EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

Letter of Intent to the ISOLDE and Neutron Time-of-Flight Committee

Positron Annihilation Spectroscopy using a Digital PAC Spectrometer

December 21, 2011

J. Röder^{1,2}, M. Martin², K. Johnston^{1,3}, J. G. M. Correia^{1,7}, C. Herden⁴, R. Krause-Rehberg⁵ K.D. Becker⁶

¹PH Dept., CERN, 121 Geneva 23, Switzerland

²Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, D-52056 Aachen, Germany

³Technische Physik, Universität des Saarlandes, 66041 Saarbrücken. Germany

⁴ViewPlus Technologies, 1853 SW Airport Ave, Corvallis, USA

⁵Department of Physics, University Halle, Fr.-Bach-Platz 6, 06108 Halle, Germany

⁶Institute of Physical and Theoretical Chemistry, Hans-Sommer-Str. 10, 38106 Braunschweig, Germany

⁷ Institute Tecnológico Nuclear, E.N. 2686-953 Sacavém, Portugal

Spokesperson: Jens Röder **Contact person:** [Jens Röder] [jens.roder@cern.ch]

Abstract: Positron Annihilation Spectroscopy can be performed with a digital Perturbed Angular Correlation spectrometer without changes of the machine setup. This experiment will prove the possibility to extend this method for solid state science at ISOLDE.

Requested shifts: 4 shifts, parasitically

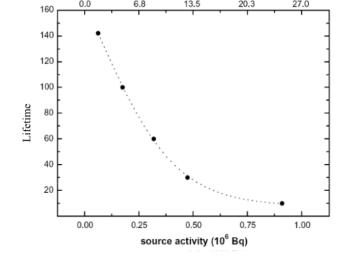


Figure 1: Optimal activity of positron source in comparison with lifetimes to be measured.

1 Introduction

Positron Annihilation Spectroscopy (PAS) is a technique sensitive to lattice imperfections which allows one to investigate e.g. vacancies in ionic crystals, plastically deformed semiconductors, or vacancies in thermal equilibrium in metals. Positrons are localized or trapped by open-volume defects. The lifetime of trapped positrons is correlated to the local electron density.

For the detection, the decay γ -quant of 1.275 MeV in coincidence with the annihilation γ -quant of 511 keV are detected in a very similar setup as used for Perturbed Angular Correlation (PAC). In a standard PAS setup, only two detectors are required, while a PAC setup has depending on its construction 4, 6 or more detectors. Currently an extension from a 4 to an 8-detector digital PAC setup is under development and expected to be finished during the winter period. Using a digital PAC spectrometer therefore improves the efficiency with its numbers of 180° pairs. Recording a PAS experiment in a digital PAC machine does not require any changes or modification to the spectrometer. However, a higher time resolution than usually needed for PAC is required.

With this experiment we want to test the usability of PAS in the existing digital PAC setup and extend the available solid state methods at ISOLDE.

2 Experimental

At the first stage, simple sandwich experiments will be performed: Two pellets or crystals of the material to be investigated will be fixed around a positron emitting source, allowing the positrons to penetrate into the crystal. The source can be made of ²²Na being implanted into 5 μ m Aluminium foil with about 30-50 keV. The sandwich setup permits to reuse the source for many experiments.

A source with a higher activity accelerates the measurement, however, the signal to background ratio is decreasing. This leads to overlapping of longer lifetimes signals with the background signal. An optimal activity has been suggested by [1], see Figure 1. Three sources with different activities will be produced: 0.1, 0.3, 0.7 MBq which will allow to setup optimal conditions for the measurements.

Due to the long lifetime of 22 Na, measurements will be performed during the long shutdown time in 2013.

Sources can be more or less produced parasitically at any calibration time of other experiments when target beam is not needed, in parallel or at target cooling times.

3 Perspectives

Positron Annihilation Spectroscopy can be principally performed with a digital Perturbed Angular Correlation spectrometer without changes of the machine setup. With these experiments, we want to prove this possibility and extend the methods for solid state science at ISOLDE. When measurements are successful, high temperature PAS measurements, using the PAC furnace, will be performed under controlled atmospheres, implanting ²²Na directly into the samples.

The sources will be also useful for testing and improving time resolution of the digital PAC. As a side effect, these sources can be used for time calibration on standard PAC setups during busy measurement periods.

Summary of requested shifts: 4, Ti or UC_x unit.

Ti units have a high yield of 10^9 atoms/s and samples can be produced within 15 minutes. UC_x units have lower yields of about $3 \cdot 10^4$ atoms/s for ²¹Na. No detailed values available for ²²Na yet.

References

[1] Thraenert, S., Hassan, E.M., Krause-Rehberg, R.; NIM B248 (2006) 336

Appendix

DESCRIPTION OF THE PROPOSED EXPERIMENT

The experimental setup comprises: (name the fixed-ISOLDE installations, as well as flexible elements of the experiment)

Part of the	Availability	Design and manufacturing	
SSP-GLM chamber, SSP-GHM	\boxtimes Existing	\boxtimes To be used without any modification	
chamber			
[Part 1 of experiment/ equipment]	\Box Existing	\Box To be used without any modification	
		\Box To be modified	
	\Box New	\Box Standard equipment supplied by a manufacturer	
		\Box CERN/collaboration responsible for the design	
		and/or manufacturing	
[Part 2 of experiment/ equipment]	\Box Existing	\Box To be used without any modification	
		\Box To be modified	
	\Box New	\Box Standard equipment supplied by a manufacturer	
		\Box CERN/collaboration responsible for the design	
		and/or manufacturing	
[insert lines if needed]			

HAZARDS GENERATED BY THE EXPERIMENT (if using fixed installation:) Hazards named in the document relevant for the fixed [COLLAPS, CRIS, ISOLTRAP, MINIBALL + only CD, MINIBALL + T-REX, NICOLE, SSP-GLM chamber, SSP-GHM chamber, or WITCH] installation.

Additional hazards:

Hazards	[Part 1 of experiment/	[Part 2 of experiment/	[Part 3 of experiment/		
	equipment]	equipment]	equipment]		
Thermodynamic and fluidic					
Pressure	[pressure][Bar], [vol- ume][l]				
Vacuum					
Temperature	[temperature] [K]				
Heat transfer					
Thermal properties of					
materials					
Cryogenic fluid	[fluid], [pressure][Bar], [volume][l]				
Electrical and electromagnetic					
Electricity	[voltage] [V], [cur- rent][A]				
Static electricity					

Magnetic field	[magnetic field] [T]		
Batteries			
Capacitors			
Ionizing radiation			
Target material [mate-			
rial			
Beam particle type (e,			
p, ions, etc)			
Beam intensity			
Beam energy			
Cooling liquids	[liquid]		
Gases			
	[gas]		
Calibration sources:			
Open source			
• Sealed source	$\Box [\text{ISO standard}]$	22NI	22 51
• Isotope	^{22}Na 4.10 ¹⁰	²² Na	²² Na
Number of atoms	-	$1.2 \cdot 10^{11}$	$2.8 \cdot 10^{11}$
Activity	0.1 MBq	0.3 MBq	0.7 MBq
Use of activated mate-			
rial:			
• Description			
• Dose rate on contact	[dose][mSV]		
and in 10 cm distance			
• Isotope			
• Activity			
Non-ionizing radiatio	n		
Laser			
UV light			
Microwaves (300MHz-			
30 GHz)			
Radiofrequency (1-300			
MHz)			
Chemical			
Toxic	[chemical agent], [quan-		
	tity]		
Harmful	[chem. agent], [quant.]		
CMR (carcinogens,	[chem. agent], [quant.]		
mutagens and sub-			
stances toxic to repro-			
duction)			
Corrosive	[chem. agent], [quant.]		
Irritant	[chem. agent], [quant.]		
Flammable	[chem. agent], [quant.]		
Oxidizing	[chem. agent], [quant.]		
Explosiveness	[chem. agent], [quant.]		
Asphyxiant	[chem. agent], [quant.]		
1.5pity.Maill	[[onom. agoin], [quant.]		

Dangerous for the envi-	[chem. agent], [quant.]			
ronment				
Mechanical				
Physical impact or me-	[location]			
chanical energy (mov-				
ing parts)				
Mechanical properties	[location]			
(Sharp, rough, slip-				
pery)				
Vibration	[location]			
Vehicles and Means of	[location]			
Transport				
Noise				
Frequency	[frequency],[Hz]			
Intensity				
Physical				
Confined spaces	[location]			
High workplaces	[location]			
Access to high work-	[location]			
places				
Obstructions in pas-	[location]			
sageways				
Manual handling	[location]			
Poor ergonomics	[location]			

Hazard identification:

Average electrical power requirements (excluding fixed ISOLDE-installation mentioned above): [make a rough estimate of the total power consumption of the additional equipment used in the experiment]