to 23 that contribute to the four-loop four-point amplitude ofN ¼ 4 sYM theory andN ¼ 8 supergravity.
The labeling is the same as for Fig. 5.
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N12 ¼ �N18ðk4; k3; k1; l6;�l5;�l6; l8Þ þ N18ðk4; k3; k2; l6; k2 þ l8; l5; l7Þ þ N18ðk4; k3; k2; k3 þ l8; l5 � l8;�l6; l8Þ
� N28ðk1; k2; k3; l5 � l8; k3 � l6 þ l8;�l6; l8Þ þ N28ðk2; k1; k3;�l5; 0;�l6; l8Þ
� N28ðk4; k3; k1; l6 � l8; k2 � l5 þ l8; l8; l8Þ þ N28ðk4; k3; k2; k3; k1 þ l5;�k3 þ l6; l8Þ; (3.8)

by combining the 2nd, 6th, 14th, and 21st relations in
Eq. (A4) in Appendix A. Invariance under the automor-
phisms of graph 12 fixes 37 parameters, leaving undeter-
mined 20 parameters. Similarly, imposing the graph

symmetry condition on N14 reduces the total number of
unknown parameters to 17. [These parameter counts are for
the specific set of duality relations given in Eq. (A4). Using
another set of relations would result in somewhat different

FIG. 7. Cubic graphs 24 to 38 that contribute to the four-loop four-point amplitude ofN ¼ 4 sYM theory andN ¼ 8 supergravity.
The labeling is the same as for Fig. 5.
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parameter counts; however, the final solution would be the
same.]

We could continue imposing more symmetry constraints
on other numerators, but we already have a very small set
of undetermined parameters. Ultimately, dynamical infor-
mation provided by unitarity cuts should become neces-
sary. Therefore we will now inspect some cuts. A good
starting point is the maximal cut of graph 12. Its explicit
value is easily obtained using the simple rung-rule numera-
tor of that graph [5,53],

Nrr
12 ¼ s2ðl5 þ l6 þ k1 þ k4Þ2: (3.9)

The rung rule was originally designed to reproduce iterated
two-particle cuts. Since maximal cuts can be obtained from
iterated two-particle cuts by imposing additional cut con-
ditions, the rung rule reproduces the maximal cuts as well.
Our task is to match N12, as obtained from the duality
relations, and Nrr

12 in Eq. (3.9) on the maximal cut kine-
matics that uniquely single out this graph, i.e. we impose
p2
i ¼ 0 on all 13 propagators of graph 12. Solving these

conditions, we obtain

l2i ¼ 0; �15 ¼ �25 ¼ �36 ¼ 0; �16 ¼ ��26;

�17 ¼ ��57; �38 ¼ �68; �28 ¼ �58;

�27 ¼ ��37 þ �57 þ �67;

�18 ¼ �sþ �37 � �58 � �67 � �78: (3.10)

Thus, on the maximal cut, Nrr
12 becomes

Nmax : cut
12 ¼ s2ðt� �26 � �35 þ �56Þ: (3.11)

Requiring that the numerator obtained from the Ansatz
(3.5) via Eq. (3.8) matches Nmax :cut

12 on the maximal cut,
the number of undetermined parameters is reduced from
17 to 8.
Finally, all remaining parameters can be determined by

requiring the next-to-maximal cut of graph 14, where all
propagators except for 1=l25 are placed on shell, to be

satisfied. Graph 68 also contributes to this cut since it
contains the same set of cut propagators. Relabeling
graph 68 so it matches graph 14, and appropriately weight-
ing the numerators by the remaining off-shell propagators,
we find under the cut kinematics,

FIG. 8. Cubic graphs 39 to 50 that contribute to the four-loop four-point amplitude ofN ¼ 4 sYM theory andN ¼ 8 supergravity.
The labeling is the same as for Fig. 5.
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N14 þ l25
s

�
N68

��������l5!k1�l5 ; l6!�l6
l7!�l7 ; l8!�l8

�
¼ sðl5 þ k2 þ k3Þ4: (3.12)

The right-hand side of this equation is the numerator of
graph 14, as constructed using the rung rule; in the rung-

rule representation of the planar four-loop amplitude,
graph 68 vanishes [5]. This requirement fixes all remaining
eight coefficients, giving us a unique expression for the
master numerators,

N18 ¼ 1
4ð6u2�25 þ uð2sð5�25 þ 2�26Þ � �15ð7�16 þ 6tÞÞ þ tð�15�26 � �25ð�16 þ 7�26ÞÞ þ sð4�15ðt� �26Þ
þ 6�36ð�35 � �45Þ � �16ð4tþ 5�25Þ � �46ð5�35 þ �45ÞÞ þ 2s2ðtþ �26 � �35 þ �36 þ �56ÞÞ;

N28 ¼ 1
4ðsð2�15tþ �16ð2t� 5�25 þ �35Þ þ 5�35ð�26 þ �36Þ þ 2tð2�46 � �56Þ � 10u�25Þ � 4s2�25

� 6uð�46ðt� �25 þ �45Þ þ �25�26Þ � tð�15ð4�36 þ 5�46Þ þ 5�25�36ÞÞ: (3.13)

FIG. 9. Cubic graphs 51 to 65 that contribute to the four-loop four-point amplitude ofN ¼ 4 sYM theory andN ¼ 8 supergravity.
The labeling is the same as for Fig. 5.

BERN et al. PHYSICAL REVIEW D 85, 105014 (2012)

105014-16



It is quite striking that the solution we obtain is unique and
relatively simple. There are presumably other solutions to
the duality relations for this amplitude, but finding them
would require relaxing some of the auxiliary constraints
described in Sec. II B.

This construction completely fixes the values of all

numerators from N1 to N82 (subject to on-shell external

kinematics) using the duality relations in Appendix A.

C. Resolving the snails

In the previous section we obtained the numerators for
the master graphs, which determine all numerator factors
through duality relations. However, it does not resolve the
0=0 ambiguity appearing in graphs 83–85 in Fig. 11, which
needs at least one external momentum off shell to be
properly defined, if we insist on representing the result in
terms of graphs with only cubic vertices. As explained in

FIG. 10. Cubic graphs 66 to 79 that contribute to the four-loop four-point amplitude of N ¼ 4 sYM theory and N ¼ 8
supergravity. The labeling is the same as for Fig. 5.
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Sec. II D, these contributions are indeed finite, as can easily
be confirmed explicitly using generalized unitarity cuts, as
we do below.

First we consider the planar snail contributions to the
four-loop four-point amplitude. To determine them, we
evaluate the unitarity cut shown in Fig. 12. In the planar
limit, the integrals contributing to this cut are shown in
Fig. 13. Because the cut contains an on-shell three-loop
three-point subamplitude it must vanish, following the
arguments in Sec. II D. Therefore we can determine the
contribution of the snail graph 83 in terms of that of graphs
51 and 55. Dressing the numerators of the first three graphs
in Fig. 13 with the appropriate ratios of propagators, we
find that

N51 þ ðl5 � k1 � k2Þ2
t

ðN55jl5!l5�k1Þ

þ ðl5 � k1Þ2
s

ðN55jk1$k3;l5!k1þk2�l5Þ

¼ 27

2
ðl5 � k1Þ2ðl5 � k1 � k2Þ2u; (3.14)

where we used the relations l25 ! 0 and �45 ! 0, valid on

the cut. Here we relabeled the momenta of the two con-
tributions of graph 55 (compare to Fig. 9) to match the
labels of graph 51. The two factors on the right-hand side
of Eq. (3.14) that depend on l5 are simply inverse propa-
gators belonging to graph 51. In order to compare to
graph 83 we should remove these factors, because it does
not have these propagators. Thus, in order for the sum of
contributions in Fig. 13 to vanish, we must have

1

s
N830 þ 1

t
ðN830 jk1$k3Þ ¼ � 27

2
u; (3.15)

where we start with the labeling in Fig. 14 and relabel
accordingly. (Because the snail numerators turn out to have
no loop-momentum dependence, we need only specify the
external momentum relabelings.) Now numerator N830

should respect the 1 $ 3 antisymmetry of the graph.
This constraint, together with Eq. (3.15), implies that

N830 ¼ �9
2sðu� tÞ: (3.16)

The original cubic graph in Fig. 11 then has the regulated
numerator factor,

N83 ¼ �9
2k

2
4sðu� tÞ; (3.17)

for the snail graph 83. Here k24 should not be set to zero until
after this factor has canceled the 1=k24 propagator of the graph.
The remaining two graphs, 84 and 85, can be determined in an
analogous fashion using a nonplanar cut which also isolates a
three-point subamplitude. Alternatively, the duality relations
in Appendix A fix them to be N85 ¼ N84 ¼ N83.
We have carried out a very similar analysis of the

corresponding cuts of N ¼ 8 supergravity and find that

FIG. 11. Cubic graphs 80 to 85 that contribute to the four-loop four-point amplitude of N ¼ 4 sYM theory. Graphs 83, 84, and 85
vanish identically for N ¼ 8 supergravity, but carry an UV singularity in the D ¼ 11=2 N ¼ 4 sYM case. The labeling is the same
as for Fig. 5.

FIG. 12 (color online). A cut that determines the snail contri-
bution in Fig. 3(d). In N ¼ 4 sYM theory this cut vanishes at
the level of the integrand.
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there are no snail contributions. This is in line with our
heuristic expectations, described in Sec. II D, that the
gravity case should have an extra vanishing factor of k2i
in the numerator, setting all snail contributions to zero.

Now that we have a complete Ansatz for the amplitude,
the remaining task is to confirm that it has all desired
properties and that it is a correct representation of the
amplitude. Indeed, we verified that all numerators respect
the graph symmetries and that all duality constraints hold
on the sYM numerators.

To prove that our construction is correct, we verified that
a spanning set of D-dimensional generalized unitarity cuts
are properly reproduced. It has been shown [11] that there
are no contributions to the four-loop four-point scattering
amplitude in N ¼ 4 sYM theory beyond those exposed
on next-to-next-to-maximal cuts. This result was later
confirmed using six-dimensional cuts [34]. As long as a
candidate representation manifestly contains no worse
loop-momentum behavior for individual terms than the
previous representation, as is true of our current form,
the set of next-to-next-to-maximal cuts are spanning (com-
plete). We employ those cuts to verify our new expression,
by comparing it against the previous one.

We do not give the details here as the procedure is the
same as given in Refs. [11,41], except that we generate the

referenceD-dimensional analytic cuts using the previously
obtained forms of the amplitude [11]. For the gravity
amplitude, obtained from the double-copy formula (2.5),
we confirmed that its cuts through ðnext-toÞ4-maximal cuts
match the corresponding cuts of the result in Ref. [10].3

The agreement with the cuts of the earlier representation
directly proves the duality and double-copy properties for
the four-loop four-point amplitudes ofN ¼ 4 sYM theory
and N ¼ 8 supergravity.

IV. UVBEHAVIOROFN ¼ 8 SUPERGRAVITYAND
N ¼ 4 SYM THEORY

In this section, we examine the UV properties of the
four-loop four-particle N ¼ 4 sYM theory and N ¼ 8
supergravity amplitudes derived in the previous section,
after reviewing lower-loop examples. Unlike the original
form obtained for the N ¼ 8 supergravity four-loop am-
plitude [10], the representation derived in this paper
through Eq. (2.5) is manifestly finite for D< 11=2. This

FIG. 13 (color online). The graphs contributing to the cut in Fig. 12. The sum of these contributions to the cut vanishes in N ¼ 4
sYM theory.

FIG. 14. The snail contributions in a form resolving the 0=0 ambiguity of graphs 83, 84, and 85.

3The need for checking this high an order arises because of the
large numbers of loop momenta occurring in individual terms in
the original representation of theN ¼ 8 supergravity amplitude
[10].
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property makes it much easier to determine its UV behav-
ior. We will see that, in complete harmony with the corre-
sponding N ¼ 4 sYM amplitude, a divergence is indeed
present in the expected critical dimension Dc ¼ 11=2. In
N ¼ 4 sYM theory this divergence in the amplitude
corresponds to a counterterm of the schematic form
TrðD2F4Þ, where D represents a covariant derivative and
F is the gauge field strength. Similarly, in N ¼ 8 super-
gravity the amplitude divergence corresponds to a counter-
term of the formD8R4, with the indices of the four Riemann
tensors arranged in the supersymmetric combination corre-
sponding to the square of the Bel-Robinson tensor [65]. (For
recent discussions ofD2kR4 invariants inN ¼ 8 supergrav-
ity see Ref. [66].) We shall find a close connection between
coefficients of the UV counterterms in these theories.

In most of this section we will work in space-time
dimension D ¼ Dc � 2� ¼ 11=2� 2�. In the last section
we will discuss the UV behavior of the color double-trace
terms in the N ¼ 4 sYM amplitude at four loops, for
which the divergence in D ¼ 11=2� 2� is not present.
Here we move to the next dimension in which there can be
a potential divergence, D ¼ 6� 2�, in order to assess
whether there is one or not.

In D ¼ 11=2� 2�, there are no UV divergences for
either N ¼ 4 sYM or N ¼ 8 supergravity below four
loops; in both theories, the first divergences for L ¼ 1, 2,
and 3 are for dimensions Dc ¼ 8, 7, and 6, respectively.
Therefore there can be no UV subdivergences in D ¼
11=2� 2� at four loops. Near this dimension, the overall
logarithmic UV divergences arise from integration regions
in which the loop momenta are much larger than the
external momenta. For the representations of the N ¼ 4
sYM and N ¼ 8 supergravity amplitudes in this paper,
each integral is either finite or develops at most a logarith-
mic divergence. We can capture the leading UV behavior
by expanding in small external momenta [67,68]. The
logarithmic behavior of each integral means that we need
only the leading term in this expansion. The amplitudes in
question reduce to a collection of vacuum integrals that are
relatively easy to evaluate.

We begin by reviewing theUVproperties ofN ¼ 4 sYM
theory, in light of the new representation of the four-loop
four-point amplitude. Then we will turn to N ¼ 8
supergravity.

A. Review of UV behavior of N ¼ 4 sYM theory

The UV properties of N ¼ 4 sYM theory at one
through four loops were discussed in detail in Ref. [11].
The first divergence appears in the critical dimension

Dc ¼ 4þ 6

L
ðL ¼ 2; 3; 4Þ; (4.1)

and Dc ¼ 8 at L ¼ 1. In each case, the potential diver-
gence is known to appear with a nonzero coefficient [11].
Thus the bound (4.1), proposed in Refs. [8,63], is in fact
saturated, at least through four loops.
For gauge group SUðNcÞ, gluon scattering amplitudes can

be expressed in the trace basis, i.e. in terms of traces of
products of generators in the fundamental representation.
For four external gluons, only single-trace structures, of
the form TrðTaiTajTakTalÞ, and double-trace structures, of
the form TrðTaiTajÞTrðTakTalÞ, can appear. At one and two
loops, the color double-trace terms have the same UV be-
havior as the overall amplitudes, obeying Eq. (4.1). However,
starting at three loops they are less divergent [11]. (See also
the discussions in Refs. [64,69].) In particular, the critical
dimensions for finiteness for the double-trace terms satisfy

D2-trace
c ¼ 4þ 8

L
ðL ¼ 3; 4Þ: (4.2)

Using the representations of the three- and four-loop ampli-
tudes described in previous sections, we will see that these
bounds follow more transparently than with the older repre-
sentations in Ref. [11]. That is because the color factors
associated with the most divergent integrals now have a
much simpler structure.
Reference [11] showed that the bound (4.2) is saturated

at three loops. This computation did not involve any UV
subdivergences because 4þ 8=3 ¼ 20=3< 7, and the first
two-loop divergences are at Dc ¼ 7. In Sec. IVE we will
show that the double-trace bound is saturated in the four-
loop amplitude as well. In this case there are subdiver-
gences, because 4þ 8=4 ¼ 6, and the first three-loop
divergences are at Dc ¼ 6.
Before proceeding to three and four loops, we review the

two-loop case. The two-loop four-gluon amplitude as
given in Ref. [8] already obeys the color-kinematic duality.
The full amplitude was originally presented in the trace
basis [53]; in the critical dimension Dc ¼ 7, its divergence
in terms of vacuum integrals is [11]

Að2Þ
4 jSUðNcÞ

pole ¼ �g6K½ðN2
cV

ðPÞ þ 12ðVðPÞ þ VðNPÞÞÞðsðTr1324 þ Tr1423Þ þ tðTr1243 þ Tr1342Þ þ uðTr1234 þ Tr1432ÞÞ
� 12NcðVðPÞ þ VðNPÞÞðsTr12Tr34 þ tTr14Tr23 þ uTr13Tr24Þ�; (4.3)

where VðPÞ and VðNPÞ, shown in Fig. 15, are the k	i ! 0 limit of the planar and nonplanar double-box integrals.4 Each blue
dot denotes an extra power of the propagator on which it lies. Here each dot coincides with the location
of an external leg attachment in the original four-point integral; adjacent propagators separated by an external
momentum become equal as that momentum vanishes. The factor,

4We normalize our integrals as in Ref. [11], so that at two loops there is a relative minus sign compared to the normalization in
Ref. [8].
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K � stAtreeð1; 2; 3; 4Þ; (4.4)

contains the dependence on the external states. We use a
shorthand notation for the color traces,

Trijkl � TrðTaiTajTakTalÞ;
Trij � TrðTaiTajÞ ¼ �aiaj :

(4.5)

The poles of the vacuum integrals VðPÞ and VðNPÞ inD ¼
7� 2� are [8,11]

VðPÞ ¼ � �

20ð4�Þ7� ; VðNPÞ ¼ � �

30ð4�Þ7� : (4.6)

The UV divergence in the critical dimension, Dc ¼ 7, of
the corresponding supergravity amplitude is [8]

Mð2Þ
4 jpole ¼ �2

�
�

2

�
6
stuðs2 þ t2 þ u2ÞMtree

4

� ðVðPÞ þ VðNPÞÞ: (4.7)

We note that the UV divergence of the supergravity am-
plitude and that of the 1=N2

c-suppressed single-trace sYM
amplitude are given by the same linear combination of

vacuum integrals, namely VðPÞ þ VðNPÞ. We shall see that
this pattern repeats itself through four loops. (This obser-
vation holds for the one-loop four-point amplitude as well.
However, there the relation is rather trivial because both
amplitudes are expressed in terms of the same scalar box
integral; thus their UV divergences must be expressed in
terms of a unique vacuum integral.)

We now turn to three loops. The integrals that appear in
the three-loop four-point N ¼ 4 sYM amplitude in the
duality-satisfying form [30] all have 10 propagators.

However, three of them, IðjÞ, IðkÞ, and IðlÞ in Fig. 2, have one
propagator depending solely on external momenta; we will
refer to these integrals as nine-propagator integrals. From
Eqs. (2.15) and (2.7), their numerator factors are independent

of the loop momenta: NðjÞ ¼ NðkÞ ¼ NðlÞ ¼ ðt� uÞs=3.
If the other integrals had two powers of the loop

momentum in the numerator, then they would have the
same generic large loop-momentum behavior as the nine-
propagator integrals. However, the other integrals all have
numerators that are at most linear in the loop momenta.

Equation (2.19) shows that the numerator NðeÞ for the

master graph (e) is linear in the �ij, which are in turn linear

in the loop momenta. The Jacobi relations (2.7) preserve
this linearity for all other numerators. (In some cases the
linear dependence cancels down to a constant behavior.)
Therefore the leading UV divergence of the three-loop
N ¼ 4 sYM amplitude comes from the three nine-
propagator integrals.
This result is consistent with a rearrangement of the

leading UV terms of the earlier representation, as discussed
in Ref. [11]. Because graphs (j), (k), and (l) contain an
external three-point tree, their color factors must be pro-
portional to the product of two structure constants, multi-
plied by a color Casimir operator which has no free color
indices [11]. The product of the two structure constants,
~fa1a2b ~fba3a4 or a permutation thereof, takes the same form
as a tree amplitude, namely, a single color trace. Hence the
leading UV divergence at three loops, in the critical
dimension Dc ¼ 4þ 6=3 ¼ 6, contains no double color-
trace terms [11], while they are present in the leading
divergence at two loops, Eq. (4.6). The duality-satisfying
representation of the amplitude automatically has the
no-leading-double-trace feature. Very similar behavior is
observed within a string theory analysis [64]. There the
leading behavior at three (and four) loops is dominated by
the collision of pairs of vertex operators, producing inverse
momentum factors, reminiscent of the form of graphs (j),
(k), and (l). The finiteness of the three-loop double-
trace terms in D ¼ 6 remains puzzling from the point
of view of field-theoretic algebraic nonrenormalization
considerations [69].
To extract the UV divergence, we carry out the small

momentum expansion [67,68]. Integral ( j) reduces to the

vacuum integral VðAÞ [11,55] displayed in Fig. 16, while

integrals (k) and (l) reduce to VðBÞ. These integrals diverge
first in D ¼ 6. Their color factors are closely related: We
can use a color Jacobi identity involving the boxes in the
upper right-hand corner of graphs (j) and (k) of Fig. 2 to
show that the difference between CðjÞ and CðkÞ contains a
triangle subgraph. A further color Jacobi identity allows us
to replace the triangle by a three-vertex, multiplied by the
quadratic Casimir factor CA=2 ¼ Nc. Iterating this proce-
dure, and also applying it to the difference of CðjÞ and CðlÞ,
we find that

FIG. 15 (color online). The two-loop vacuum integrals VðPÞ
and VðNPÞ. Each (blue) dot on a propagator indicates an addi-
tional power of the propagator.

FIG. 16 (color online). The three-loop vacuum integrals VðAÞ
and VðBÞ.
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CðjÞ � N3
c
~fa1a2b ~fba3a4 ¼ CðkÞ ¼ CðlÞ: (4.8)

Note that CðkÞ and CðlÞ are associated with nonplanar

graphs, and hence have only subleading-color terms.
Equation (4.8) states that the subleading-color parts of
CðjÞ, CðkÞ, and CðlÞ are all equal.

Taking into account that the combinatorial factor of IðlÞ

is twice as large as those for IðjÞ and IðkÞ in Fig. 2, and
expressing the color factors for (j), (k), and (l) in the trace
basis, it is straightforward to see that the UV divergence in
Dc ¼ 6 is [11]

Að3Þ
4 ð1; 2; 3; 4ÞjSUðNcÞ

pole ¼ 2g8KðN3
cV

ðAÞ þ 12NcðVðAÞ þ 3VðBÞÞÞ
� ðsðTr1324 þ Tr1423Þ þ tðTr1243 þ Tr1342Þ þ uðTr1234 þ Tr1432ÞÞ: (4.9)

The UV poles of the vacuum graphs are [55]

VðAÞjpole ¼ � 1

6ð4�Þ9� ; (4.10)

VðBÞjpole ¼ � 1

6ð4�Þ9�
�

3 � 1

3

�
: (4.11)

We may compare this result to the UV divergence in
Dc ¼ 6 of the corresponding N ¼ 8 supergravity ampli-
tude [55],

Mð3Þ
4 jpole¼�

�
�

2

�
8ðstuÞ2Mtree

4 ½10ðVðAÞþ3VðBÞÞ�: (4.12)

In this case the leading UV divergence involves not only
the 1PR nine-propagator integrals, but also the 1PI ten-
propagator integrals whose sYM numerators are linear in
the loop momenta, because their (squared) supergravity
numerators are quadratic. Once again, as was true for the
two-loop amplitude, the UV divergence of the three-loop
supergravity amplitude and that of the 1=N2

c-suppressed
single-color-trace three-loop sYM amplitude are given by

the same combination of vacuum integrals, namely VðAÞ þ
3VðBÞ. Below we shall see that the same phenomenon
persists through four loops.

Using the representation of the four-loop four-point
N ¼ 4 sYM amplitude derived in earlier sections it is
equally straightforward to recover its UV divergence.
Indeed, an inspection of the integrals listed in Figs. 5–12
and of their numerator factors listed in Appendix B reveals
that the leading UV behavior comes solely from integrals
I80 through I85. These six integrals have 11 internal propa-
gators and numerator factors that are independent of the
loop momentum. Therefore they diverge first in Dc ¼
11=2, which matches the expected critical dimension,
Dc ¼ 4þ 6=L with L ¼ 4.

In contrast, the 1PI integrals I1 through I52 have 13
internal propagators. Their numerators would have to be
quartic in the loop momenta for them to diverge in D ¼
11=2. However, we note from Eq. (3.14) that the master
numerators N18 and N28 are quadratic in the �ij, and hence

merely quadratic in the loop momenta. The Jacobi rela-
tions (A4) and (A5) preserve this quadratic behavior for all
numerators. Therefore integrals I1 through I52 are finite in
Dc ¼ 11=2. The 1PR integrals I53 through I79 have 12

internal propagators. If their numerators were quadratic
in the loop momenta, then they would diverge in D ¼
11=2. However, it is easy to see from Eqs. (A5) and (B1)
that their numerators are all linear in the loop momenta.
Integrals I80 through I85 reduce easily to vacuum inte-

grals in the limit in which the external momenta vanish. The
planar integrals I80 and I83 reduce to the vacuum integralV1

depicted in Fig. 17.While integrals I81 and I84 are nonplanar
as four-point graphs, in the vacuum limit they reduce to the
planar vacuum integral V2. Finally, integrals I82 and I85
reduce to the nonplanar vacuum integral V8.
As was the case at three loops, the color factors for the

leading UV graphs are related by color Jacobi identities. In
this case we can subtract, for example, C81 from C80, and
use a Jacobi identity operating on the box at the top center
of the graphs in Fig. 11. Then we reduce the resulting
triangle subgraphs iteratively, to find

C80;83 � 2N4
c
~fa1a2b ~fba3a4 ¼ C81 ¼ C82 ¼ C84 ¼ C85:

(4.13)

Again, the subleading-color parts of all contributing color
factors are equal.
From Eq. (A5), the numerator factors obey N80 ¼

N81 ¼ N82 and N83 ¼ N84 ¼ N85. On the other hand, the
combinatorial factor of I81 in Eq. (3.3) is twice as large as
those for I80 and I82, and similarly for I84 with respect to I83
and I85. Taking into account both combinatorial and nu-
merator factors, the contribution of I83 is � 9

8 times that of

I80, and similarly for the other two pairs of graphs.
Combining all terms and switching to the color-trace basis,
we find that the UV divergence in the critical dimension
D ¼ 11=2 is given by

FIG. 17 (color online). The basic four-loop vacuum integrals
V1, V2, and V8, to which all others can be reduced.
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Að4Þ
4 ð1; 2; 3; 4ÞjSUðNcÞ

pole ¼ �6g10KN2
cðN2

cV1 þ 12ðV1 þ 2V2 þ V8ÞÞ
� ðsðTr1324 þ Tr1423Þ þ tðTr1243 þ Tr1342Þ þ uðTr1234 þ Tr1432ÞÞ; (4.14)

in agreement with the results of Ref. [11]. It is interesting
to note from Eq. (4.14) that the single-trace UV divergence
in D ¼ 11=2 has N4

c and N2
c components, but the N0

c

component vanishes. There is currently no general expla-
nation for this fact, apart from the explicit values of the
color factors C80 through C85.

The values of the three master integrals appearing in
Eq. (4.14) are [11]

V1 ¼ 1

ð4�Þ11�
�
512

5
�4

�
3

4

�
� 2048

105
�3

�
3

4

�
�

�
1

2

�
�

�
1

4

��

þOð1Þ;
V2 ¼ 1

ð4�Þ11�
�
� 4352

105
�4

�
3

4

�
þ 832

105
�3

�
3

4

�
�

�
1

2

�
�

�
1

4

��

þOð1Þ;
V8 ¼ 1

ð4�Þ11�
�
� 20 992

2625
�4

�
3

4

�
þ 128

75
�3

�
3

4

�
�

�
1

2

�
�

�
1

4

�

þ 8

21�ð34Þ
NOm

�
þOð1Þ; (4.15)

where NOm denotes a certain three-loop two-point non-
planar integral. While its analytic expression in D ¼ 11=2
is not known, it may be evaluated numerically [11] using
the Gegenbauer polynomial x-space technique [70], with
the result NOm ¼ �6:198 399 226 7 � � � . We remark that an
evaluation tomuch higher accuracy is also possible [71] using
theDRAmethod [72],which involves combiningdimensional
recurrence relations [73] with analyticity in the space-time
dimension. (This latter method has been applied to similar,
and even more complex, integrals in Ref. [74].)

In Secs. IVB and IVC wewill obtain the UV divergence
of the corresponding N ¼ 8 supergravity amplitude. We
will find that, as for the two- and three-loop cases, it is
given by the same combination of vacuum integrals as the
1=N2

c-suppressed single-trace UV divergence of the corre-
sponding four-pointN ¼ 4 sYM amplitude, namely V1 þ
2V2 þ V8.

B. N ¼ 8 supergravity vacuum graphs at four loops

With the duality-satisfying form of the corresponding
N ¼ 4 sYM amplitude as the starting point, the double-
copy formula (2.5) immediately gives us an expression for
the four-loop N ¼ 8 supergravity integrand. We con-
firmed this integrand by comparing its cuts with the cuts
of the known four-loop N ¼ 8 amplitude [10]. The
double-copy formula is equivalent to the following squar-
ing relation for the N ¼ 8 supergravity numerators:

NN¼8
i ¼ ðNN¼4

i Þ2: (4.16)

By inspecting the squares of the numerator factors listed in
Appendix B, and counting the number of loop momenta in
the numerator of each integral, it is easy to see that, in all
cases, the integrals composing the resultingN ¼ 8 super-
gravity amplitude are manifestly finite for D< 11=2.
Indeed, as remarked in Sec. IVA, the maximum degree

in loop momenta of the numerator factors of the sYM
amplitude is 2 for the 13-propagator integrals, 1 for the
12-propagator integrals, and 0 for the 11-propagator inte-
grals, where we count only those propagators carrying loop
momentum. Consequently, the maximum degree in the
loop momenta of each supergravity numerator polynomial
is 4, 2, and 0 for the 13-, 12-, and 11-propagator integrals,
respectively. Such integrals all generically diverge loga-
rithmically in D ¼ 11=2. Thus, the worst UV behavior of
any N ¼ 8 supergravity integral matches that of the
worst-behaved integrals for the N ¼ 4 sYM amplitude,
i.e. the 11-propagator graphs (80)–(85) of Fig. 11, which
have the form of propagator corrections. The main differ-
ence is that now graphs other than propagator corrections
carry this leading behavior. The representation of the four-
loop amplitude described here reproduces the finiteness
bounds of Ref. [10], but the UV behavior is now manifest,
allowing us to avoid performing any loop integration to
expose this feature.
The new representation also makes it far simpler to

determine whether the finiteness bound D< 11=2 is satu-
rated, by extracting the precise UV divergence of N ¼ 8
supergravity in Dc ¼ 11=2. In our earlier representation
[10], the UV divergence required the sixth-order terms in
the expansion in small external momenta, making it rather
cumbersome to extract. Now that the UV behavior is mani-
fest, only the leading term in the expansion is required. This
feature means that for each integral, we need only retain the
terms in each sYMnumeratorwith the highest powers of the
loop momenta, and then square them.
The result of the expansion in the external momenta is a

collection of tensor integrals, in which the numerator
factors have a homogeneous degree in the loop momenta
and are polynomials in the scalar products of loop and
external momenta. Such integrals may be further reduced
by making use of Lorentz invariance in order to extract the
dependence on the external momenta from the tensor in-
tegrals. More precisely, under integration we can replace a
generic two-tensor by

l	i

i l
	j

j �
1

D
�	i	jli � lj; (4.17)

and a four-tensor by
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l	i

i l
	j

j l	k

k l	l

l �
1

ðD� 1ÞDðDþ 2Þ ðA�
	i	j�	k	l

þ B�	i	k�	j	l þ C�	i	l�	j	kÞ; (4.18)

where

A ¼ ðDþ 1Þli � ljlk � ll � li � lklj � ll � li � lllj � lk;
B ¼ �li � ljlk � ll þ ðDþ 1Þli � lklj � ll � li � lllj � lk;
C ¼ �li � ljlk � ll � li � lklj � ll þ ðDþ 1Þli � lllj � lk:

(4.19)

Upon using these identities and summing over all per-
mutations we find that the UV pole has the form,

Mð4Þ
4 jpole¼�1

4

�
�

2

�
10
stuðs2þ t2þu2Þ2Mtree

4
~V

ð4Þ
; (4.20)

whereMtree
4 is the four-point tree-level supergravity ampli-

tude, and

~V ð4Þ ¼ X69
i¼1

Ivi (4.21)

is the sum of integrals Ivi shown in Figs. 18–20. All the
kinematic dependence has been extracted in Eq. (4.20);

FIG. 18 (color online). Vacuum graphs Iv1 through Iv25. The momentum labels refer to the internal lines carrying an arrow. Their
numerator factors are listed in Table I in Appendix C.
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each integral Ivi is a pure number multiplied by a 1=� pole.

The numerator factors for these integrals are given in the
first column of Table I (not counting the column labeling
the integrals Ivi ) in Appendix C. The overall kinematic

factor of ðs2 þ t2 þ u2Þ2 is guaranteed by complete permu-
tation symmetry of the four-point amplitude.

The precise combination of vacuum integrals Ivi , in

particular, their numerical coefficients and numerator ten-
sor structures, is sensitive to the choice of independent loop
momenta in each of the integrals appearing in the complete
supergravity amplitude. This choice is inherited in turn

from the parametrization of the integrals of the N ¼ 4

sYM amplitude, through the squaring relation (4.16). The

ambiguity in choosing the loop momenta may also be used

to generate identities between different integrals.

We now discuss in some more detail how we arrived at

the results in the first column of Table I in Appendix C.

After applying Eqs. (4.17) and (4.18), the numerator factors

of the vacuum integrals appearing in ~V
ð4Þ
, which no longer

carry any external momenta, can be simplified further

using loop-momentum conservation. Often, inverse propa-

gators can be identified, using for example li � lj ¼
1
2 ðl2k � l2i � l2j Þ when li þ lj ¼ lk corresponds to a propa-

gator for the graph. Such factors will cancel existing

propagators and lead to simpler integrals with fewer propa-

gators and lower-degree numerator factors. In carrying out

this procedure, it is useful to ensure that propagators are

not ‘‘overcanceled.’’ For example, no squared inverse

propagator should appear in a vacuum integral that does

not have the corresponding propagator raised to at least the

FIG. 19 (color online). Vacuum graphs Iv26 through Iv50.
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second power. For certain integrals the complete numerator
factor may be written as a combination of different inverse
propagators. In this case, the integral reduces to a combi-
nation of scalar integrals of different topologies, each of
which is obtained from the initial integral by collapsing
some of its propagators. For other integrals, the rank of the
original numerator tensor is reduced by only two units. For
13 integrals the numerator factor remains of fourth order in
loop momenta with no canceled propagators; in all such
cases the numerator factors carrying loop momenta may
be expressed as a perfect square, ðli � ljÞ2 for different

i and j.
To illustrate this procedure in more detail, we consider

two examples—the reduction of integrals I66 and I12. As
we will see, the former integral reduces to only scalar
integrals, while the latter integral leaves behind a four-
tensor integral. The numerator factor of the integral I66 in
the supergravity amplitude is given by the squaring relation

(4.16), and Eq. (B1) for NN¼4
66 , to be

NN¼8
66 ¼ s2½4tð�35 � 2�36Þ þ 2uð�35 þ 3�45 � 4�46Þ

� sð6uþ �15 � 6tþ 5�25 � 8�26Þ�2 : (4.22)

For this 12-propagator integral, the leading UV behavior
comes from terms that are quadratic in the loop momenta

in NN¼8
66 , so the two �-independent terms inside the

brackets in Eq. (4.22) may be dropped. For the remaining
terms, Eq. (4.17) implies that N66 is equivalent under
integration to

1

s
NN¼8

66 �
8

D
s2tuð11�55 � 48�56 þ 48�66Þ

� 2

D
s4ð15�55 � 64�56 þ 64�66Þ: (4.23)

We have extracted a factor of 1=s on the left-hand side
from the external propagator in the 1PR integral I66.
Next we express all scalar products of internal momenta

in terms of inverse propagators, using �55 ¼ 2l25 and �66 �
�56 ¼ �l25 þ l26 þ ðl5 � l6Þ2. Summing over the 4! permu-

tations, and dividing by the symmetry factor of 4 for this
graph, we find that the contribution of I66 is

1

s
NN¼8

66 �
4

D
ðs2þ t2þu2Þ2ð17l25� 32ðl5� l6Þ2� 32l26Þ:

(4.24)

FIG. 20 (color online). Vacuum graphs Iv51 through Iv69.
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In the permutation sum the first term in Eq. (4.23) cancels
out completely due to sþ tþ u ¼ 0.

Each one of the factors l25, ðl5 � l6Þ2, and l26 in Eq. (4.24)
cancels one propagator of I66. The topology resulting from
l25 can be identified as graph (17) in Fig. 18. The ðl5 � l6Þ2
and l26 terms both lead to graph (1) in Fig. 18. Therefore, to

leading order in the small external momentum expansion in

D ¼ 11=2, the contribution of integral I66 to
~V

ð4Þ
becomes

I66 �
32

11
ð17~Iv17 � 64~Iv1 Þ ¼

544

11
~Iv17 �

2048

11
~Iv1 : (4.25)

Here the ~Ivi denote the vacuum integrals with topologies
shown in Figs. 18–20, and momentum-dependent numera-
tor factors shown in the first column of Table I, but with the
rational numerical coefficients set to unity. For example,
with this notationwe have Iv1 ¼ � 117 674

1485
~Iv1 .We havemulti-

plied by 4=ðs2 þ t2 þ u2Þ2 in passing from Eq. (4.24) to
Eq. (4.25), to account for the relative prefactor of ðs2 þ t2 þ
u2Þ2=4 in Eq. (4.20), compared with Eq. (3.2). The differ-

ence between the numerical coefficients in Eq. (4.25) and
those in Table I is simply that the table collects the contri-
butions to each vacuum graph from all the different inte-
grals Ii appearing in Eq. (3.2).
As a second example, consider the reduction of I12. The

numerator factor in the N ¼ 8 supergravity amplitude is

NN¼8
12 ¼ s2

4
½sð�16 � �26 � �35 þ �45 þ 2tÞ þ 2s�56

� 2ð4�16�25 þ 4�15�26 þ �45ð�36 � 3�46Þ
þ �35ð�46 � 3�36ÞÞ�2: (4.26)

The leading UV divergence requires four powers of the
loop momenta from the numerator. That can come only
from the second and third terms inside the square; the first
term is linear in the loop momentum and can be dropped.
Using Eq. (4.18) and the on-shell condition for the external
legs we find, after some straightforward calculation, that

under the integral sign NN¼8
12 is equivalent to

NN¼8
12 � � 128

ðD� 1ÞDðDþ 2Þ s
2tu½ðD� 2Þ�256 þD�55�66�

þ 1

ðD� 1ÞDðDþ 2Þ s
4½ðD3 � 19D2 þ 146D� 96Þ�256 þ 4ð17D� 25Þ�55�66�: (4.27)

By inspecting the graph for I12 it is straightforward to see
that �56 cannot be completely expressed in terms of
inverse propagators. We therefore keep it in this form.
The sum over the 4! permutations leads, as in the case of
NN¼8

66 , to the complete cancellation of the term propor-
tional to s2tu. Dividing by the symmetry factor of 4 for
I12, we find that

NN¼8
12 � ðs2 þ t2 þ u2Þ2

�
D3 � 19D2 þ 146D� 96

ðD� 1ÞDðDþ 2Þ �256

þ 16
17D� 25

ðD� 1ÞDðDþ 2Þ l
2
5l

2
6

�
: (4.28)

Considering the graph associated with I12, we see that the
�256 term generates graph (3) in Fig. 18, whereas the

factor of l25l
2
6 reduces the tripled propagators to doubled

ones, generating graph (4) in Fig. 18. Multiplying by an

overall factor of 4=ðs2 þ t2 þ u2Þ2 and setting D ¼ 11=2,

we obtain for the contribution of I12 to ~V
ð4Þ
,

I12 �
9556

1485
~Iv3 þ

35 072

1485
~Iv4 : (4.29)

It turns out that integral I12 generates the only contribu-

tion to Iv3 , so that Iv3 ¼ 9556
1485

~Iv3 , as given in Table I in

Appendix C. Several other integrals Ii contribute to ~Iv4 , so
the rational coefficient given in Table I for Iv4 is different
from the one in Eq. (4.29).

Carrying out the steps detailed above for all the integrals
appearing in the amplitude, we find that they reduce to 92

different vacuum integral topologies. In the complete am-
plitude some of them cancel out,5 leaving only the 69
vacuum topologies shown in Figs. 18–20. While these
integrals may be rearranged somewhat using momentum
conservation, to find the full set of relations between
integrals we need more powerful methods. We shall see
in the next section that integration-by-parts identities re-
duce them all to linear combinations of the three scalar
vacuum integrals shown in Fig. 17.

C. Integrating the vacuum graphs

To evaluate vacuum integrals in their critical dimen-
sion Dc ¼ 11=2, we use the same infrared rearrangement
[67] (related to the R� operation [75]) that we used
previously to evaluate the three-loop vacuum integrals

VðAÞ and VðBÞ [55] and the four-loop vacuum integrals V1,
V2, and V8 [11]. This approach was already discussed in
some detail in Ref. [11], so here we include only a brief
summary.
The expansion in small external momentum introduces

unphysical infrared divergences. To separate them from the
UV singularities we inject and remove momentum k	, with

k2 � 0, at two of the vertices of the vacuum integral, thus
transforming it into a four-loop two-point integral. This
two-point integral possesses the same UV poles as the

5Some of these cancellations are dimension independent,
while others occur only in D ¼ 11=2.
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vacuum integral, but no infrared divergences. We always
take the two vertices in question to be connected by a
single propagator in the four-loop vacuum integral. In
this case, the four-loop two-point integrals can be factor-
ized into products of three-loop two-point integrals and
one-loop two-point integrals. The one-loop two-point in-
tegrals are trivial, and contain the UV 1=� pole. The finite
three-loop two-point propagator integrals are then eval-
uated through the method of integration by parts (IBP)
[76], implemented in the MINCER algorithm. For certain
tensor integrals we also applied the Laporta algorithm [60]
for solving the integration-by-parts relations, as imple-
mented in the computer code AIR [77]. In addition, we
employed gluing relations [76], which demand consistency
of the various ways of factorizing the four-loop UV-
divergent integral into products of lower-loop integrals.
These consistency conditions are nontrivial and aid in the
evaluation of some of the master integrals remaining after
IBP reduction in D ¼ 11=2.

Further consistency relations between vacuum integrals
can be derived as follows. We start with a four-loop
two-point integral with a numerator factor of degree less
than or equal to 2 in the loop momenta. We expand it
to next-to-next-to-leading order in the small external
momenta, using different parametrizations of the loop
momenta. We require that the different parametrizations
yield consistent results. These relations may be used either
to reduce the number of integrals that need to be evaluated,
or as consistency checks of the integral evaluation. A
similar strategy was used to show that the four-loop four-
pointN ¼ 8 supergravity amplitude is UV finite inD ¼ 5
[10]. In that case, the complete amplitude was expanded
for different loop-momentum parametrizations. This ap-
proach led to consistency relations involving only integrals
that naturally appear in the amplitude. The present situ-
ation is somewhat more involved because evaluation of
each of the 69 integrals implies that we need to expand
integrals which do not necessarily appear in the final result.
In this case, the consistency relations that are generated
involve a much larger set of integrals than just the 69 under
consideration.

Following the strategies reviewed above, all the 69 in-
tegrals appearing in the small momentum expansion of the
four-loop four-point N ¼ 8 supergravity amplitude can
be reduced to linear combinations of the integrals V1, V2,
and V8 shown in Fig. 17. These integrals have already
appeared in the UV divergence of the correspondingN ¼
4 sYM amplitude. The coefficients of V1, V2, and V8 after
this reduction are provided in the second, third, and fourth
columns, respectively, of Table I in Appendix C. The
values of the UV poles of V1, V2, and V8 were determined
in Ref. [11] and are given in Eq. (4.15).

It is interesting to complete the evaluation of the two
examples discussed in the previous section, I66 and I12, and
thereby illustrate a general feature regarding the positivity

properties of the residues of the UV poles of the integrals
appearing in the N ¼ 8 supergravity amplitude in the
double-copy representation.
The results of Appendix C can be used (after dividing by

rational coefficients in the first column) to express the
following integrals ~Ivi in terms of the basis integrals V1,
V2, and V8:

~Iv1 ¼ V2; (4.30)

~Iv3 ¼ 6671

4800
V1 � 531

800
V2; (4.31)

~Iv4 ¼ V1; (4.32)

~Iv17 ¼ 3
4V1 þ 1

2V2: (4.33)

Inserting these equations into Eq. (4.25), for the contribu-

tion of I66 to
~V ð4Þ

we obtain

I66 �
544

11
~Iv17 �

2048

11
~Iv1 ¼ 408

11
V1 � 1776

11
V2: (4.34)

Using the expressions (4.15) for V1 and V2 we find that the
sign of the UV divergence of I66 is negative.
Similarly, the contribution of the UV singularity of I12 to

~V ð4Þ
is

I12 �
9556

1485
~Iv3 þ

35 072

1485
~Iv4

¼ 58 023 419

1782 000
V1 � 140 951

33 000
V2: (4.35)

Inserting the numerical values of V1 and V2 into Eq. (4.35)
we find that, unlike I66, the UV pole of I12 has a positive
residue in D ¼ 11=2.
We see that the residue of the leading UV pole can be

either positive or negative, despite the fact that the initial
numerator factors are perfect squares. This phenomenon
occurs frequently in the reduction of the various integrals
appearing in the N ¼ 8 supergravity amplitudes. It leads
to strong cancellations among the corresponding UV poles.
The origin of this phenomenon is simply that the propa-
gators occurring in the denominators of the integrand do
not have a fixed sign. For example, the 1PR integral I66
contains an explicit factor of 1=s from a propagator exter-
nal to the loops. The sum over its permutations contains
factors of 1=t and 1=u. Not all of these factors can be
positive, given that sþ tþ u ¼ 0. Even if these factors are
multiplied by positive numbers, the sum can be negative.
Indeed, in any physical region (with one Mandelstam
invariant positive and two negative), if they were all multi-
plied by the same number, the sum would be negative,
because 1

s þ 1
t þ 1

u < 0 for sþ tþ u ¼ 0.

D. The N ¼ 8 supergravity UV behavior

The expressions for the leading UV divergences of the
69 vacuum integrals Ivi in D ¼ 11=2� 2� are collected in
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Table I in Appendix C. Totaling up these contributions, we

determine the value of ~V ð4Þ
, defined through Eqs. (4.20)

and (4.21), to be

~V ð4Þ ¼ 23
2 ðV1 þ 2V2 þ V8Þ: (4.36)

Plugging this value for ~V
ð4Þ

into Eq. (4.20), the UV
singularity of the four-loop four-point N ¼ 8 supergrav-
ity amplitude is given by

Mð4Þ
4 jpole ¼ � 23

8

�
�

2

�
10
stuðs2 þ t2 þ u2Þ2Mtree

4

� ðV1 þ 2V2 þ V8Þ: (4.37)

Because this result is nonvanishing, the four-loop four-
point amplitude of N ¼ 8 supergravity diverges in
exactly the same critical dimension Dc ¼ 11=2 as that
for N ¼ 4 sYM theory.

Comparing Eqs. (4.37) and (4.14), we see that the lead-
ing UV divergence of the four-loop four-point N ¼ 8
supergravity amplitude is given by the same combination
of vacuum integrals as the 1=N2

c-suppressed single-trace
UV divergence of the four-point N ¼ 4 sYM amplitude,
namely V1 þ 2V2 þ V8. This pattern matches our observa-
tions above regarding the two- and three-loop amplitudes.
While we do not understand the full significance of this
close relation between the UV divergences of the gravity
and subleading-color sYM amplitudes, it seems unlikely to
be accidental. If it persists at higher loops as well, it could
potentially have interesting consequences for the higher-
loop UV behavior of N ¼ 8 supergravity, especially
given that N ¼ 4 sYM is UV finite in four dimensions.
The fact that this nontrivial connection holds through at
least four loops is a central observation of this paper.

While the divergences of all integrals entering Mð4Þ
4 are

expressed in terms of the vacuum master integrals V1, V2,
and V8, the expression (4.37) arises as a result of extensive
cancellations between the various integrals. For example,
integrals I80 through I85 are responsible for the complete
UV divergence of the four-loop four-point N ¼ 4 sYM
amplitude. It is easy to see that they contribute to the UV
divergence of the N ¼ 8 supergravity amplitude the fol-
lowing amount:

Mð4Þ
4 jI80;81;82pole ¼ �64

�
�

2

�
10
stuðs2 þ t2 þ u2Þ2Mtree

4

� ðV1 þ 2V2 þ V8Þ: (4.38)

Note that the snail integrals I83, I84, and I85 yield vanishing
contributions in the supergravity case. Because the rational
coefficient in Eq. (4.37), 23=8, is smaller than 64, it follows
that the integrals I1 through I79 contribute to the UV pole
with opposite sign, relative to I80, I81, and I82. This fact is
not surprising: Although the numerators are squares, the
propagators do not have all the same signs.

To expose a more dramatic numerical cancellation, we
have split the above computation into two pieces: the

12-propagator contributions, defined to be those from in-
tegrals I53 through I79, except I72, which all have explicit
single inverse powers of the Mandelstam variables, s, t, or
u; and the remaining 11- and 13-propagator contributions,
which have either no such explicit factor, or else the factor
is squared. We find that

Mð4Þ
4 j12-propagatorpole ¼ þ142

�
�

2

�
10
stuðs2 þ t2 þ u2Þ2Mtree

4

� ðV1 þ 2V2 þ V8Þ; (4.39)

Mð4Þ
4 j11;13-propagatorpole ¼ � 1159

8

�
�

2

�
10
stuðs2 þ t2 þ u2Þ2Mtree

4

� ðV1 þ 2V2 þ V8Þ: (4.40)

Remarkably, the numerical cancellation between these two
sets of contributions, in order to get the total (4.37), is quite
significant, to within about 2%. That is, ð23=8Þ=142 ¼
0:0202 � � � .
In summary, by carrying out the integration to extract the

four-loop four-point UV divergence of N ¼ 8 supergrav-
ity in D ¼ 11=2, we have found extensive cancellations,
both analytical and numerical, once again revealing sur-
prising hidden structure.

E. The N ¼ 4 sYM color double-trace UV divergence

In Ref. [11] we showed explicitly that the color double-
trace terms in the four-point N ¼ 4 sYM amplitudes are
better behaved in the UV than the single-trace terms,
starting at three loops. In particular, they obey the finite-
ness bound D � 4þ 8=L at three and four loops. This
improved behavior has been discussed from the vantage
points of both string theory and field theory [64,69]. The
form of the four-loop four-point sYM amplitude con-
structed here allows us to evaluate the four-loop double-
trace divergence in D ¼ 6� 2� dimensions and probe
whether the bound is saturated. We will find that the
double-trace term does indeed diverge, and so the bound
is saturated. A subtlety arises in this calculation because
the single-trace terms in the three-loop four-point ampli-
tude diverge in six dimensions. Therefore the extraction of
the four-loop four-point double-trace divergence requires a
careful subtraction of the contribution of the three-loop
counterterm.
In light of the presence of subdivergences in D ¼ 6�

2�, it is useful to separate the integrals appearing in the
four-loop amplitude into those that cannot have subdiver-
gences (graphs 1 through 50) and those that might
(graphs 51 through 85). The extraction of UV divergences
uses precisely the same methods as discussed above in the
analysis of the UV behavior of the N ¼ 8 supergravity
amplitude. For the first set of graphs, we simply quote the
result without providing further details. The UV diver-
gence from graphs 1 through 50 has the following
Tr12Tr34 component:
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Að4Þ
4 jTr12 Tr34pole 1–50 ¼

g10K
3ð4�Þ12� Tr12 Tr34Nc½ðs2 þ t2 þ u2Þ
� ðN2

cð1� 4
3 þ 10
5Þ þ 180
5Þ
� 9s2ðN2

c
3 þ 25
5Þ�; (4.41)

where K is defined in Eq. (4.4). The other double-trace
components can be obtained by permuting the external
momenta in this expression. The absence of a 1=�2

pole signals that this class of graphs indeed has no
subdivergences.

Next we evaluate the remaining graphs, 51 through 85.
Because the color factors of 1PR graphs do not contain
double traces, it follows that, in fact, only the integrals I51,
I52, and I72 contribute to the double-trace terms. If they did
not have subdivergences, we could evaluate them directly
by setting the external momenta to zero, leading to the
vacuum integralsU1,U2, andU3 shown in Fig. 21. Instead,
we will perform a subtraction of the subdivergence
and evaluate the inner three-loop integral first, before
evaluating the integral over the outer loop momentum.

We first note from Eq. (A5) that the numerator factors of
these three integrals are all equal, N51 ¼ N52 ¼ N72. All
three integrals contain an essentially identical subdiver-
gence, from a three-point three-loop subgraph whose
external legs carry momentum k4, l5, and l5 þ k4. In the
evaluation of this inner graph, and its subtraction term, if we
are only interested in the final 1=�2 and 1=� contributions,
we can neglect the dependence on k4: The 1=�

2 divergence
is independent of the details of the external momenta, and
the 1=� contribution, arising from the finite part of the three-
loop subgraph, comes from the integration region l5 	 k4
where the outer loop diverges. Then the three-point sub-
graph reduces to a propagator (two-point) subgraph, as
shown in Fig. 22 for the respective cases of graphs 51, 52,
and 72. The large (blue) dot indicates the location of the
doubled propagator that is generated in the limit k4 ! 0.

These integrals can be evaluated in D ¼ 6� 2� using
IBP identities and gluing relations through the necessary
order, Oð�0Þ. The results are

P51ðl25Þ ¼ �ð�l25Þ�3� e�3��

ð4�Þ9�3�

�
1

6�
þ 25

9
þ 
3

� 10

3

5 þOð�Þ

�
; (4.42)

P52ðl25Þ ¼ �ð�l25Þ�3� e�3��

ð4�Þ9�3�

�
1

6�

�

3 � 1

3

�
� 25

27

þ 17

18

3 þ 1

4

4 þOð�Þ

�
; (4.43)

P72ðl25Þ ¼ �ð�l25Þ�3� e�3��

ð4�Þ9�3�

�
1

6�

�

3 � 1

3

�

� 25

27
þ 17

18

3 þ 1

4

4 þOð�Þ

�
: (4.44)

We note that the propagator subgraphs for graphs 52 and 72
happen to have identical values through Oð�Þ. Also, in-
specting the form of the integrals, and comparing with
Eqs. (4.10) and (4.11), we see that the leading 1=� singu-

larities correspond to the three-loop vacuum integrals VðAÞ

(for the planar graph 51) and VðBÞ (for graphs 52 and 72).
In the trace basis, the color factors for graphs 51, 52, and

72 have the following form:

C51 ¼ N2
cðN2

c þ 12ÞðTr1234 þ Tr1432Þ
þ 2NcðN2

c þ 12ÞðTr12Tr34 þ Tr13Tr24 þ Tr14Tr23Þ;
(4.45)

C52 ¼ C72

¼ 12N2
cðTr1234 þ Tr1432Þ

þ 24NcðTr12Tr34 þ Tr13Tr24 þ Tr14Tr23Þ: (4.46)

The double-trace parts of these color factors contain a
piece proportional to N3

c and one proportional to N1
c .

The N3
c part comes only from graph 51. The N1

c parts of
these color factors are equal for the three graphs. Taking
into account the relative symmetry factors in Eq. (3.3), we
see that the relevant linear combination of propagator
integrals for the N1

c part is PN1
c
� P51 þ 2P52 þ P72,

which is given by

PN1
c
ðl25Þ ¼ �ð�l25Þ�3� e�3��

ð4�Þ9�3�

�

3
2�

þ 23

6

3

þ 3

4

4 � 10

3

5 þOð�Þ

�
: (4.47)

Next we need to identify a subtraction that accounts for
the three-loop counterterm needed to cancel the pole given
in Eq. (4.9). We could compute the four-loop counteram-
plitude by sewing a tree amplitude onto the matrix element
of the counterterm [essentially the negative of Eq. (4.9)], in
close analogy to how we evaluated the UV divergence of
the three-loop four-point supergravity amplitude in odd

FIG. 21 (color online). The vacuum integrals U1, U2, and U3

that would be generated by the graphs 51, 52, and 72 in the
double-trace part of the four-loop divergence of N ¼ 4 sYM
theory in D ¼ 6. Because these three graphs possess both an
overall divergence and a three-loop subdivergence, we evaluate
them only after first performing a subtraction of the subdiver-
gence.
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dimensions above D ¼ 6 [55]. However, it is safer to
perform the subtraction within the integrals for the indi-
vidual graphs 51, 52, and 72, in order to ensure that there
are no spurious contributions arising from potentially dif-
ferent ways of regularizing the infrared behavior.

In discussing higher-loop divergences of a theory, there
is always a freedom associated with additional, finite re-
normalizations of the theory at lower loops, in this case
three loops. Here we will choose, for definiteness and

simplicity, an MS scheme for the three-loop renormaliza-
tion. In this scheme, the necessary counterterms are

Pc:t:
51 ¼ e�3��

ð4�Þ9�3�

1

6�
; (4.48)

Pc:t:
N1

c
¼ e�3��

ð4�Þ9�3�


3
2�

: (4.49)

Notice that the factor of ð�l25Þ�3� in Eqs. (4.42) and (4.47)

is absent in the counterterm contributions (4.48) and (4.49).
The evaluations of the remaining one-loop integrals

and of their subtraction are essentially identical for the
graphs 51, 52, and 72. We will discuss in detail only the
graph 51 for which we consider the following subtracted
integral:

Isub51 � �i
Z d6�2�l5

ð2�Þ6�2�

N51ðl5Þ
l25ðl5 � k1Þ2ðl5 � k12Þ2ðl5 � k123Þ2

� ½P51ðl25Þ þ Pc:t:
51 �: (4.50)

If a term in the outer integral over l5 is UV convergent, one
can set � ! 0 and the 1=� poles will cancel in the brackets,
leaving no UV contribution at all at four loops. On the
other hand, if a term in the outer integral generates a
logarithmic divergence, as in the terms in N51 that are
quadratic in l5, then the leading 1=�2 pole from P51ðl25Þ
is not canceled by the counterterm contribution Pc:t:

51 .

Accounting for a factor of ð�l25Þ�� from the one-loop

integration measure, we see that there is a mismatch by a
factor of 4. That is, the leading 1=�2 contribution from Pc:t:

51

is of opposite sign to that from P51ðl25Þ and is 4 times larger

inmagnitude, due to a factor of ð�l25Þ�� instead of ð�l25Þ�4�.

The relative factor of 4 originates physically from the
locality of the UV poles in the subtracted four-loop ampli-

tude. The four-loop amplitude carries fractional dimension
/ s�4�, while the one-loop counterterm amplitude carries
fractional dimension / s��. Expanding these s-dependent
factors in �, we see that a ratio of (� 4) between the 1=�2

poles from the amplitude and its counteramplitude is
required, in order for nonlocal terms of the form
1=�� lnð�sijÞ to cancel in the subtracted amplitude.

From Eq. (B1), the quadratic terms in the numerator
factor N51 are given by

N
quad
51 ¼ 1

2½�6ðt�215 þ u�225 þ s�235Þ þ 5ðs�15�25 þ t�25�35

þ u�15�35Þ � ðs2 þ t2 þ u2Þl25�: (4.51)

We insert Eq. (4.51) into Eq. (4.50) and Feynman param-
etrize the resulting one-loop integral. As usual with a
one-loop integral with numerator quadratic in the loop
momentum, there are two types of terms:
(1) terms that depend in a fairly complicated way on the

Feynman parameters and external momentum invariants,
originating from the shift l

	
5 ¼ q	 þ�	 in the loop mo-

mentum l5 needed to complete the square in the denomi-
nator, and
(2) terms from integrating over the shifted loop

momentum q	, in which one can use the identity q	q� ¼
q2=D� �	�.
The former terms do not contain an ultraviolet divergence
from the outer integral; therefore they can be dropped as
discussed above. In the latter terms, the first set of terms in

N
quad
51 in Eq. (4.51), containing the �6 prefactor, drop out

because k21 ¼ k22 ¼ k23 ¼ 0. In the second set of terms in

Nquad
51 , one can effectively make the replacement (4.17),

because any extra terms due to external momentum depen-
dence are finite and unrelated to the UV divergence and
therefore drop out. (We checked this statement by perform-
ing a full Feynman parametrization.)
Therefore, the 1=�2 and 1=� terms in Isub51 in Eq. (4.50)

are correctly captured by

Isub51 ¼�i

�
5

D
�1

2

�
ðs2þ t2þu2Þ

Z dDl5
ð2�ÞD

� P51ðl25ÞþPc:t:
51

ðl5�k1Þ2ðl5�k12Þ2ðl5�k123Þ2
þOð�0Þ: (4.52)

FIG. 22 (color online). Three-loop propagator subgraphs P51ðl25Þ, P52ðl25Þ, and P72ðl25Þ, generated by setting k4 ! 0 in graphs 51, 52,
and 72, respectively.
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We do not need to evaluate this full integral; to extract the
UV pole it is sufficient to simplify it to the form of amassive
bubble integral by rearranging the external momenta,

Isub51 ¼ �i

�
5

D
� 1

2

�
ðs2 þ t2 þ u2Þ

Z dDl5
ð2�ÞD

P51ðl25Þ þ Pc:t:
51

ðl25Þ2ðl5 � k12Þ2
þOð�0Þ: (4.53)

In the term coming from P51ðl25Þ in Eq. (4.53), the powers to
which the two propagators in theD ¼ 6� 2� bubble (after
analytic continuation) are raised are 2þ 3� and 1; while in
the term coming from Pc:t:

51 they are 2 and 1.

The momentum-independent parts of these bubble inte-
grals are given by

Pð1Þð2þ 3�; 1; 6� 2�Þ ¼ � e���

ð4�Þ3��

�
1

8�
þ 7

16
þOð�Þ

�
;

(4.54)

Pð1Þð2;1; 6� 2�Þ ¼ � e���

ð4�Þ3��

�
1

2�
þ 1þOð�Þ

�
: (4.55)

[Other ways of regulating the infrared behavior, such as
keeping the complete dependence on external momenta,
will give different Oð�0Þ terms in Eqs. (4.54) and (4.55).
However, the difference must always be the same; other-
wise a 1=� UV pole would be generated from a UV
convergent integral.] Including the overall factors, we get

Isub51 ¼
�

5

6� 2�
� 1

2

�
e�4��

ð4�Þ12�4�
ðs2 þ t2 þ u2Þ

��
1

6�
þ 25

9
þ 
3 � 10

3

5

��
1

8�
þ 7

16

�
� 1

6�

�
1

2�
þ 1

�
þOð�0Þ

�

¼ e�4��

ð4�Þ12�4�

s2 þ t2 þ u2

24

�
� 1

2�2
þ 1

�

�
29

18
þ 
3 � 10

3

5

��
þOð�0Þ: (4.56)

Similarly, theN1
c double-trace contribution is obtained using the same formula (4.53) with P51 replaced by PN1

c
, taken from

Eqs. (4.47) and (4.49),

Isub
N1
c
¼

�
5

6� 2�
� 1

2

�
e�4��

ð4�Þ12�4�
ðs2 þ t2 þ u2Þ

��

3
2�

þ 23

6

3 þ 3

4

4 � 10

3

5

��
1

8�
þ 7

16

�
� 
3

2�

�
1

2�
þ 1

�
þOð�0Þ

�

¼ e�4��

ð4�Þ12�4�

s2 þ t2 þ u2

24

�
� 3
3
2�2

þ 1

�

�
1

3

3 þ 3

4

4 � 10

3

5

��
þOð�0Þ: (4.57)

We notice that, similarly to the numerator factor Nquad
51 in Eq. (4.51), both Eqs. (4.56) and (4.57) have manifest permutation

symmetry.
Plugging Eqs. (4.56) and (4.57) into the full amplitude, including the double-trace part of the color factors, the

sum over all 24 permutations, and the overall prefactor, we obtain

Að4Þ
4 jsubpole 51–85 ¼

g10Ke�4��

ð4�Þ12�4�
NcðTr12Tr34 þ Tr13Tr24 þ Tr14Tr23Þðs2 þ t2 þ u2Þ

�
�
�N2

c þ 36
3
2�2

þ 1

�

�
N2

c

�
29

18
þ 
3 � 10

3

5

�
þ 4
3 þ 9
4 � 40
5

��
: (4.58)

We have also evaluated the difference between the one-loop outer integrals of I51, I52, and I72 and their correspondingMS
subtraction terms, Isub51 , I

sub
52 , and Isub72 , prior to reduction to bubble integrals. That is, we directly integrated Eq. (4.50) for

general external momenta and separately the outer integral of I51 and its subtraction for two special kinematic points. In
this way we verified the required cancellation of the nonlocal divergent terms lnð�sijÞ=�.

Finally, we add the contribution (4.41) from the graphs 1–50 that have no subdivergences, in order to obtain the total
four-loop divergence (after subtraction of three-loop subdivergences):

Að4Þ
4 jdouble tracepole ¼ Að4Þ

4 jdouble tracepole 1–50 þAð4Þ
4 jsubpole 51-85

¼ g10Ke�4��

ð4�Þ12�4�
Nc

�
ðTr12Tr34 þ Tr14Tr23 þ Tr13Tr24Þðs2 þ t2 þ u2Þ

�
�N2

c þ 36
3
2�2

þ 1

�

�
N2

c

�
35

18
� 
3

3

�

þ 4
3 þ 9
4 þ 20
5

��
� 3

�
ðN2

c
3 þ 25
5ÞðTr12Tr34s2 þ Tr14Tr23t
2 þ Tr13Tr24u

2Þ
�
: (4.59)

Of course, the double-trace part of the four-loop counterterm must be chosen to cancel these poles,

A ð4Þ
4;c:t:jdouble trace ¼ �Að4Þ

4 jdouble tracepole þOð1Þ; (4.60)
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corresponding to a nonvanishing divergent coefficient for a
counterterm of the schematic form, TrðD4�kF2ÞTrðDkF2Þ.
(The covariant derivatives may be distributed among the
two traces in various ways.) It is possible to perform
finite shifts of the coefficient of the single-trace operator
TrðD2F4Þ which has a divergent coefficient at three
loops. One can trace through the effect of such a shift by

shifting Pc:t:
51 and Pc:t:

N1
c
by Oð�0Þ constants. In principle,

one could remove the 1=� terms in Eq. (4.59) that are

proportional to ðs2 þ t2 þ u2Þ. However, one cannot remove

the 1=�2 pole. Nor can one remove the term proportional to

ðN2
c
3 þ 25
5Þ, because the dependence on color and kine-

matics is different from the one induced by the three-loop
counterterm.

In conclusion, the double-trace terms in the four-point
N ¼ 4 sYM amplitude do diverge at four loops, saturat-
ing the double-trace finiteness bound of Dc ¼ 4þ 8=L.

V. CONCLUSIONS

In this paper, we recomputed the four-loop four-point
amplitudes ofN ¼ 4 sYM theory andN ¼ 8 supergrav-
ity, first obtained in Refs. [10,11]. By exploiting the
conjectured duality between color and kinematics [29,30]
we found greatly simplified representations. It also allowed
us to find the form of the complete amplitude, including
nonplanar contributions, using only planar cut information
as input. We confirmed the correctness of the construction
by comparing the unitarity cuts of the new expressions
to the cuts of the earlier forms [10,11]. This provides
new nontrivial evidence in favor of the duality conjecture
and the associated gravity double-copy property. An im-
portant advantage of the current construction is that once the
sYM amplitude has been arranged into a duality-satisfying
form, the construction of the corresponding supergravity
integrand is trivial: One simply replaces the color factors
with kinematic numerator factors in each graph.

The new form of the four-loop four-point N ¼ 8 am-
plitude has an important advantage over the previous one
[10], because no integral displays a worse UV power
counting than the complete amplitude. This feature greatly
simplifies the extraction of the UV divergence of the four-
loop N ¼ 8 supergravity amplitude in the critical dimen-
sion Dc ¼ 11=2, corresponding to the lowest dimension
where both N ¼ 4 sYM theory and N ¼ 8 supergravity
first diverge at four loops. To carry out the required inte-
gration we used techniques similar to those described in
Refs. [9–11]. Our results prove that the four-loop four-
point amplitude of N ¼ 8 supergravity does indeed di-
verge in the same critical dimension as the corresponding
amplitude of N ¼ 4 super-Yang-Mills theory. Thus, the
N ¼ 8 supergravity finiteness bound [10] is, in fact,
saturated at four loops. The amplitude divergence in Dc ¼
11=2 means that the D8R4 supergravity counterterm has a
nonzero divergent coefficient, in much the same way as the
TrðD2F4Þ counterterm ofN ¼ 4 sYM has a nonvanishing

divergent coefficient in this dimension. Moreover, we
found that the four-loop finiteness bound [11,64], D< 6,
for the double-color-trace terms of N ¼ 4 sYM theory is
also saturated. In other words, the corresponding D ¼ 6
double-trace counterterms TrðD4�kF2ÞTrðDkF2Þ are also
present with nonvanishing coefficients.
More generally, the duality between color and kinemat-

ics offers the promise of carrying advances from the planar
sector of gauge theory to the nonplanar sector and then to
gravity theories. Its underlying origin is, however, still
poorly understood; recent progress suggests that, at least
in the self-dual case [46], underlying it is an infinite-
dimensional Lie algebra of area-preserving diffeomor-
phisms. Progress has also been made in finding explicit
representations of tree amplitudes that manifestly satisfy
the duality [47]. It would be interesting and very useful
to devise effective rules that would generate directly
duality-satisfying representations for loop amplitudes,
thus eliminating the need to solve the system of duality
constraints on a case-by-case basis. A step toward finding a
Lagrangian with the desired properties has been given in
Ref. [45]. It would also be interesting to explore whether
the color-kinematic duality extends beyond weak-coupling
perturbation theory as well as whether the existence of
such a duality has practical consequences after carrying
out the loop-momentum integrations.
Explicit calculations often lead to surprises. The results

described here are no different. In particular, in the critical
dimension D ¼ 11=2 we found that, after reducing the
integrals containing UV divergences to a basis of vacuum
integrals encoding the numerical factors in front of the
divergent operator, the UV divergence is given by exactly
the same combination of basis integrals as found in the
single-trace 1=N2

c-suppressed terms of N ¼ 4 sYM the-
ory. It seems unlikely that this is accidental because similar
behavior is found at lower loops. It would obviously be
important to understand the origin of this curious connec-
tion and implications it may have at higher loops on UV
divergences. Another interesting property is the existence
of strong cancellations between the contributions of vari-
ous graphs to the UV divergence in the critical dimension.
This suggests that different integral contributions may be
related to each other by a hidden symmetry.
In summary, the duality between color and kinematics

offers a powerful means for streamlining the construction
of multiloop amplitudes, carrying advances in the planar
sector to the nonplanar sector. It allowed us to express the
numerators of the four-loop four-point amplitudes of
N ¼ 4 sYM theory and N ¼ 8 supergravity in terms
of the numerators of two planar graphs. Using this simplified
form, in the critical dimension Dc ¼ 11=2, we found a
surprising coincidence between the UV divergences of
N ¼ 8 supergravity and those of subleading-color single-
trace terms ofN ¼ 4 sYM theory. This hints at further new
relations between gauge and gravity theories to be unraveled
and that further surprises await us at five and higher loops.
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We look forward to using the tools described in this paper to
further explore the multiloop structure of gauge and gravity
amplitudes and to unravel their UV properties.
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APPENDIX A: USEFUL NUMERATOR
FUNCTIONAL EQUATIONS

In this Appendix we list a set of numerator equations
that determine the four-loop four-point N ¼ 4 sYM
amplitude (up to snail contributions), starting from the
two planar master graphs 18 and 28 in Fig. 4. These
equations follow directly from the dual Jacobi relations.
However, to make the equations more convenient for gen-
erating numerator factors from our two planar master
numerators, we performed various simplifications which
follow from the N ¼ 4 sYM auxiliary constraints de-
scribed in Sec. II B. In particular, we use the two-term
relations [see Eq. (A5)] which rely on the no one-loop
triangle subgraph constraint to eliminate numerators ap-
pearing in other dual Jacobi relations. We also simplified
the functional arguments of the numerators using the aux-
iliary constraint that numerators are independent of the

loop momenta of one-loop box subgraphs. For example,
instead of the dual relation,

N50ðk1; k2; k3; l5; l6; l7; l8Þ
¼ N28ðk2; k1; k4; l5; k3 � l7; k2 � l6; l8Þ

�N28ðk1; k2; k3; l6; k4 � l8; k1 � l5; l7Þ; (A1)

we simplify this to

N50ðk1; k2; k3; l5; l6; l7; l8Þ
¼ N28ðk2; k1; k4; l5; k3 � l7; l7; l8Þ

� N28ðk1; k2; k3; l6; k4 � l8; l7; l8Þ; (A2)

using the fact that N28 is, in fact, independent of the values
of the last two arguments since these momenta are those of
one-loop box subgraphs (see Fig. 4). In this sense, the last
two arguments of N28 are effectively placeholders and can
be assigned any valuewithout altering the numerators. These
simplifications, however, imply that the equations given
below are specific toN ¼ 4 sYM theory and will not hold
for corresponding numerators of amplitudes of theories with
fewer supersymmetries. They are also not in direct corre-
spondence with the color Jacobi equations, because numer-
ators of graphs with triangle subgraphs are set to zero,
although corresponding color factors are nonvanishing.
On the left-hand side of each duality equation, for

simplicity, we will suppress the canonical arguments,
which are the three external momenta and the four inde-
pendent loop momenta following the graph labels in
Figs. 5–11, i.e.

Ni � Niðk1; k2; k3; l5; l6; l7; l8Þ; (A3)

and we take k4 � �k1 � k2 � k3 throughout. We have
ordered the equations so that the substitutions that are
required to express the given numerators in terms of the
two master numerators always come from previous equa-
tions in the list. With the above notation, the required
equations are

N58 ¼ N18ðk1; k2; k3; k2 � l6; l5; l7; l8Þ � N18ðk2; k1; k3; k1 � l6; l5; l7; l8Þ;
N33 ¼ N28ðk4; k3; k2; k3 � l5; k2 � l6 þ l7; l7; l8Þ � N18ðk1; k2; k3; k2 � l6; k3 � l5; l7; l8Þ;
N50 ¼ N28ðk2; k1; k4; l5; k3 � l7; l7; l8Þ � N28ðk1; k2; k3; l6; k4 � l8; l7; l8Þ;
N6 ¼ �N33ðk1; k2; k4; l7; l5 � l6; k1 � l6; l8Þ � N33ðk2; k1; k4; l7; l6; k2 � l5 þ l6; l8Þ;
N14 ¼ �N33ðk3; k2; k1; l5;�l5 � l7; k3 � l7 þ l8; l6Þ � N33ðk3; k2; k1; l5; k2 þ l7; l7 � l8; l8Þ;
N24 ¼ �N28ðk1; k2; k3; l5 � l7;�l6; l7; l8Þ � N33ðk1; k2; k4;�l6;�l7;�l5; l8Þ;
N32 ¼ �N28ðk4; k2; k1; l7; k3 � l5; l7; l8Þ � N33ðk2; k1; k3; l5; l6; k2 þ l5 þ l6 � l7; l8Þ;
N48 ¼ N28ðk3; k4; k1; l8; k2 � l5; l7; l8Þ � N33ðk1; k2; k3; k3 � l6; k2 � l5; l7; l8Þ;
N49 ¼ �N33ðk1; k2; k3; k3 � l8; k2 � l5;�l7; l8Þ � N33ðk4; k1; k2; l5;�l7; l6; l8Þ; (A4)
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N66 ¼ N58ðk1; k2; k4; l5 � k3 � l6; l6; l7; l8Þ � N58ðk1; k2; k3; k3 þ l6; l6; l7; l8Þ;
N1 ¼ �N6ðk1; k2; k3; l6; l5; l7; l8Þ � N6ðk1; k2; k4; l6; l5; l7; l8Þ;
N68 ¼ N14ðk1; k2; k3; k1 � l5;�l6;�l7;�l8Þ � N14ðk1; k2; k4; l5 � k2;�l7;�l6; l8Þ;
N21 ¼ �N14ðk2; k1; k3; l5; l6; l7; l8Þ � N18ðk2; k1; k3;�l5; k1 þ k3 þ l5 � l6; l7; l8Þ;
N26 ¼ N24ðk2; k1; k3;�l5;�k4 � l6 � l7; l8; l6Þ � N24ðk2; k1; k4;�l5; l7 � k3; l6 � k1 � l5 � l8; l6Þ;
N27 ¼ �N18ðk2; k1; k4;�l5; l7; l7; l8Þ � N24ðk1; k2; k4; l5;�k3 � l7 � l8; k3 � l6 þ l7 þ l8; l8Þ;
N37 ¼ �N28ðk2; k1; k3; k1 � l5; k4 þ l8; l7; l6Þ � N49ðk2; k1; k3; k1 � l5;�l8; l7 � k2; l6Þ;
N39 ¼ N28ðk2; k1; k3;�l5 � l7; k4 þ l6 þ l8; l5; l6Þ � N48ðk1; k2; k3; l7; l8;�l5 � l7;�l6 � l8Þ;
N45 ¼ N49ðk1; k2; k3; l5 � l6 � l7 � l8; k4 � l6; l5; l7Þ þ N49ðk1; k2; k4; k2 þ l6 þ l7 þ l8; l7; l5; k4 � l6Þ;
N38 ¼ N49ðk2; k1; k4; l6; k3 þ l5 þ l7;�l5 þ l6; k4 � l8Þ � N49ðk1; k2; k4; l5 � l6; k3 þ l5 þ l7;�l6; l7 þ l8Þ;
N53 ¼ N58ðk1; k2; k3; k3 � l8; l6; l7; l8Þ þ N66ðk1; k2; k4; l8;�k4 � l5; l7; l8Þ;
N12 ¼ N18ðk4; k3; k2; l6; k2 þ l8; l5; l7Þ þ N26ðk3; k4; k1;�l6; l8;�l5; l8Þ;
N51 ¼ N18ðk3; k2; k1; k1 þ k2 � l5;�l6; l7; l8Þ � N21ðk2; k3; k1; l5 � k1 � k2;�l6; l7; l8Þ;
N63 ¼ N21ðk1; k2; k3; k2 � l5; k1 þ k2 � l5 � l6; l7; l8Þ � N21ðk2; k1; k3; k1 � l5; k1 þ k2 � l5 � l6; l7; l8Þ;
N79 ¼ N45ðk1; k2; k3; k2 � l5; k4 � l7; l6;�l6 � l8Þ � N45ðk1; k2; k3; l5 � k1; l7; k3 � l6; k4 þ l5 � l7 � l8Þ;
N80 ¼ N53ðk1; k2; k3; k3 � l7; l6; l7; l8Þ þ N53ðk1; k2; k3; l7 � k4; l5; l6; l8Þ;
N55 ¼ N51ðk1; k2; k3; k1 þ l5; l6; l7; l8Þ � N51ðk1; k3; k2; k1 þ l5; l6; l7; l8Þ;
N83 ¼ �N55ðk3; k1; k2; k1 þ k2 � l5; l8; l6; l7Þ � N55ðk3; k1; k2; l5 � k3; l6; l7; l8Þ:

There is also a set of simpler two-term relations whenever one of the three numerators vanishes due to the appearance of a
forbidden one-loop triangle subgraph,

N5 ¼ N4 ¼ N3 ¼ N2 ¼ N1; N11 ¼ N10 ¼ N9 ¼ N8 ¼ N7 ¼ N6; N40 ¼ N13 ¼ �N12;

N41 ¼ �N17 ¼ �N16 ¼ �N15 ¼ N14; N42 ¼ N20 ¼ �N19 ¼ N18; N43 ¼ �N23 ¼ �N22 ¼ �N21;

N25 ¼ N24; N44 ¼ �N26; N31 ¼ �N30 ¼ N29 ¼ N28; N46 ¼ N34 ¼ N32; N36 ¼ �N35 ¼ �N33;

N47 ¼ N38; N72 ¼ N52 ¼ N51; N74 ¼ �N54 ¼ �N53; N73 ¼ N57 ¼ N56 ¼ N55;

N76 ¼ �N62 ¼ �N61 ¼ �N60 ¼ �N59 ¼ �N58; N77 ¼ �N65 ¼ N64 ¼ N63; N78 ¼ �N67 ¼ N66;

N75 ¼ N71 ¼ N70 ¼ N69 ¼ N68; N82 ¼ N81 ¼ N80; N85 ¼ N84 ¼ N83: (A5)

Plain-text, computer-readable versions of both the original duality relations (using only the no one-loop triangle subgraph
property) and the simplified ones presented above may be found online [38]. Many other functional equations can be
obtained from the dual Jacobi relations, which we will not list here. Although important, as they provide additional
independent constraints to the full system, they are not needed to specify the solution once the system and master graph
numerators have been solved. However, we have confirmed that the numerators presented in Appendix B automatically
satisfy all these remaining dual Jacobi relations.

APPENDIX B: EXPLICIT NUMERATORS FOR GRAPHS

In this Appendix we give the explicit values Ni of the distinct graph numerators in the N ¼ 4 sYM amplitude. [The
remaining ones are given directly in terms of these via Eq. (A5).] These values are obtained by taking the numerators of the
master graphs (3.14) and substituting their values into Eq. (A4). We have performed some algebraic simplifications to
obtain the results collected here. The N ¼ 8 supergravity numerators are squares of the Ni, as in Eqs. (3.2) and (4.16).

The explicit values of the distinct numerators are
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N1 ¼ s3;

N6 ¼ 1
2s

2ð�45 � �35 � sÞ;
N12 ¼ 1

2sðsð�16 � �26 � �35 þ �45 þ 2�56 þ 2tÞ � 2ð4�16�25 þ 4�15�26 þ �45ð�36 � 3�46Þ þ �35ð�46 � 3�36ÞÞÞ;
N14 ¼ 1

4ðsð9�215 þ 9�225 þ 4t2 þ 8t�35 þ 2�235 þ 2�245Þ þ 8�25ðu2 � s2Þ � 5tð�15�35 þ �25�45Þ þ uð4tð2�15 þ l25Þ
� 5�15�45 � 5�25�35ÞÞ;

N18 ¼ 1
4ð6u2�25 þ uð2sð5�25 þ 2�26Þ � �15ð7�16 þ 6tÞÞ þ tð�15�26 � �25ð�16 þ 7�26ÞÞ þ sð4�15ðt� �26Þ
þ 6�36ð�35 � �45Þ � �16ð4tþ 5�25Þ � �46ð5�35 þ �45ÞÞ þ 2s2ðtþ �26 � �35 þ �36 þ �56ÞÞ;

N21 ¼ 1
4ðtð12�215 � 7�15�16 þ �25ð�16 � 10�35ÞÞ þ uð�25ð12�25 � 8t� 7�26Þ þ �15ð8tþ �26 � 10�35ÞÞ
þ 4l25ðu2 � stÞ � sð2�15ð6�16 þ 5�25Þ þ 4uð�16 � tþ �26 þ 2�45Þ þ �35ð�36 � 12�35 � 10�46Þ
� �45ð11�36 þ 6�46Þ þ 12�25�26Þ þ 2s2ðu� �16 � �35 þ �36 � �56ÞÞ;

N24 ¼ 1
4ðsð2�36ð3�35 þ �45Þ þ �46ð�35 þ 13�45Þ � 4uð2�15 þ �16 � 2�25 þ �26Þ � 11�15�26Þ � 2s2ð2�15 � 2�25

þ �26 � �36 � �37 þ �47 � �56Þ þ uð11�16�25 þ �15ð7�16 þ �26ÞÞ þ t�25ð12�16 þ 7�26ÞÞ; (B1)

N26 ¼ 1
4ðu�15ð7�16 þ 12�26Þ þ tð11�15�26 þ �25ð�16 þ 7�26ÞÞ þ sð16�15�17 � 4uð2�15 þ �16 � 2�25 þ �26Þ
þ �25ð16�27 � 11�16Þ þ �35ð6�36 � 4�37 þ �46 � 20�47Þ þ �45ð2�36 � 20�37 þ 13�46 � 4�47ÞÞ
þ 2s2ð�17 � 2�15 þ 2�25 � �26 � �27 þ �36 þ �56 þ 2�57ÞÞ;

N27 ¼ 1
4ðu�18ð�25 � 7�15Þ þ �28ðtð�15 � 11�25Þ � 4u�25Þ þ sð4�15ð3�17 þ �18 � �27Þ þ 4uð2�15 � 2�25 þ �28Þ
þ �45ð5�18 þ 5�28 � 16�37 � 5�38Þ þ �35ð2�38 � 16�47 � 9�48Þ � 4�18t � 4�25ð�17 � 3�27ÞÞ
þ 2s2ð2�15 þ 2�17 � 2�25 þ �28 � �36 þ 2�37 þ �38 þ �46 þ 2�57 þ �58ÞÞ;

N28 ¼ 1
4ðsð2�15t þ �16ð2t � 5�25 þ �35Þ þ 5�35ð�26 þ �36Þ þ 2tð2�46 � �56Þ � 10u�25Þ � 4s2�25

� 6uð�46ðt � �25 þ �45Þ þ �25�26Þ � tð�15ð4�36 þ 5�46Þ þ 5�25�36ÞÞ;
N32 ¼ 1

4ðtð�25ð�16 � 11�25 � 12�26Þ þ �25�35 � 6�235 � �15ð�26 � 4�45ÞÞ � uð5�25�26 þ �15ð7�16 � 5�25 þ 5�35ÞÞ
þ sð�15ð5�16 � 4tÞ þ �16ð8t þ �25Þ þ �35�36 þ 5�45ð�25 � �35 � 2�36Þ � �46ð11�35 þ 6�45Þ
þ 2uð6�25 þ 4�26 � 4�35 � 2l25ÞÞ þ 2s2ð3�25 � �35 � �36 � 3�46 þ �56ÞÞ;

N33¼ 1
4ðs2ð4�17�2ð4�26þ�35þ2�36ÞÞ�6u2�35þuðð4�16þ5�26Þ�45��17ð11�25þ7�35þ6�45Þ
þ�35ð11�37�5�46ÞÞ�tð5�17�25þ6�15�26þð6�26�5�17�4�27Þ�45þ�35ð7�26�11�36þ5�47ÞÞ
þsð�15ð5�26þ4�46Þ�5�35ð�16þ�27Þþ4�25�47þ2uð5�17þ2�25�5ð�26þ�35Þþ�56Þþ2tð�16��15��27þ�57ÞÞÞ;

N37¼ 1
4ðu2ð4�15�2�27Þ�2s2ð2�15þ3�27þ4�36Þþtð6�26�27þ5�27�35�6�27�36þ6�36�37��25ð5�36þ4�46Þ
��15ð6�26þ5�46Þþ4�35�47Þþuð5�27�46�6�35�36þð5�27þ4�37Þ�45þ�17ð5�36þ4�46�2tÞ
þ�15ð12�36þ5�37þ6�46�5�47Þþ2tð�57��25ÞÞþsð6�25�27�ð4�26þ5�36Þ�45�5ð�26þ�46Þ�47
��16ð4t�5�27þ�47Þ��15ð11�26þ12�27þ6�37þ11�47Þþ2tð�35��56Þ
þ2uðtþ2�26�5�27�8�36þ2�37þ�67ÞÞÞ;

N38 ¼ 1
4ðtð�16�25 þ 6�225 � 11�25�26 � �25�35 þ 11�235 þ 7�35�37 þ �37�45 þ �15ð�45 � 4�16Þ � �35�47Þ
� sð5�215 � 6�17�25 þ 20�17�26 þ 6�25�27 þ 4�26�27 þ 4�16ð�17 þ 5�27Þ � 9�25�36 � 11�35�36

� 16�36�37 � 5�37�45 þ 10�35�46 þ 5�45�46 � 4ð�35 þ 4�46Þ�47 þ �15ð�37 þ �47 � 4�27 þ 10�35 � 9�36ÞÞ
þ uð�45ð7�47 � 5ð2�35 þ �45ÞÞ � 4�25�26 þ �15ð�26 � 11�16ÞÞ
þ 2sð4t�37 þ uð4ð�16 þ �25 � �26 � �35 þ �47Þ þ 2l25Þ þ sð2�16 � 2�17 þ 2�25 � 2�26

� 2�27 � 2�35 þ �56 � �57 þ 2�67ÞÞÞ;
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N39 ¼ 1
4ðtð�15ð12�16 þ 6�26 þ �36Þ � 10�38�45 þ �27ð5�26 þ 12ð�36 þ �46ÞÞ þ �35ð�48 � 7�38ÞÞ � uð�17ð7�16 þ �26Þ
þ 11�16�27 � �25ð4�36 þ 5�46Þ þ �45ð9�38 þ 6�46 þ 7�48ÞÞ þ sð4�17�18 þ 11�17�26 þ 20�18�27 þ 20�17�28

þ 4�27�28 þ �15ð5�16 � 11�18 þ 10�26 þ 5�28Þ � 4�18�35 þ 4�26�35 � 6�35�38 � 16�37�38 þ 2tð�25 þ �36

þ 4�38Þ þ 4�28�45 � 5�25�46 � �37�46 � 11�45�46 � 13�46�47 � 2�36ð3�37 þ �47Þ þ 2ð3�35 � �45 � 8�47Þ�48
þ 2uð3�15 þ 4�17 � 4�27 þ 3�46 þ 4�48 þ �56ÞÞ � 2s2ðu� �15 � 2�17 þ 2�18 þ �26 þ 2�27 þ 2�28 þ �35 � �46

þ �58 þ �67 þ 2�78ÞÞ;
N45¼ 1

4ð8u2�15þ tð�15ð�16þ7�17þ�26þ�27�5�35þ5�45Þ�ð�16þ�17þ8tÞ�25Þþsð�15ð12�17�18�25þ11�26þ�27Þ
þ2ð5�16�25�2�17t�2tð6�25þ�26Þþ3�25ð�26þ2�27ÞÞþ11�235þ�45ð6ð�45�2�46��47Þ��36�11�37Þ
þ�35ð�37�5�36þ13�45�10�47ÞÞþuð4sð�16� tþ�27þ2�35Þ�6�15�16þ�25ð7�26þ7�27�5�35þ5�45Þþ4tl25Þ
þ2s2ð�16þ�27þ5�35þ�36þ�37þ�38þ3�45��48��56þ�57ÞÞ;

N48¼ 1
4ðsð�18ð5�25þ4�35Þþ�36ð�15�5�27�4�45Þ�ð�17�5�25Þ�46þ5�35�48Þ�2sut�5�15�18t� tð5�17�26þ7�35�36

þ�25ð11�26�5�38Þþ�15ð5�28þ�38Þþ4�37�46þ�36�47�4�16ð�45þ�47ÞÞþuð4�15�26þ6�25�28

þ�16ð7�17þ�25�4�35Þþ�36ð11�37þ�45Þ�4�26ð�17þ�47Þþ6ð�45��25Þ�48Þþ2ðs2ð�25��35þ2�36Þ
þ3utð�17þ�48Þþsðuð3�25þ�26þ4�36��56Þþ tð�15��16�2�17��18��47�2�48þ�58þ�67ÞÞÞÞ;

N49¼ 1
4ð2s2t� tð11�35�38þ2�15ð2�36þ5�46Þþ�25ð11�28�4�37þ4�38þ�47Þþ4�27�48þ5�17ð�35þ�48ÞÞ
þsð�15ð11�17þ5�38Þ�5�17�28�2�16ð5�25þ2�35Þþ�45ð5�46�4ð�18þ�37ÞÞþ5�38ð�27��47Þ�4�28�47

þ�25ð7�27þ5�48�5�26ÞÞþuð�27ð11�38þ4�45Þ��25ð5�16�5�18þ11�26þ�37Þ��17ð6�18�12�38þ�45Þ
þð7�25þ6�35Þ�46þ�38ð5�45þ6�47Þþ�15ð�46�4ð�47þ�48ÞÞÞþ2ðs2ð�25�4�17��35þ2�38Þ
þuð4u�17þ tð2�27�2�15�2�25�3�46þ�57ÞÞþsð�16tþuð�28þ4�38��58Þ
� tð�18þ2�37�2�46þ�56þ�78ÞÞÞÞ;

N50¼ 1
4ðtð�25ð5�37þ4�47Þ��38ð4�16þ5�26Þ�5�15�27Þþsð�45ð4�27þ5�37Þ��18ð5�26þ4�36Þ�5�15�47

þ5ð�16��36Þ�48Þþuð6�35�37�6�26�28þ�15ð11�17��37Þþð11�16þ6ð2�26þ�36ÞÞ�48Þ
þ2tð3uð�15��26þ�37��48Þþsð�18�2�15þ2�26��27þ�36�2�37��45þ2�48þ�57��68ÞÞÞ;

N51¼ 1
2ð4t2ð�15þ�25Þ�6�215t�4stðs�uÞ�6u�225þ�35ð5t�25�6s�35Þþ5�15ðs�25þu�35Þþ14s2�45

�sð6u�15þ tð�15þ6�25þ13�35�2l25ÞÞ�2u2l25Þ;
N53¼8sðt�35þu�45�s�25Þ;
N55¼ 1

2tðtð�25�8�15þ5�45Þþuð9�45�17�15ÞÞ;
N58¼ sð2uð�45�3�35Þ�sðu� tþ4�25þ5�35þ�45ÞÞ;

N63 ¼ �1
2sð5t�35 þ uð12�36 þ 5�45 � 4�46Þ þ sð2t� 2uþ 2�25 þ 2�46 þ 8�26 þ 10�36 � 7�15ÞÞ;

N66 ¼ sð4tð�35 � 2�36Þ þ 2uð�35 þ 3�45 � 4�46Þ � sð6uþ �15 � 6tþ 5�25 � 8�26ÞÞ;
N68 ¼ 1

2sðsð2ð�15 þ t� uÞ � 7�25Þ þ 5u�35 þ 5t�45Þ;
N79 ¼ 1

2sð5t�35 þ uð5�45 þ 4�46 � 4�37 þ 12�47 � 12�36Þ þ sð2ð�16 þ �25 � �27 þ 3�17 � 3�26 þ 4�47 � 4�36Þ � 7�15ÞÞ;
N80 ¼ 16s2ðu� tÞ;
N83 ¼ �9

2k
2
4sðu� tÞ:

The other numerators are given directly in terms of these in Eq. (A5). ForN83 it should be understood that k
2
4 ! 0 only after

canceling the 1=k24 propagator. Alternatively, we can rewrite the snail contributions in terms of the numerators of the graphs
in Fig. 14, we have
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TABLE I. Effective numerators for the vacuum integrals Ivi entering the UV pole of the four-loop N ¼ 8 supergravity amplitude,
and the coefficients arising from writing them as a linear combination of basis vacuum integrals V1, V2, and V8.

Iv Effective numerator V1 V2 V8

Iv1 � 117 674
1485 0 � 117 674

1485 0

Iv2
19 112
1485 �2a;b

8 798 687
5 346 000

212 621
27 000 0

Iv3
9556
1485 �

2
a;b

15 937 019
1 782 000 � 140 951

33 000 0

Iv4 � 16 427
495 � 16 427

495 0 0

Iv5
19 112
1485 �a;c � 19 112

1485 �b;c � 2389
2970 � 2389

1485 0

Iv6 � 4778
495 �a;c þ 4778

1485 �b;c
16 723
2970 � 4778

1485 0

Iv7 � 9556
1485

109 894
7425

90 782
2475 0

Iv8
38 224
1485 �a;b � 2389

675 � 19 112
2475 0

Iv9
38 224
1485 �2a;b � 1 617 353

148 500
2 606 399
74 250 0

Iv10 � 19 112
1485 �a;c � 19 112

1485 �b;c � 2389
2970 � 2389

1485 0

Iv11 � 38 224
1485 �a;b

90 782
22 275 � 9556

825 0

Iv12 � 19 112
1485

31 057
990

38 224
495 0

Iv13
10 048
99

2512
99

10 048
99 0

Iv14 � 19 112
1485 � 4778

275 � 324 904
7425 0

Iv15
19 112
1485

66 892
4455

19 112
495 0

Iv16
19 112
1485 �2a;b

977 101
267 300

88 393
14 850 0

Iv17
39 676
1485

9919
495

19 838
1485 0

Iv18
9556
1485 �

2
a;b � 1 478 791

297 000
661 753
148 500

2389
396

Iv19 � 64 441
1485 0 0 � 64 441

1485

Iv20
38 224
1485 �a;b � 102 727

14 850 � 74 059
7425 0

Iv21
5284
1485

18 494
7425

34 346
7425 0

Iv22
934
165

467
165

1868
165 � 934

165

Iv23
526
135 �a;b � 91

1485 �a;c
279 199
297 000

72 052
37 125 0

Iv24
3736
495 �a;b

26 152
12 375 � 91 532

12 375 0

Iv25 � 9556
1485 �a;b � 2389

2475 � 16 723
7425 0

Iv26 � 11 048
1485 � 17 953

2475 � 44 192
2475 0

Iv27 � 1228
135 � 307

50 � 10 438
675 0

Iv28 � 3736
495

934
825 � 14 944

825 0

Iv29
3736
495 �a;b � 48 568

4125
76 588
4125 0

Iv30
934
495

90 131
24 750

119 552
12 375 0

Iv31
4778
1485 �a;b þ 9556

1485 �a;c � 45 391
19 800 � 112 283

14 850 0

Iv32
19 112
1485 �2a;b

2 721 071
148 500 � 327 293

74 250 � 2389
495

Iv33 � 3736
495 �a;b � 1868

2475 � 1868
275

1868
165

Iv34
4778
297 � 155 285

2376 � 47 780
297 0

Iv35 � 7904
1485 � 3952

495 � 27 664
1485 0
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Iv Effective numerator V1 V2 V8

Iv36 � 3736
495 �a;b

467
4950

7939
2475 0

Iv37
9556
1485 �a;b � 45 391

59 400 � 54 947
29 700 0

Iv38
3736
495

21 482
2475

76 588
2475 0

Iv39
4778
495

45 391
6600

54 947
3300 0

Iv40 � 1228
135 � 3991

225 � 9824
225 0

Iv41
1868
495 �a;b

47 167
9900 � 20 081

4950 0

Iv42
1228
135 �a;b þ 6524

297 �a;c
257 243
14 850 � 16 723

2475 0

Iv43
9556
1485 �a;b � 16 723

14 850 � 2389
825 0

Iv44
19 112
1485 �2a;b � 2 047 373

133 650
212 621
7425 0

Iv45
10 204
1485

323 977
29 700

135 203
4950 0

Iv46
4778
495

16 723
3960

2389
220 0

Iv47 � 9556
1485 � 31 057

2970 � 38 224
1485 0

Iv48 � 4778
495 � 4778

825 � 33 446
2475 0

Iv49
9556
1485

31 057
4950

38 224
2475 0

Iv50 � 16 532
1485 �a;b þ 1403

135 �a;c � 83 233
11 880 � 58 961

5940 0

Iv51
9556
1485 �

2
a;b

33 309 827
2 673 000 � 74 059

13 500 0

Iv52
9556
1485 �

2
a;b � 1 048 771

148 500 � 1 822 807
74 250 � 2389

2970

Iv53 � 19 112
1485 �a;b � 19 112

1485 �a;c
303 403
74 250

1 335 451
37 125 0

Iv54 � 17 036
1485 �a;b � 8518

1485 � 34 072
1485

8518
297

Iv55 � 19 112
1485

962 767
29 700

398 963
4950 0

Iv56
19 112
1485 � 16 723

1980 � 2389
110 0

Iv57 � 934
99 � 91 999

4950 � 38 761
825 0

Iv58 � 2711
5940 �a;d þ 263

540 �b;c
89 141
19 800 � 11 527

2475 0

Iv59 � 2711
2970 � 35 243

12 375 � 46 087
12 375 0

Iv60 � 9556
1485 �a;b � 54 947

59 400 � 74 059
29 700 0

Iv61
1868
495 �a;b

8873
4125 � 1868

4125 0

Iv62
9556
1485

140 951
14 850

174 397
7425 0

Iv63
1868
495 �a;b

34 091
12 375 � 31 756

12 375 � 934
495

Iv64
467
495 �

2
a;b � 467

600
17 279
4950 � 467

1980

Iv65
14 101
1980

183 313
6600

56 404
825 0

Iv66 � 8588
1485 � 916 769

74 250 � 382 166
12 375 0

Iv67
1868
495 �

2
a;b

1401
550

3736
825

467
495

Iv68
1868
495 �

2
a;b

467
450

1868
825

467
165

Iv69
4778
1485 �

2
a;b � 3 843 901

297 000
231 733
148 500

54 947
2970

Total � � � 23
2 23 23

2

TABLE 1. (Continued)
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N830 ¼ N840 ¼ N850 ¼ �9
2sðu� tÞ: (B2)

Plain-text, computer-readable versions of these expressions may be found online [38].
It is interesting to note that N33 can be used as a nonplanar master graph numerator, as discussed in Sec. III B. This

implies that the single numerator N33 contains the same amplitude-specific information as the two planar master
numerators N18 and N28 combined.

APPENDIX C: VACUUM INTEGRALS AND THEIR EXPRESSION IN TERMS OF MASTER INTEGRALS

In the first column of Table I we give the numerators of the vacuum integrals in Figs. 18–20, as they appear in the

expression for ~V
ð4Þ

defined in Eqs. (4.20) and (4.21). Each integral can be reduced to a linear combination of the three
master integrals V1, V2, and V8. The second, third, and fourth columns of the table provide the coefficients of V1, V2, and
V8, respectively, after this reduction. To obtain the coefficient of each vacuum integral Vi in the final formula for the four-
loop UV divergence in Eq. (4.37), we simply sum the numbers in each column labeled by a Vi, to obtain

~V ð4Þ ¼ 23
2 ðV1 þ 2V2 þ V8Þ: (C1)

Inserting this value into Eq. (4.20) yields the final result (4.37).
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