

Heavy Quarkonia sector in PYTHIA 6.324: test and validation

Marianne Bargiotti CERN, LHCb

Outline

- **Motivations for the inclusion of Heavy Quarkonium contribution in PYTHIA;**
- **Current status: new channels and new NRQCD matrix elements: values and tuning;**
- **Experimental settings chosen for tests and validation;**
- **Comparison with Tevatron data and perspectives for LHC.**

Motivations for the inclusion of NRQCD in PYTHIA

- **Production of charm and beauty hidden flavor states in PYTHIA was incomplete:**
	- **Only color singlet processes (Color Singlet Model), no NRQCD implementation;**
	- **CSM largely fails in shape and normalization;**
- **Not too flexible**
	- **Cannot allow simultaneous production of** ψ**'s and Υ's, nor Υ(1S) and Υ(2S), etc.**
- **Following the discussion started at a LCG/GENSER meeting in March 2005, T. Sjostrand introduced NRQCD for heavy quarkonia production in PYTHIA 6.324**.
	- \rightarrow Work done in the framework of LHCb and GENSER
		- \triangleright For the GENSER side, precious collaboration with P. Bartalini
		- \triangleright For the LHCb side, work done in collaboration with V. Vagnoni
		- Fundamental help from T. Sjostrand

Current status

- Integration of the original code (by Stefan Wolf) made by T. Sjostrand in PYTHIA 6.324.
	- This PYTHIA implementation for NRQCD already existed since a few years, but it was not validated and never included in official releases.
	- PYTHIA 6.324 now relays **both to charmonia and bottomonia sector**
	- \triangleright The code is now under validation;
	- \triangleright Realistic parameter values (e.g. NRQCD MEs) have to be fixed.

OTHER VISIBLE IMPLICATIONS:

- **Possibility to produce simultaneously J/ψ and Υ (introduced as different processes)**
- **is still not possible to generate Υ' and ψ' simultaneously, but can be implemented 'in locum'**

Implementation details: new channels (1)

- Originally only the Color Singlet Model (CSM) contributions to the quarkonia production were available in PYTHIA 6.2
- ….BUT Non-Relativitic Quantum Chromodinamics (NRQCD) predicts large contributions via the color octet mechanism
- **Introduction of new processes:**

Implementation details: new channels (2)

- ... where $ISUB = 421$ is almost completly equivalent to $ISUB = 86$ except from the fact that the CSM factors out the wave function $|R(0)|^2$ at the origin, while NRQCD parametrizes the non-perturbative part with the so-called '*NRQCD matrix elements*'.
- For χ : were implemented only the gluon-gluon fusion mode: again new modes implemented (from ISUB = $87-89$ to ISUB = 431 - 433) with rearrenged constant as before
- Some photoproduction channels have been implemented in PYTHIA 6.2, even if they have not been tested

For PYTHIA 6.3 these channels have not been introduced yet!

- These new processes can be switched ON through 3 parameters **MSEL**:
	- \otimes 61: switch ON all charmonium processes, ISUB = 421 439;
	- \odot 62: switch ON all bottomonium processes, ISUB = 461 479;
	- **63:** switch ON both of above, $ISUB = 421 439, 461 479$.

 χ_b implementations in PYTHIA 6.3: g-g, q-g, q-q channels

New Parameters: the NRQCD matrix elements (1)

- As CSM, NRQCD parametrises the non-perturbative fragmentation of the $Q\overline{Q}$ pair into the quarkonium state…..**BUT**:
	- while CSM requires only two parameters $(|R(0)|^2$ and $|R'(0)|^2 =$ wave function at the origin, and first derivative squared: PARP(38) and PARP(39)):

$$
\left\langle O^{J/\psi} \left[\right. ^{3}S_{1}^{(1)} \left] \right\rangle = \frac{3N_{C}}{2\pi} \left| R(0) \right|^{2}, \right\rangle
$$

$$
\left\langle O^{\chi_{c}} \left[\right. ^{3}P_{0}^{(1)} \left] \right\rangle = \frac{3N_{C}}{2\pi} \left| R'(0) \right|^{2}.\right\rangle
$$

 \rightarrow NRQCD requires **INDIPENDENT** matrix

elements:

 $O^H[\, {}^{2S+1}L_J^{(C)}\,]$

to denote the probability that a $Q\overline{Q}$ pair in a state ^{2S+1}L_J^(C) build up the bound state H.

These matrix elements fullfils the relation due to heavy quark spin symmetry:

 $\boldsymbol{0}$ $(3) D^{(8)} 1$ $(2) I + 1$ $(2)^{J/\psi}$ $[3] D^{(8)}$ $\boldsymbol{0}$ $\langle 3 \mathbf{D}^{(1)} \mathbf{1} \rangle = (2 \mathbf{I} + 1) / \mathbf{\Omega} \mathcal{X}_{c0} \mathbf{1}^3 \mathbf{D}^{(1)}$ 0 $\begin{bmatrix} \frac{3}{2} P_I^{(8)} \end{bmatrix}$ = $(2J+1)\langle O^{J/\psi}[\frac{3}{2} P_I^{(8)}]\rangle$, $\binom{3}{I} P_I^{(1)}$] $\rangle = (2J+1)\langle O^{\chi_{c0}}\binom{3}{0} P_I^{(1)}\}$. *cJ cJ c J J J* $\langle O^{2} \rangle \left[\frac{3}{2} P_J^{(8)} \right] \rangle = (2J+1) \langle O^{J/\psi} \left[\frac{3}{2} P_J \right]$ $\langle O^{\chi_{cJ}} \left[\frac{{}^3P_J^{(1)}}{I} \right] \rangle$ = $(2J+1)\langle O^{\chi_{c0}} \left[\frac{{}^3P_J^{(1)}}{I} \right]$ χ^{2cJ} [3 **D**(8) 1) – (2 **I** + 1) $\bigcap J/\psi$ χ_{cI} Γ³ **D**⁽¹⁾ 1) = (2) **I** + 1) | Ω χ $= (2J +$ $= (2J +$

New Parameters: the NRQCD matrix elements (2)

 \rightarrow The rates for these new processes are regulated by 10 NEW NRQCD matrix elements values (their default values are set to one in the current release, and need tuning):

Simulation Settings

- Several data samples produced under the following Tevatron settings:
	- p-p collisions; **@**
	- 980.0 GeV Beam Momentum; 0
	- Energy reference for Tevatron: 1960 GeV; @
	- 0 processes on:
		- **all new numbered processes: both for CSM and for COM**
		- **only J/ψ processes considered, both direct or produced from χc, excluding all B decays.**
		- **Fragmentation processes on;**
	- Rapidity region between **-0.6 ÷ 0.6 ;** @
	- 0 CTEQ6L used as PDF set
	- Different min. p_T cuts applied: **standard (1 GeV), 2 GeV and 2.5 GeV** 0

Current status for COM matrix elements

- ▶ 10 new values for NRQCD matrix elements inserted based on values extracted from: hep-ph/0003142
	- **– CSM values extracted from Buchmuller-Tye (Eichten-Quigg) potential model (hep-ph/9503356)**
- Renormalization and factorization scale $\mu = \sqrt{p_t^2 + 4m_c^2}$
- \triangleright Charm quark mass: $m_c = 1.5$ GeV
- Different p_T cuts methods applied:
	- \mathbf{C} **CKIN**(3) min. \mathbf{p}_T cut
	- **Reweighting function PYEVWT (activated with MSTP(142)=2)**

Current Status (values)

• New Corresponding Matrix elements inserted:

Status with CSM/COM only $(1$ GEV P_T MIN CUT)

 $(J/\psi \to \mu\mu)$ ld σ / dp _r (mb / GeV) $Br(J/\psi \rightarrow \mu\mu) \mathbb{E} d\sigma/dp_{\tau}(mb/\mathit{GeV})$

- CSM: o
	- 10.0 million events produced with \circ CSM model processes:
	- \rightarrow msub 421 active (same as 86): (S Wave):
		- $g + g \rightarrow cc[^3S_1^{(1)}] + g$
	- **→ msub 431, 432, 433 (same** as 87, 88, 89): (P Wave) $g + g \rightarrow cc[^{3}P_{0}^{(1)}] + g$ $g + g \rightarrow cc[^{3}P_{1}^{(1)}] + g$ $g + g \rightarrow cc[^{3}P_{2}^{(1)}] + g$
	- all COM inactive
- COM: O.
	- 10.0 million events produced $_{\mathbb{C}}$ with COM model processes:
	- msub 422-430 active
	- all CSM inactive

x: p_T distribution, in y: $d\sigma/dp_T * Br$ (in mb)).

Status with CSM+COM $(1$ GEV P_T MIN CUT)

- **★ msub :421, 422, 423, 424,** 425, 426, 427, 428, 429, 430 active (all CSM and COM process for S wave implemented so far) **Phys. Rev.Lett.79:578-583, 1997**

Rev. Lett.79:578-583, 1997

Phys. Rev.Lett.79:578-583, 1997

Phys. Rev.Lett.79:578-583, 1997

Phys. Rev.Lett.79:578-583, 1997

Phys. Rev.Lett.79:578-583, 1997
- **msub 431, 432, 433 (same** as 87, 88, 89) and more:
	- \geq 434, 435, 436 active: are the qg contribution for P wave
	- 437, 438, 439 active: are the $\,q\,q$ contribution for P wave

TEVATRON data as estracted from paper:

FULL SPECTRA @1 GEV P_T MIN CUT

On Full size scale

FERMILAB-PUB-04-440-E.

Status with CSM/COM only (2GEV P_T MIN CUT)

 $(J/\psi \to \mu\mu)$ ld σ / $dp_{\rm T}$ (mb / GeV) $Br(J/\psi \rightarrow \mu\mu) \mathbb{I} d\sigma/dp_{\tau}(mb/\mathit{GeV})$

 $\rightarrow \mu\mu$) $d\sigma/dp_{\rm r}(mb/GeV)$

CSM: $^\circledR$

- **2** 9.2 million events produced with CSM model processes:
- \rightarrow msub 421 active (same as 86): (S Wave):

 $g + g \rightarrow cc[^3S_1^{(1)}] + g$

- msub 431, 432, 433 (same as $\frac{1}{2}$ 87, 88, 89): (P Wave)
	- $g + g \rightarrow cc[^{3}P_{0}^{(1)}] + g$ $g + g \rightarrow cc[^{3}P_{1}^{(1)}] + g$ $g + g \rightarrow cc[^{3}P_{2}^{(1)}] + g$
- **★ all COM inactive**
- COM: O.
	- **2** 9.8 million events produced with COM model processes:
	- msub 422-430 active
	- all CSM inactive

x: p_T distribution, in y: $d\sigma/dp_T * Br$ (in mb)).

Status with CSM+COM

(2GeV pT min cut)

- **★ msub :421, 422, 423, 424,** 425, 426, 427, 428, 429, 430 active (all CSM and COM process for S wave implemented so far) **Phys. Rev.Lett.79:578-583, 1997**

Rev. Lett.79:578-583, 1997

Phys. Rev.Lett.79:578-583, 1997

Phys. Rev.Lett.79:578-583, 1997

Phys. Rev.Lett.79:578-583, 1997

Phys. Rev.Lett.79:578-583, 1997
- **msub 431, 432, 433 (same** as 87, 88, 89) and more:
	- \geq 434, 435, 436 active: are the qg contribution for P wave
	- 437, 438, 439 active: are the $\,q\,q$ contribution for P wave

TEVATRON data as estracted from paper:

FULL SPECTRA @ 2 GEV P_T MIN CUT

On Full size scale

 P_T (GeV)

18

20

 $12.$

x: p_T distribution, in y: $d\sigma/dp_T * Br$ (in mb)).

 $^\circledR$

O.

FULL SPECTRA @ 2.5 GEV P_T min cut

MCWS – Frascati LNF 22 – 24 May 2006

21

A different approach: PYEVWT

- Call PYEVWT with MSTP $(142)=2$ allows to reweight event cross section by process type and kinamatics of the hard scattering.
	- In the present case, it's assumed that the true cross section have to be modified by a multiplicator factor WTXS set by us.
- \rightarrow unlike the CKIN(3) factor that cuts from a certain p_T onward as a box function, the PYEVWT reweights the cross sections definig a p_{T0} bound to the center of mass energy, as used in multiple interactions. The WTXS is defined as:

WTXS = (PT2/(PT02+PT2))2**

Results using PYEVWT for event-by-event reweighting

Perspectives for LHC (1)

- Using the reweightening approach:
	- \rightarrow P_{T0} extrapolated to 14 TeV by (see LHCb note 99-028): $P_{T0} = 2.5 \text{ GeV} * (14 \text{ TeV} / 1.96 \text{ TeV}) * 0.16 = 3.42 \text{ GeV}$
	- Analogously as done for extrapolating the P_T min cut for multiple parton-parton interactions in Pythia
	- Parameters chosen according to LHCb tuning for multiple parton interactions;
	- 2 rapidity region: $-2.5 2.5$ (Atlas, CMS), $1.8 4.9$ (LHCb)
		- **• Total cross section*BR(**μμ**): 3.34** μ**b for |y|<2.5**
		- **• Total cross section*BR(**μμ**) for LHCb : 1.58** μ**b for 1.8<y<4.9**
		- **• Total cross section*BR(**μμ**) without acceptance cut: 6.48** μ**b**

Perspectives for LHC (2)

MCWS – Frascati LNF 22 – 24 May 2006

25

Conclusions

• Actual scenario:

- **E** Studies with fragmentation contributions at different low p_T cuts: unsatisfactory results with 1, 2 and 2.5 GeV with CKIN low p_T cut.
- **More promising results with PYEVWT re-weighting routine**
- **Next step at LHC energies: wider production and tests.**
- Future studies:
	- \blacktriangleright p_T cut not universal, need to check the extrapolation at LHC energies

• Can use total cross section calculation available at NLO

■ Test to be performed also for Y (missing at the moment the possibility to produce $\psi(2S)$ and Y(2S) at the same time)

NRQCD quick theory slides

Color Singlet Model (CSM)

Quarkonia inclusive decay rates and cross section were calculated at LO (*Leading Order*), with assumption of factorization:

 \rightarrow short distance part, describing the annihilation (or creation) of the heavy quark pair in a COLOR SINGLET state;

 \rightarrow non perturbative long distance factor, accounting for the soft part of the process.

The $c\bar{q}$ comaing is created in a color neutral state with the same quantum numbers as the final charmonium state:

\rightarrow CSM (Color Singlet Model)

 \sqrt{F} For charmonia S-wave, NO infrared divergences of CSM for one-loop corrections; \checkmark BUT in P-wave decays in light hadrons, appearance of infrared singularities in short distance coefficients \rightarrow PROBLEM !

Experimental tests of CSM

In fact: during the last 10 years, found orders of magnitude of disagreement between CSM prediction and new measurements of J/ψ and ψ ' production at several collider facilities. An example is the striking observation by CDF of large p_T

J/ ψ and ψ ' states

 \rightarrow more than 1 order of magnitude larger than the theoretical predictions by CSM !

> Tevatron transverse momentum differential cross sections: Color Singlet predictions both for J/ψ and ψ' production

22 – 24 May 2006

NRQCD

- \triangleright Possible solution? \rightarrow Effective field theory introduced \rightarrow Non-Relativistic QCD (NRQCD).
	- \triangleright quarkonium production and decay take place via intermediate with different quantum numbers than the physical quarkonium state, that is producing or decaying. state₈₉
	- \triangleright a transition probability $\langle O_{1,8}^H(q_2) \rangle$ ribes the transition of pair (color $octet + color singlet)$ into the final state; *qq*
	- The NRQCD factorization formula for the production cross section of state H is:

$$
\sigma^H = \sum_n \sigma_{1,8}^{c\bar{c}}(n) \left\langle O_{1,8}^H(n) \right\rangle
$$

- \triangleright $\sigma_{1,8}^{cc}(n)$ short-distance production of a pair *q*^{\bar{q}} n color, spin and angular momentum state n (^{2S+1}L_J[1,8]);
- \Diamond $\langle O_{1,8}^H(n) \rangle$ describes the hadronization of the pair into the observable state H.

NRQCD predictions

 \rightarrow With the addiction of color octet contributions, the Tevatron transverse momentum cross sections AGREE well with the NRQCD predictions for both of charmonium states.

Backup

Photoproduction channels implemented in PYTHIA 6.2 only: the tests of the proper implementation of these channels only include the expression of partonic amplitude squared (PYSIGH)**. Not tested yet**

Altarelli-Parisi evolution (1)

 \triangleright Contributions from $QQ[^{3}S_{1}^{(8)}]$ partly come from the fragmentation of a gluon \rightarrow since the gluon could have splitted into 2 gluons before fragmentation, this effect have to be included:

• 2 NEW switches: MSTP(148) to switch ON & OFF the splitting:

 $QQ[^3S_1^{(8)}] \rightarrow QQ[^3S_1^{(8)}] + g$

and MSTP(149) to choose if it's ensured that the QQ pair always takes the larger fraction of the four-momentum. This evolution obeys the Altarelli-Parisi evolution for $g \rightarrow g + g$

 \triangleright Handling of the Altarelli-Parisi evolution of $Q\overline{Q}[^{3}S_{1}^{(8)}]$, done with the parameter MSTP(148) (defalt value 0), allows the final- state shower evolution both for $c\bar{c}[^3S_1^{(8)}]$ and for $b\bar{b}[^3S_1^{(8)}]$

Altarelli-Parisi evolution (2)

- **ATTENTION! switching MSTP(148) ON may exaggerate** shower effects, since not all $\mathcal{Q} \mathcal{Q}[^{\,3}S^{(8)}_{1}]$ comes from the **fragmentation component where radiation is expected!!!! :** Since the fragmentation contribution of $QQ[^3S_1^{(8)}]$ to production **processes is the most important contribution, the higher the transverse momentum of the QQ pair is….. highly advisable to switch ON the Altarelli-Parisi evolution for events with large transverse momentum**
- $\Box \rightarrow$ If the $Q\overline{Q}[^3S_1^{(8)}]$ states are allowed to radiate [MSTP(148) = 1], **the parameter MSTP(149) determines the kinematic of the** $Q\overline{Q}[^3S_1^{(8)}] \rightarrow Q\overline{Q}[^3S_1^{(8)}] + g$ branching:
	- \Box MSTP(149) = 0, daughter $Q\overline{Q}[^3S_1^{(8)}]$ picks always the larger **momentum fraction (z > 0.5);**
	- \Box **MSTP(149) = 1,** daughter $Q\overline{Q}$ ³ $S_1^{(8)}$]picks momentum fraction **equally z < 0.5 and z > 0.5**

Polarization

Possibility to swich ON & OFF the polarized generation of quarkonia through the parameter MSTP(145) [0=unpolarized, 1=polarized, with selection of helicity states or density matrix elements]

FOR EXPERTS ONLY:

- The selection of the different polarization reference is done through MSTP(146) whose possible states are:
	- **• 1: Recoil (recommended since it matches how PYTHIA defines particle directions);**
	- **• 2: Gottfried-Jackson;**
	- **• 3: Target;**
	- **• 4: Collins-Soper**
- The selection of the different helicity states or density matrix is done through $MSTP(147)$ (with $MSTP(145)=1$):
	- 0: helicity 0; 1: helicity +-1; 2: helicity $+-2$; 4: density matrix element rho_{1,1}; 5: density matrix element rho_{1,0}; 6: density matrix element rho $\{1,-1\}$.
	- 3: density matrix element rho_{0,0};