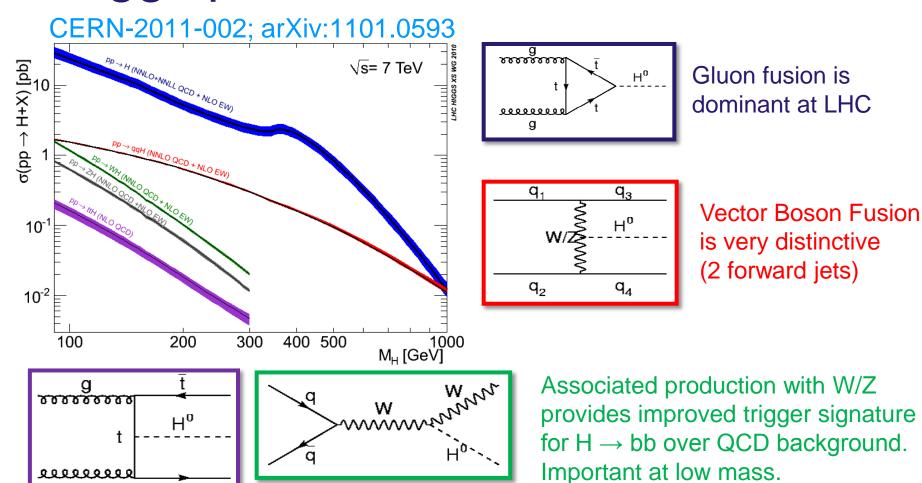


Higgs boson searches at ATLAS

Paul S Miyagawa, University of Sheffield on behalf of the ATLAS collaboration

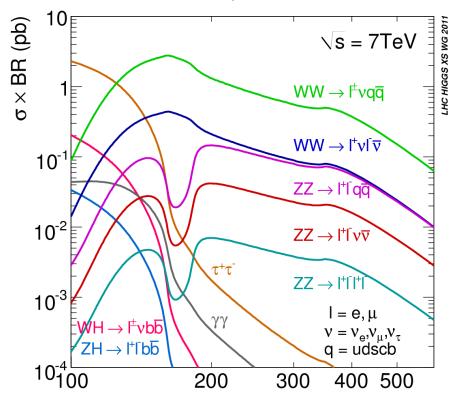
Outline


- Higgs at the LHC
- ATLAS data taking in 2011
- Searches for SM Higgs
 - Intermediate and high mass searches with WW
 - Intermediate and high mass searches with ZZ
 - Low mass searches
 - ATLAS SM Higgs combination
- Searches for MSSM + BSM Higgs
- Conclusions and prospects

3

Higgs production at the LHC

ECTP2011, 4-8 Dec 2011

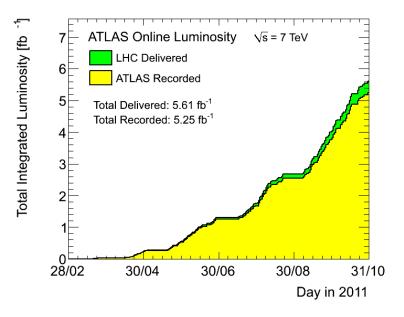


Higgs decay channels

- H → WW^(*)
 - WW →lvqq very large rate; important at high mass
 - WW →IVIV most sensitive
- H → ZZ^(*)
 - ZZ →llqq good for high mass
 - ZZ \rightarrow II $\nu\nu$ best for high mass
 - ZZ →IIII "golden" channel
- $H \rightarrow \gamma \gamma$
 - Rare; best for low mass
- $H \rightarrow \tau \tau$
 - Rare, but good s/b; low mass
- $H \rightarrow bb$
 - Associated production with W/Z
 - Useful but difficult

CERN-2011-002; arXiv:1101.0593

Higgs boson mass (GeV/c²)

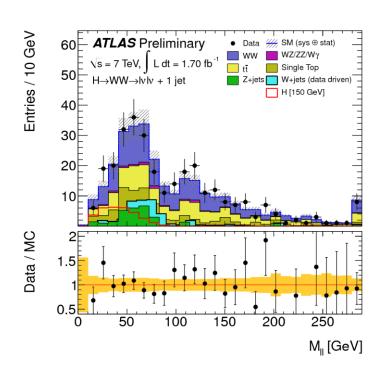

8 Dec 2011

ATLAS data taking in 2011

- ATLAS recorded 5.25 fb⁻¹ in 2011
 - Data taking efficiency 93.5%
- Higgs boson searches performed with 1.0-2.3 fb⁻¹

Intermediate and high mass searches with WW

• $H \rightarrow WW^{(*)} \rightarrow IvIv$: highest sensitivity

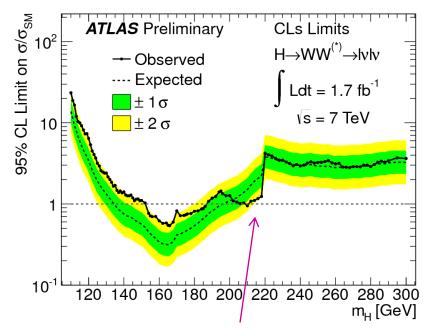

H → WW^(*) → Ivqq

$H \rightarrow WW^{(*)} \rightarrow IvIv$

- 1.7 fb⁻¹ of data; ATLAS-CONF-2011-134
- Most sensitive process for 120 < m_H < 200 GeV
 - Challenging because reconstruction of invariant mass not possible due to two neutrinos
- Event selection
 - 2 opposite sign, high p_T, isolated leptons
 - Cuts on m_{II} to veto dileptons from Y, γ*, Z
 - Large E_T^{miss} separated from the nearest lepton/jet
 - 0 or 1 high p_T light jet
- Event counting analysis
 - Topological cuts on dilepton (m, p_T, Δφ)
 - Cut on transverse mass

$H \rightarrow WW^{(*)} \rightarrow IVIV$

- Main backgrounds
 - WW, top, W+jets, Z+jets estimated from data-driven methods
- Dominant systematics
 - JES, E_T^{miss} measurement (6.1%)
- No significant excess observed
 - Largest deviation from expectation is 2σ at $m_H = 130$ GeV
 - SM Higgs excluded at 95% CL between 154-186 GeV

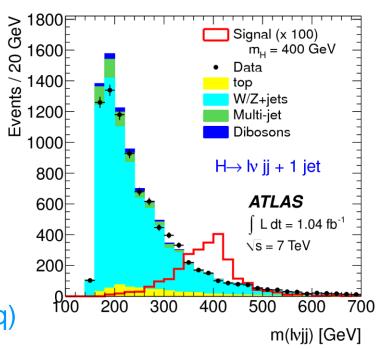

σ/σ_{SM} Higgs production cross section we exclude, divided by the expected Higgs cross section in Standard Model
 Higgs excluded at 95% CL below this line

Observed

--- Expected without Higgs

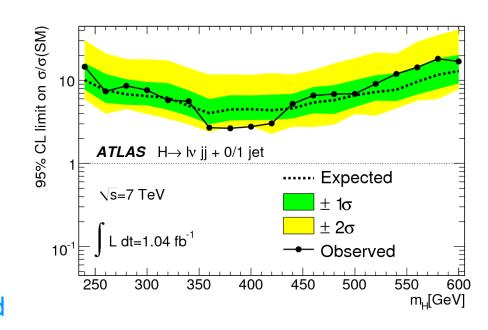
Expected region at 68% Confidence Level

Expected region at 95% Confidence Level



$H \rightarrow WW^{(*)} \rightarrow Ivqq$

- 1.04 fb⁻¹ of data; arXiv:1109.3615
- Acceptable s/b at high mass
 - $m_H > 2m_W$ if both W's are on-shell
 - Search in 240 < m_H < 600 GeV
- Event selection
 - Exactly 1 high p_T, isolated lepton
 - Large E_t^{miss}
 - 2 or 3 high p_T jets with one pair coming from W decay
- Shape analysis of invariant mass m(lvqq)
 - Impose $m_{lv} = m_{W}$



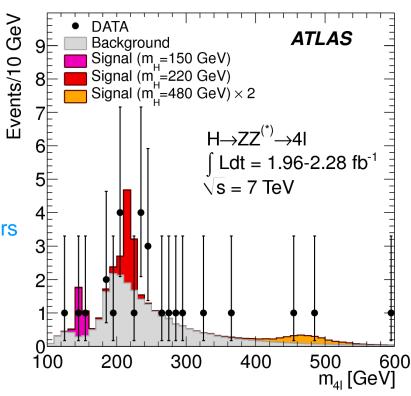
$H \rightarrow WW^{(*)} \rightarrow Ivqq$

- Main backgrounds
 - Z+jets dominates
 - Z+jets, W+jets, top shape predicted from MC, fitted to data
 - QCD multjets estimated from data-driven methods
- Dominant systematics
 - Jet energy scale (17%)
 - Theory (19.4%)
 - Jet energy resolution (8.6%)
- No significant excess observed
 - Upper limit at m_H = 400 GeV is 2.7
 × SM prediction

Intermediate and high mass searches with ZZ

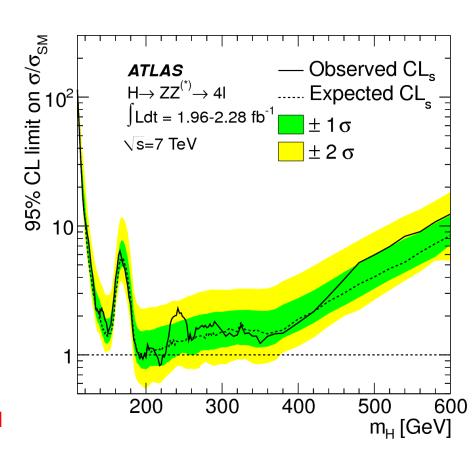
H → ZZ^(*) → IIII : golden channel

• $H \rightarrow ZZ^{(*)} \rightarrow IIvv$: most sensitive for high mass


• $H \rightarrow ZZ^{(*)} \rightarrow Ilqq$

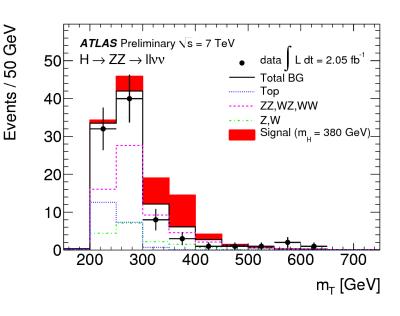
$H \rightarrow ZZ^{(*)} \rightarrow 4I$

- 2.1 fb⁻¹ of data;
 Phys. Lett. B 705 (2011) 435-451
- "Golden" channel
 - Very clean (narrow resonance over continuum), but low rates
 - Search in 110 < m_H < 600 GeV
- Event selection
 - 2 same-flavour, opposite sign dilepton pairs
 - At least one pair from Z
 - All leptons are isolated
 - Constraint on impact parameter for m_{4I} < 2m_Z
- Shape analysis of invariant mass m₄₁



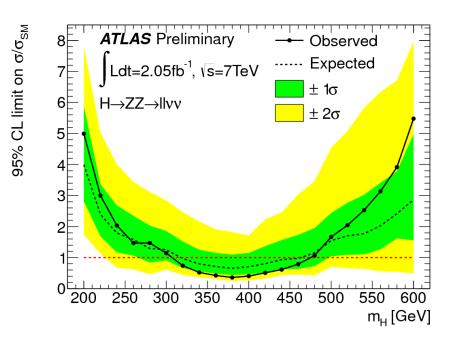
$H \rightarrow ZZ^{(*)} \rightarrow 4I$

- Main backgrounds
 - ZZ from MC (irreducible)
 - ttbar also from MC
 - Z+jets, Z+bb shape from MC, normalised using data
- Dominant systematics
 - e/γ efficiency (3.3%)
 - μ efficiency (1.2%)
- Follows SM prediction quite well
 - Some fluctuations due to single events
 - SM Higgs excluded at 95% CL in mass ranges 191-197, 199-200 and 214-224 GeV



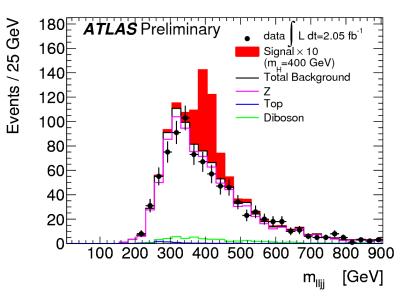
$H \rightarrow ZZ^{(*)} \rightarrow IIVV$

- 2.05 fb⁻¹ of data; ATLAS-CONF-2011-148
- Significant s/b for 200 < m_H < 600 GeV
 - Same final state as WW^(*) → IVIV
- Event selection
 - Z selection with 2 opposite sign, high p_T, isolated leptons
 - Large E_T^{miss}
 - Jets well separated from E_T^{miss}
 - Veto events with b-tags
 - Topological cuts for Z(vv)
- Shape analysis of transverse mass m_T
 - All E_T^{miss} assumed to be from Z



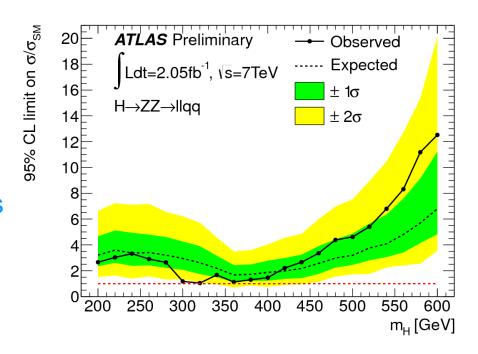
$H \rightarrow ZZ^{(*)} \rightarrow IIVV$

- Main backgrounds
 - Dibosons from MC (irreducible)
 - Z+jets, ttbar, QCD multijets estimated from data-driven methods
- Dominant systematics
 - E_T^{miss} measurement (+6.6%/-4.2%)
- No significant excess observed
 - SM Higgs excluded at 95% CL between 310-470 GeV



$H \rightarrow ZZ^{(*)} \rightarrow IIqq$

- 2.05 fb⁻¹ of data; ATLAS-CONF-2011-150
- Acceptable s/b for m_H > 2m_Z
 - Both Z's are on shell
- Event selection
 - Z selection with 2 opposite sign, high p_T, isolated leptons
 - Veto additional leptons
 - Z selection with 2 high p_T jets
 - Low E_t miss
- Shape analysis of invariant mass m_{Ilji}
 - Angular kinematic cuts for m_H > 300 GeV



$H \rightarrow ZZ^{(*)} \rightarrow IIqq$

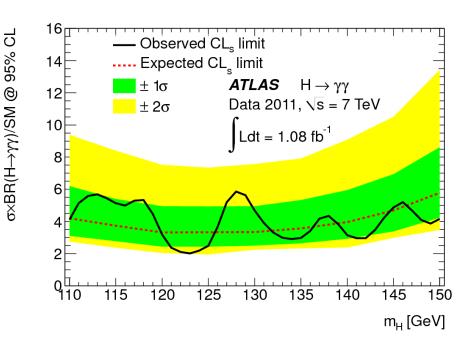
- Main backgrounds
 - Z+jets, ttbar estimated from datadriven methods
- Dominant systematics
 - Jet energy scale (+3.7%/-10.4%)
- Good sensitivity in a large mass range
 - No SM exclusion yet

Low mass searches


- $H \rightarrow \gamma \gamma$: most sensitive
- $H \rightarrow \tau \tau$
- $W/Z + H \rightarrow Iv/II + bb$

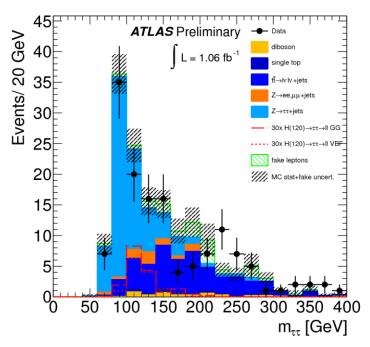
$H \rightarrow \gamma \gamma$

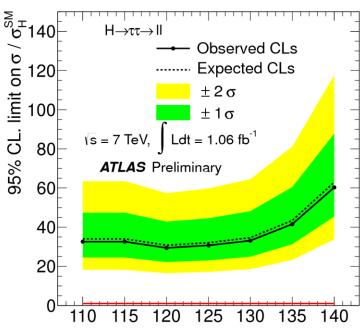
- 1.08 fb⁻¹ of data;
 Phys. Lett. B 705 (2011) 452-470
- Rare decay from W/t loop
 - Clean signature
 - Best for low mass
 - Shape analysis of invariant mass $m_{\gamma\gamma}$
- Event selection
 - 2 high p_T, isolated photons
- Analysis separated into 5 categories
 - η bins and converted/unconverted
 - Data-driven methods for estimating energy resolution and pointing resolution



$H \rightarrow \gamma \gamma$

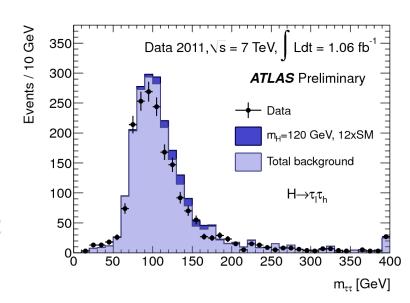
- Main backgrounds
 - γγ + X estimated from data-driven methods (irreducible)
 - γj, jj + X estimated from datadriven methods
- Dominant systematics
 - γ efficiency (+11.6%/-10.4%)
- No significant excess observed
 - Still statistics limited

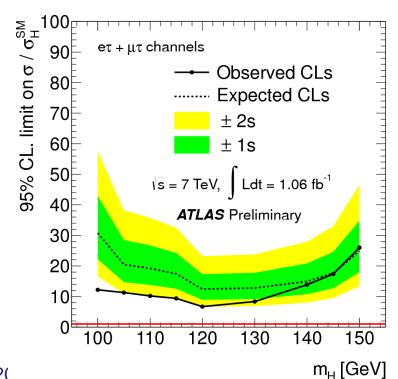

$H \rightarrow \tau \tau$


- Promising channel for 110 < m_H < 150 GeV
 - VBF production offers small background, but low signal production rate
- Three classes of final states depending on τ decay
 - Lepton-lepton (II)
 - Lepton-hadron (Ih)
 - Hadron-hadron (hh): not studied at ATLAS
- Main backgrounds
 - Z(II)+jets, W(Iv)+jets, QCD multijet estimated using data-driven methods
 - Z(ττ) irreducible
- Dominant systematics
 - Jet energy scale (+3.3%/-10.0% for II, +19%/-16% for Ih)

$H \rightarrow \tau\tau \rightarrow \parallel + 4\nu$

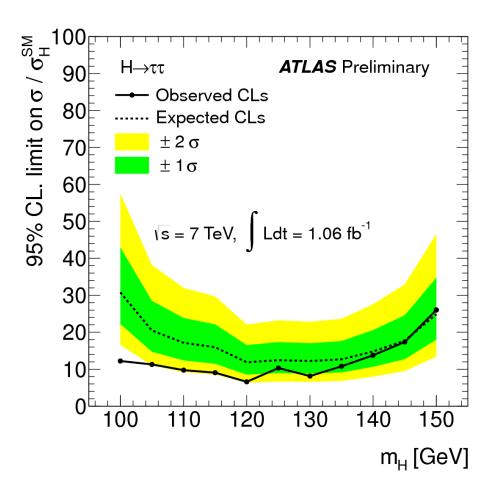
- 1.06 fb⁻¹ of data; ATLAS-CONF-2011-133
- Event selection
 - 2 opposite sign, high p_T, isolated leptons
 - Cuts on m_{II} to veto dileptons from Y, γ*, Z
 - At least 1 high p_T jet
 - Large E_T^{miss}
- Event counting analysis
 - Reconstruct m_{ττ} effective using collinear approximation
 - Apply mass window cut





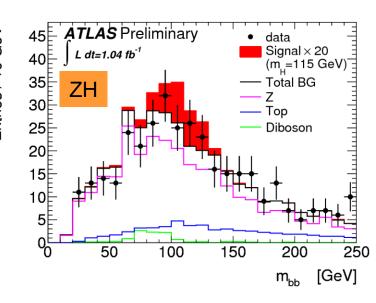
$H \to \tau\tau \to I\tau_{had} + 3\nu$

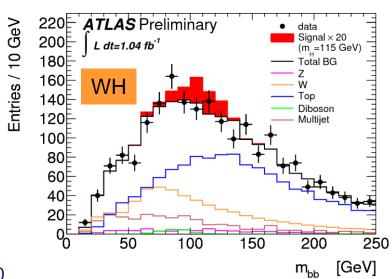
- 1.06 fb⁻¹ of data; ATLAS-CONF-2011-132
- Event selection
 - 1 high p_T, isolated lepton
 - 1 high $p_T T_{had}$
 - Large E_T^{miss}
 - Cut on transverse mass
- Shape analysis using Missing Mass Calculator (MMC)
 - New mass reconstruction technique



$H \rightarrow \tau \tau$

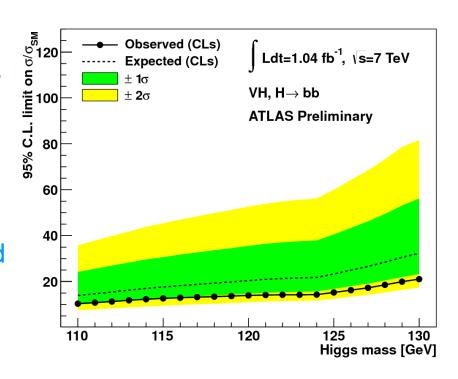
 Combined limit is dominated by lepton-hadron limit





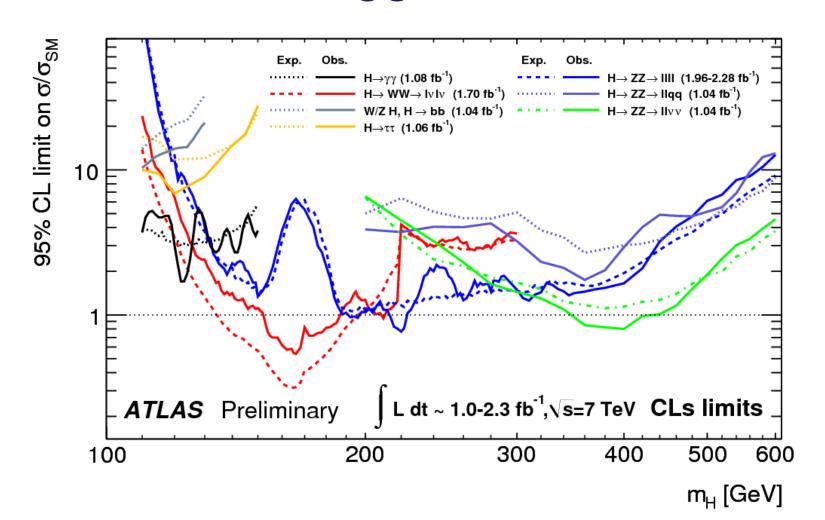
$W/Z + H \rightarrow Iv/II + bb$

- 1.04 fb⁻¹ of data; ATLAS-CONF-2011-103
- $H \rightarrow bb$ is dominant decay channel for $110 < m_H < 130 \text{ GeV}$
 - QCD jet background renders an inclusive search impossible and a search in association with W/Z and ttbar challenging
 - Possibility of directly measuring Higgs to quark couplings
- Event selection
 - Identify W/Z leptonic decay
 - Exactly 2 b-tagged, high p_⊤ jets
 - WH cuts to veto ttbar
 - ZH cuts to veto E_Tmiss
- Shape analysis of invariant mass m_{bb}



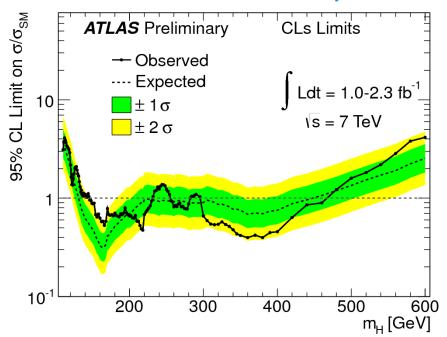
$W/Z + H \rightarrow |v/H + bb|$

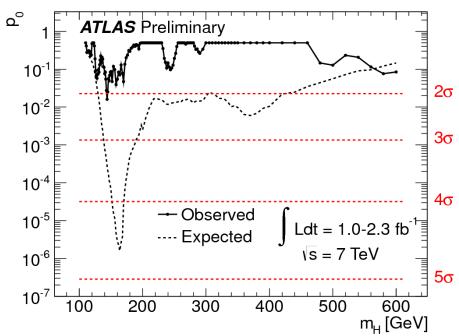
- Main backgrounds
 - W+jets, Z+jets, top, QCD multijets estimated from data-driven methods
 - Diboson from MC
- Dominant systematics
 - b-tag efficiency (17%)
- No significant excess observed



ATLAS Standard Model Higgs combination

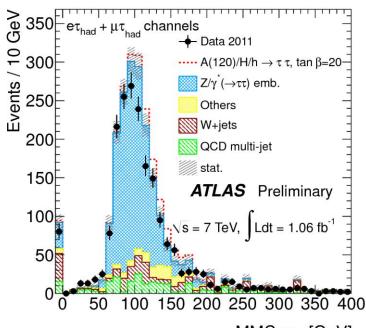
ATLAS SM Higgs search



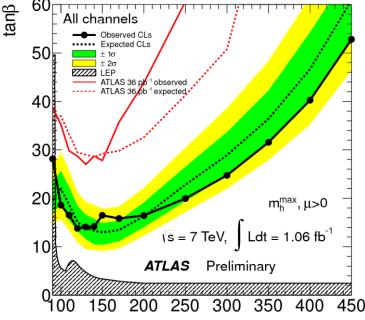

ATLAS SM Higgs combination

- Standard Model Higgs excluded at 95% CL in mass ranges 146-230, 256-282, 296-459 GeV
- p-value is probability that the predicted background will fluctuate as high as the observed excess

No combined excess beyond 2.1σ is observed

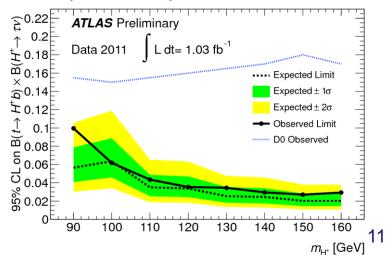

Searches for MSSM + BSM Higgs

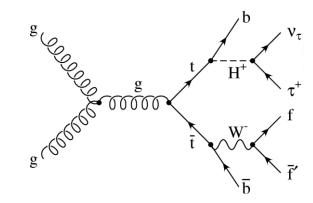
- MSSM H/A/h $\rightarrow \tau \tau$
- MSSM $H^+ \rightarrow \tau \nu$
- $H^+ \rightarrow CS$
- $H^{++} \rightarrow \mu^{+}\mu^{+}$
- Fermiophobic Higgs

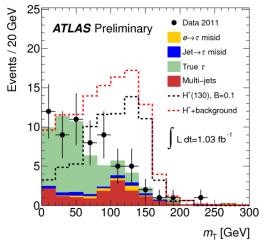


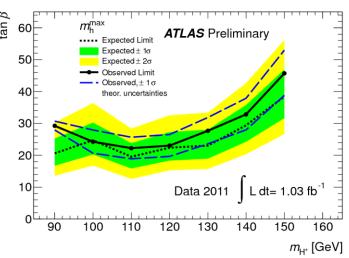
MSSM H/A/h → ττ

- 1.06 fb⁻¹ of data; ATLAS-CONF-2011-132
- One of the most promising channels
 - $gg \rightarrow H/A/h$ and associated b production
- Mass reconstruction depends on τ decay channels
 - $e\mu + 4\nu$: reconstruct $m_{TT}^{effective}$
 - $I\tau_{had}$ + 3ν : Missing Mass Calculator $m_{\tau\tau}$
 - $\tau_{had} \ \tau_{had} + 2\nu$: reconstruct $m_{\tau\tau}^{visible}$
- Main backgrounds
 - Z/W+jets, top, diboson
 - QCD for eµ and lτ_{had}
- Iτ_{had} provides most stringent limit

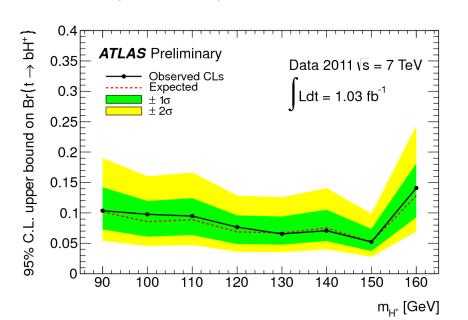

MMC $m_{\tau\tau}$ [GeV]

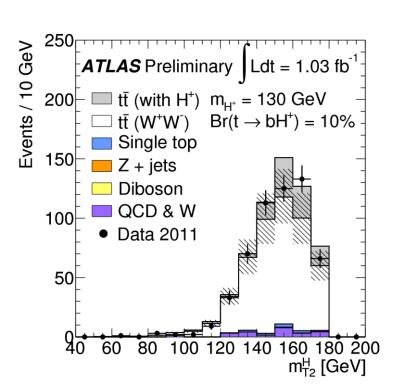


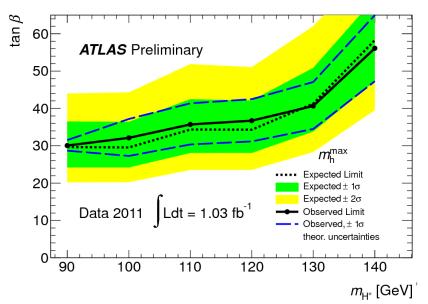



$H^+ \to \tau \nu \to \tau_{had} + 2 \nu$

- 1.03 fb⁻¹ of data; ATLAS-CONF-2011-138
- A light H⁺ produced in top decay
 - For ttbar topology, H⁺ replaces one W
 - For $tan \beta > 3$, decays to τv
- For τ_{had} + 2 ν , reconstruct transverse mass
- No signal seen
 - Upper limits on branching ratios and MSSM parameter space

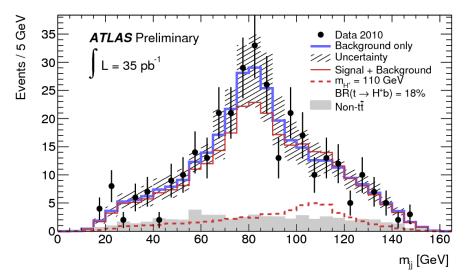


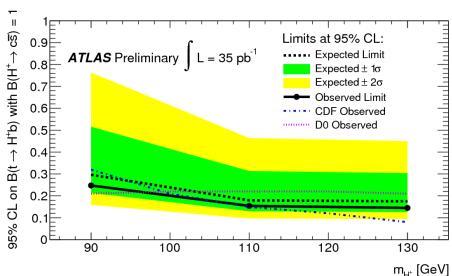




$H^+ \rightarrow \tau \nu \rightarrow e/\mu + 3\nu$

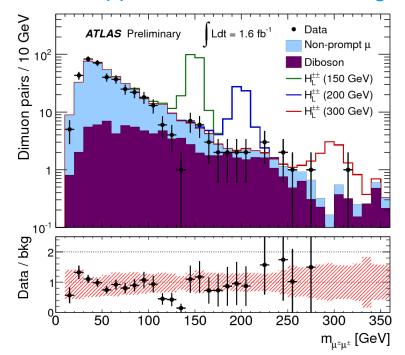
- 1.03 fb⁻¹ of data; ATLAS-CONF-2011-151
- For e/μ + 3ν, solve event kinematics
 - Maximise transverse Higgs mass
- No signal seen
 - Upper limits on branching ratios and MSSM parameter space

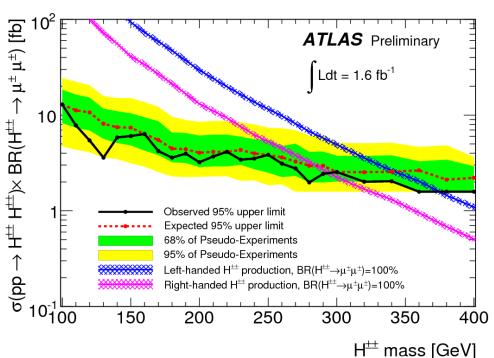




$H^+ \rightarrow cs$

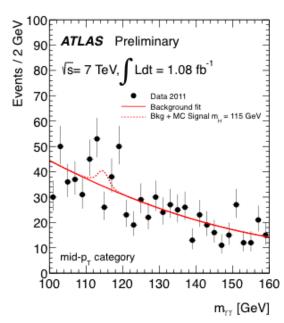
- 35 pb⁻¹ of data; ATLAS-CONF-2011-094
- Same ttbar topology as for H⁺ → τν
 - H⁺ decays to 2 jets; dominates at tanβ < 1
 - Kinematic fit of ttbar with top mass constrained to latest measured value
 - H⁺ appears as a heavy W in m_{ii} distribution
- No signal seen
 - Upper limit set on branching ratio Br(t→H+b) x Br(H+→cs)

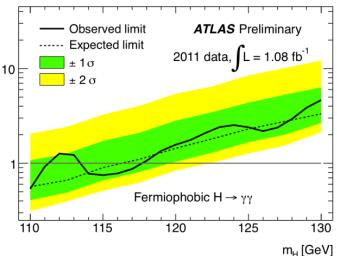




$H^{++} \rightarrow \mu^+ \mu^+$

- 1.6 fb⁻¹ of data; ATLAS-CONF-2011-127
- Predicted in little Higgs, Higgs triplet and left-right symmetric models
- Look for dimuon resonance
- Upper limit set on branching ratio



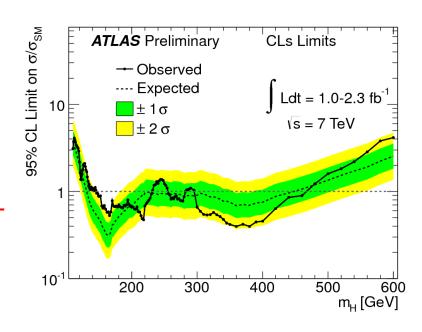


Fermiophobic Higgs

- 1.08 fb⁻¹ of data; ATLAS-CONF-2011-149
- Extension of SM Higgs which does not couple to fermions
 - Vector Boson Fusion and associated VH production only
 - Decays to γγ, WW, ZZ, Zγ
- Focused on γγ channel
 - Reconstruct m_{vv}
- Upper limits on simplistic fermiophobic Higgs extension of SM
 - Limits on SM Higgs also constrain the limits on fermiophobic Higgs
 - Excluded in mass ranges 110-112 and 113-118 GeV at 95% CL

95% CL limit on $\sigma\!/\sigma_{\sf Fermiophobic}$

Conclusions and prospects



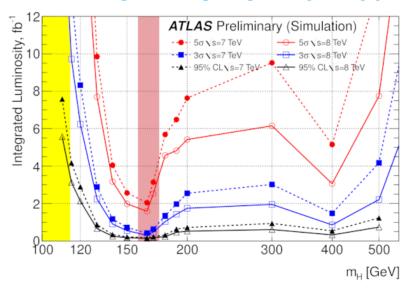
Conclusions

Standard Model Higgs

- Searches performed in several channels with luminosity 1.0-2.3 fb⁻¹
- Statistical combination shows no significant excess in 110-600 GeV
- SM-like Higgs is excluded at 95% CL in mass ranges 146-230, 256-282, 296-459 GeV

MSSM + BSM Higgs

- Also probed a wide variety of non-Standard Model
 - MSSM Higgs
 - Singly and doubly charged Higgs
 - Fermiophobic Higgs
- No excess observed in the channels studied



Prospects

- Analysis of full 2011 dataset to be announced 13 December @ CERN
 - More than 2σ sensitivity in entire mass range expected
- Work underway to optimise object performances, reduce systematics and optimise selections
- Additional 5-10 fb⁻¹ in 2012
 - Discovery possible over most of mass range
 - Conclusive answer on the Standard Model Higgs should be achievable
- Very exciting times ahead!

ATLAS-PHYS-PUB-2011-001

