

Cate

LHCb VELO and LHCb VELO Upgrade

The VELO is....

Mobile: opening every fill and centering on the beam with self measured vertices A device operating in vacuum

Separated from primary vacuum by RF foil with complex shape

The VELO does...

Triggering

- Entire VELO is read out after 1 MHz L0 trigger
- VELO identification of displaced vertices is key ingredient of trigger filter to ~ few kHz

Tracking and Vertexing

- Beauty and charm physics with multibody final states and low momenta
- And also...
 - Beam bunch imaging for luminosity measurement
 - Self radiography with hadronic interaction vertexing...

For more discussion of LHCb tracking see talk by Grieg Cowan

VELO Performance: Operation

Efficiency

- Efficiency generally extremely good
- Most inefficiencies understood

Evaluation of misalignment by the distance between the 2 vertices R Sensors Cluster finding efficiency (%) 6 00 Phi Sensors Stability of 2 half alignment by PV method: within $\pm 5 \mu m$ for Tx 98 99.79% within $\pm 2 \mu m$ for Ty LHCb VELO Preliminary 96 Mean (∆PVx_{A-c}) [µm] **-HCb Preliminary** VS = 7TeV Data 92 -10 90 25 30 10 15 20 35 5 -15 Module Number -20 76000 78000 80000 **Run Number** One chip died after installation

Alignment

Reconstruct PV using tracks in left or in the right

PV method:

side

VELO Performance: Resolution

Key Ingredients:

VELO ageing and radiation

Radiation environment at VELO harsh

The price of success...

7 December 2011

Taiwan

Monitoring radiation damage

Basic Techniques:

- Currents
 - vs voltage
 - vs temperature
 - Sensitive to bulk damage
 - Good statistics to measure E_g
- Noise as a function of voltage
 - Tracks V_{dep} evolution and type inversion
- CCE (charge collection efficiency) as a function of voltage
 - Tracks V_{dep} evolution
- CFE (cluster finding efficiency) as a function of voltage

Ultimate measure of detector performance

Some results in line with expectation

Some results in line with expectation

p-type behaviour as expected ?

Initial acceptor removal mechanism Boron Interstitial captured by Oxygen/Carbon

→Decrease in V_{dep} initially

Thanks for discussions: Cinzia, Alexandra, Tony, Gianluigi,, Gregor, Steve Watts, Nobu References:

- Lemeilleur et al. RD-2, Nuclear Physics B (Proc. Suppl.) 32 (1993) 415-424
- Watts et al., Nuclear Instruments and Methods in Physics Research A 377 (1996) 224-227
- Unno: NIMA 383 (1996) 159-165 and IEEE Transactions on Nuclear Science, 56 (2009) 468-473
- Eckstein: 12th RD50 workshop, Ljulbjana, Slovenia, June 2008
- Lozano: (work with Gian) : RD50 workshop 2004, "comparison of radiation hardness p-in-n, n-in-n, n-in-p
- V.Cindro: Nuclear Instruments and Methods in Physics Research A 599 (2009) 60–65

[%] Landau shapes of R sensors are deteriorating CFE March 2011 March 2011 EDV for Sensor 5: ctober 201 60\ 100\ R 150\ LHCb VELO Preliminary LHCbVELO Preliminary VELO Prelimina õ Radius / mm **Cluster ADC Cluster ADC** CFE for S: 40, 150V, bad strips removed CFE for S: 40, 150V, bad strips removed X/mm X/mm LHCb VELO Preliminary LHCb VELO Preliminary 4() 20 30 ٩N -10 -20 -10 Y/mm -30 Y/mm After irradiation Before irradiation

> LHCb VELO and Upgrade, HST8, Taipei, Taiwan

R sensors are showing inefficiencies at the outer parts which are inversely dependent on HV

Historical footnote

minimum pitch: 24.8μm, maximum pitch: 140μm

We saw charge loss for irradiated detectors to the routing line In 1999 and made the decision to

- 1. Go for n+n detectors
- 2. To be doubly safe, route the 2^{nd} metal lines *over* the 1^{st} metal for the ϕ sensors

VELO R Sensor – routing lines cross strips by necessity

- What is the exact mechanism ?
 - Form of surface damage?
- Why worse at higher voltage ?
- Why worse at outside of sensors ?
- What will happen in future?

For more details see Jon Harrison & Adam Webber's poster

VELO Challenges @ 40 MHz & 2×10^{33}

- Completely new modules and FE electronics
 - Two major options under consideration: Pixels and strips
- Must be
 - Capable of dealing with huge data rate
 - > 12 Gbit/s for hottest pixel chip
 - On-chip zero suppression and CM algorithms for strip chip
 - Able to withstand radiation levels of ~ 370 MRad or 8 x 10¹⁵ n_{eq}/cm²
- Completely new module cooling interface
- New RF foil
- All without sacrifices in material budget

Pixel module layout in LHCb Upgrade LOI

Diamond substrate Excellent heat conduction, mechanical stability & radiation hardness R&D focussing on metallisation for signal & power traces

Pseudo double-sided module with 3x1 pixel tiles arranged on opposite side of diamond substrate

CO₂ cooling options:

- CF encapsulated invar tube
- Microchannel etching + anodic bonding

Sensor + ASIC developments

VELOPix ASIC under advanced stage of development based on Timepix/Medipix

- 55 x 55 μm square -> one measurement per plane saves on material
- Simultaneous ToT and ToA information
- □ Fast Front end < 25 ns

S

- Data driven readout and super pixel clustering to share time stamp and resources
- Timepix3 (130 nm) submission Q2 2012; VELOPix Q1 2013
- Sensor R&D focussed on
 - Multi-ASIC bump-bonding on thin sensors
 - Minimal guard ring design (asymmetric??), slim edges: trenches, sidewall Al₂O₃
 - Minimization of dead areas inter ASICs: elongated pixels, routing
 - **CNM** + Micron + VTT

- New ASIC under development
 - Clustering, sparsification, common mode supression, pedestal subtraction etc..
- Fine pitch strip designs in production at Hamamatsu and Micron

Testbeam Telescope

- Timepix based telescope constructed and operated for LHCb upgrade in collaboration with Medipix group
- \square > 15 kHz track rate with 2 μ m resolution + 1 ns time stamp
- CO2 cooling; together with Peltier DUT can reach -50°C
- Fully remote controlled mechanics
- Designed in framework of AIDA to integrate many different DUT devices with simple software
 - 40 MHz r/o (Beetle, SipM, FEI4)
 - Frame based readout (Timepix, Medipix)
- Available for users in AIDA WP9.3 please apply for beam time before end December!

See Matt Reid's poster for more details

Conclusions

- LHCb has turned out to be a very interesting beam test for irradiated silicon detectors
- We access a big range of irradiation parameters and this, together with precise cooling control get decent statistics
- n⁺n and n⁺p sensors can be compared in identical conditions
- Party Puzzle: How to cure our 2nd metal layer issue?
- And we may have seen the first New Physics from the LHC at the same time (LHCb seminar, CERN, December 6th)
- We will pursue our physics program with an upgraded detector in 2018

Thank you for your attention

Backup

Backup slides - Upgrade

Summary: *(a)* $L = 2 \ge 10^{33}$

For strips 'halfstation' = r + phi sensor!

	strips black=128 ch/asic, red =256 ch/asic	pixels	
# ASICS/half station	40 (<mark>20</mark>)	24	
# half stations	42	52	•
# ASICS total	1680 (<mark>840</mark>)	1248	
Cluster size	1.6 (<mark>1.6</mark>)	2.2	
# clusters / half station/ 25 ns.	52.6 (<mark>52.6</mark>)	25.8	
<pre># pixel(strips) hits / half station /25ns.</pre>	84.2 (<mark>1.6</mark>)	56.8	
# bits / cluster	42.4 (<mark>34.4</mark>)	52.3	
# bits / pixel(strip) hit	26.5 (<mark>21.5</mark>)	23.8	
Hottest chip output rate	1.4 Gbit/s (<mark>2.24</mark>)	12.2 Gbit/s	
Coolest chip output rate	1.4 Gbit/s (<mark>2.24</mark>)	1.5 Gbit/s	
Data rate / half station	56 Gbit/s (<mark>44.7</mark>)	54.3 Gbit/s	
Total data rate	2352 Gbit/s (<mark>1880</mark>)	2823 Gbit/s	
7 December 2011	Taiwan		

Pixel Data Rates @ L=2 x 10^{33}

Hit rates and data rates

- Assuming 5.8 tracks per 25 ns in the hottest chip (= 230 Mhz track rate) and 25.8 tracks per halfstation.
- Simulation gives 2.2 pixel hits per cluster
- Hottest chip must cope with ~500 MHz, or 250 MHz/cm²
- Compressed data scheme has (28+n*8) bits per pixel (n= # pixel in cluster). On average 52.3 bits/cluster.
- Hence 12.2 Gbit/s from hottest chip no headroom
- 2823 Gbit/s from whole VELO

Number of Links

- Assuming each link provides 4 Gbit/s.
- Maximum number of links = 4 per chip, or 48 per half station
- For 26 full stations this gives 2496 links
- If the number of links is optimised per chip, we arrive at a minimum of 1040 links (with no safety margin)

For L=10³³ these numbers are all divided by 2

Number of tracks per half station per event

Strip Data rates @ $L=2 \ge 10^{33}$

- 26.3 tracks per sensor per event
- Protocol e.g. as suggested by Lars
 - 12 bit bunch crossing number
 - 7, 8 or 9 bits address of strip within the chip
 - 4 bits ADC value per chip
 - 2 bits to describe the data sequence
 - New/next event <11>=<NE>: start of an event
 - Consequtive hit <10>=<CL>: ADC of next strip in cluster to follow
 - End of cluster <01>=<EC>: End of cluster, next value is a new address
 - End of buffer <00>=<EB>: No more data in buffer
- 1.3 clusters per 128 channel ASIC
- 1.6 hits per cluster
- On average, 26.5 (21.5) bits per cluster for 128 channel chip (256 channel chip).
- 1.4(2.24) Gbit/s/chip, 2352 (1880) Gbit/s for the whole VELO for 128 channel (256 channel) chip
- Hence 1 link per chip more than sufficient and even gives headroom for more luminosity
- 20 x 42 x 2 = 1680 links for the VELO (for a 128 channel chip), can reduce to 840
- 10 x 42 x 2 = 840 links for the VELO (for a 256 channel chip)

For L=10³³ these numbers are all divided by 2

Number of tracks per sensor per event

Radiation Environment @ Upgrade

 At 7 mm from beam we accumulate ~ 370 MRad or 8 x 10¹⁵ n_{eq}/cm² for 100 fb⁻¹

RD50 studies have shown that silicon irradiated at these levels still delivers a **signal** of ~ 8ke⁻ / MIP Limit of strip sensor operation Latest estimates: VELO can survive 20 fb-1, if no thermal runaway, DM effects

Dose is highly non-uniform – could pose a challenge, particularly for large sensors

Foil - Critical component of VELO Upgrade

Two major options have seen considerable R&D – both aiming to eliminate welding step

CF composites (Syracuse)

- Good X/X0
- CRFP layups can adopt "any shape"
- Benefit from CMA expertise in space based mirror manufacture (challenge of adhesion in vacuum)
- Suitable materials and clamping technique identified
- Additional investment needed for next step

Milling out of one box (Nikhef)

- · Mill flange with holes.
- Mill the inside.
- Cover inside with hard wax.
- Fill with Sikadur epoxy mixed with glass spheres.
- Mill the outside.
- Check the thickness (next slide).
- Drain the wax at 75 degrees.
- Remove the filler, clean the box

Milling of the inside (2)

Leak rate < 10⁻⁹ mbar I/s!

New milling machine with sufficient floor plan for complete box purchase for 2012

Upgrade Steering Panel Report 9/2011

Backup slides – Radiation Damage

VELO – most exposed silicon @ the LHC

- Accumulate 0.5 x 10¹⁴ n_{eq} at most irradiated sensor tip per fb⁻¹ (we got ~ 1 fb⁻¹ so far)
- We have 86 n⁺-in-n type sensors and 2 n⁺-in-p type
- Use of VELO data to measure VELO fluence and ageing
 - currents as a function of Voltage and Temperature
 - Noise as a function of HV
 - CCE as a function of HV
 - Landau distributions, cluster sizes, cluster distributions, detector resolution, SEU studies...

Silicon Currents at operational temperature as a function of time

Silicon currents in the VELO as a function of delivered luminosity

per fb⁻¹

Current in irradiated silicon sensors (simple view)

In order to follow the evolution of the bulk current we should disentangle the two

Why use IT (current vs temp) data?

*A.Chilingarov, Generation current temperature scaling, 9 May 2011, https://rd50.web.cern.ch/rd50/doc/Internal/rd50 2011 001-I-T scaling.pdf,

Typical changes before and after irradiation

Bulk current dominated sensor both before and after irradiation

Surface current dominated sensor before irradiation, Bulk dominated after

Before irradiation: Bulk and Surface current

After irradiation: Bulk and Surface current

Exponential factor (Taka-Kondo-factor)

Our temperature corrections are very large, and we have 88 sensors, and so it is worth checking the exponent in the formula for our system by multiplying it by a factor "Taka-Kondo-factor"

We can directly measure the "effective band gap" and compare it to theory (1.21 eV)

	Preliminary	"effective band gap E _g "
d Upg: Taiwa	100V 0 pb ⁻¹	0.68 +- 0.08 eV
	100V 40 pb ⁻¹	1.29 +- 0.3 eV
	100V 480 pb ⁻¹	1.12 +- 0.06 eV
	150∨ 480 pb⁻¹	1.11 +- 0.07 eV
	150V 821 pb ⁻¹	1.10 +- 0.04 eV

7 December 2011

Measurement of effective E_g

(Taka-Kondo-Alex-Chilingarov-factor)

A different method to track bulk and surface current changes

IV curves before and after irradiation

Current(Micro A)

Bulk current dominated sensor before and after irradiation

LHCb VELO Preliminary

Surface current dominated sensor before irradiation, mixture afterwards

Using a simple requirement that the slope is flat before and after irradiation completely cleans up the current curves

(b) LHCb VELO and Upgrade, HST8, Taipei, Taiwan

How do our measured and expected

currents compare?

- Current generation in irradiated silicon diodes one of the most precisely measured quantities in the business
- Identical for all fluences and substrate types
- But... we have to correctly treat annealing and temperature factors, and these factors can be large
- Annealing data not available at our operational temperature
- Use Arrhenius relation to convert all time into equivalent time at 21°

$$\alpha_{T1}/\alpha_{T2} = \exp(-E_g/k_bT_1) / \exp(-E_g/k_bT_2)$$
(where Eg=1.31 eV)

Calculation of α

- Silicon temperature measured via thermographs in vacuum tank burnin system
- Typically 3 degrees warmer then top NTC, with some spread
- LHCb-2007-082
- Silicon temperature folded with luminosity to derive an effective $\alpha^* \mathcal{L}$

7 December 2011

Estimate of damage from MC

- Use standard LHCb simulation to measure path lengths of particles in silicon
- Use radiation damage tables into to convert to damage

A. V. I. Bucharest) and G. L. U. of Hamburg), "Displacement damage in silicon, on-line compilation." http: //sesam.desy.de/members/gunnar/Si-dfuncs.html

Comparison of data and MC

- Satisfactory agreement between MC and data
- Not (yet) sensitive to second order effects (low energy particles, thermal neutrons etc.)

z mm

Time Alignment

Combined pulse shape

- Fine tune timings of front end chips
- Aim for
 - Maximum signal/noise
 - Minimum spillover
- Sensors individually tuned to account for differences in
 - Time of flight
 - Cable length

Backup Slides - Telescope

- Flexibile device integration!
- This year used by:
 - Velo Upgrade
 - ST Upgrade (Scintillating Fibres)
 - ATLAS IBL (Planar community)
 - RD50
 - Medipix Collaboration
 - External Collaborators (Glasgow, Nikhef)
- Interest for next year from:
 - Velo, ST, Others?
 - ATLAS Planar + 3D + Diamond Groups
 - CLiC
 - Gaseous Detectors

LHCb Scintillating Fibres

Medipix3

ATLAS FEI4

cooling initiasi actare (ousea on tere style co2 cooling cookies) set up and tested

- Preparation for next years irradiation tests
- First group to start operation in testbeams with TRACI
- Huge thanks to Nikhef and CERN

