

HEAVY QUARKONIA SECTOR IN PYTHIA 6.324: TEST AND VALIDATION

MARIANNE BARGIOTTI CERN, LHCB

OUTLINE

- Motivations for the inclusion of Heavy Quarkonium contribution in PYTHIA;
- Current status: new channels and new NRQCD matrix elements: values and tuning;
- Experimental settings chosen for tests and validation;
- Comparison with Tevatron data and perspectives for LHC.

MOTIVATIONS FOR THE INCLUSION OF NRQCD IN PYTHIA

- Production of charm and beauty hidden flavor states in PYTHIA was incomplete:
 - Only color singlet processes (Color Singlet Model), no NRQCD implementation;
 - > CSM largely fails in shape and normalization;
- Not too flexible
 - Cannot allow simultaneous production of ψ's and Y's, nor Y(1S) and Y(2S), etc.
- → Following the discussion started at a LCG/GENSER meeting in March 2005, T. Sjostrand introduced NRQCD for heavy quarkonia production in PYTHIA 6.324.
 - \rightarrow Work done in the framework of LHCb and GENSER
 - ➢ For the GENSER side, precious collaboration with P. Bartalini
 - ➤ For the LHCb side, work done in collaboration with V. Vagnoni
 - ➢ Fundamental help from T. Sjostrand

Marianne Bargiotti

CURRENT STATUS

- Integration of the original code (by Stefan Wolf) made by T. Sjostrand in PYTHIA 6.324.
 - This PYTHIA implementation for NRQCD already existed since a few years, but it was not validated and never included in official releases.
 - PYTHIA 6.324 now relays both to charmonia and bottomonia sector
 - > The code is now under validation;
 - > Realistic parameter values (e.g. NRQCD MEs) have to be fixed.

→ OTHER VISIBLE IMPLICATIONS:

- **@** Possibility to produce simultaneously J/ψ and Y (introduced as different processes)
- **@** is still not possible to generate Y' and ψ ' simultaneously, but can be implemented 'in locum'

IMPLEMENTATION DETAILS: NEW CHANNELS (1)

- Originally only the Color Singlet Model (CSM) contributions to the quarkonia production were available in PYTHIA 6.2
-BUT Non-Relativitic Quantum Chromodinamics (NRQCD) predicts large contributions via the color octet mechanism

\rightarrow Introduction of new processes:

ISUB	$g + g \rightarrow c\bar{c}[n] + g$	ISUB	$q + g \rightarrow q + c\bar{c}[n]$	ISUB	$q + \overline{q} \rightarrow g + c\overline{c}[n]$
421	$g + g \rightarrow c \overline{c} [{}^{3}S_{1}^{(1)}] + g$				
422	$g + g \rightarrow c\bar{c}[{}^{3}S_{1}^{(8)}] + g$	425	$q + g \rightarrow q + c\bar{c}[{}^{3}S_{1}^{(8)}]$	428	$q + \overline{q} \rightarrow g + c\overline{c}[{}^{3}S_{1}^{(8)}]$
423	$g + g \rightarrow c\bar{c}[{}^{1}S_{0}^{(8)}] + g$	426	$q + g \rightarrow q + c\bar{c}[{}^{1}S_{0}^{(8)}]$	429	$q + \overline{q} \rightarrow g + c\overline{c}[{}^{1}S_{0}^{(8)}]$
424	$g + g \rightarrow c\bar{c}[{}^{3}P_{J}^{(8)}] + g$	427	$q + g \rightarrow q + c\bar{c}[{}^{3}P_{J}^{(8)}]$	430	$q + \overline{q} \rightarrow g + c\overline{c}[{}^{3}P_{J}^{(8)}]$

IMPLEMENTATION DETAILS: NEW CHANNELS (2)

- ...where ISUB = 421 is almost completly equivalent to ISUB =86 except from the fact that the CSM factors out the wave function $|R(0)|^2$ at the origin, while NRQCD parametrizes the non-perturbative part with the so-called '*NRQCD matrix elements*'.
- For χ_c : were implemented only the gluon-gluon fusion mode: again new modes implemented (from ISUB = 87-89 to ISUB =431-433) with rearrenged constant as before
- Some photoproduction channels have been implemented in PYTHIA 6.2, even if they have not been tested

@ For **PYTHIA 6.3** these channels have not been introduced yet!

- These new processes can be switched ON through 3 parameters MSEL:
 - **@** 61: switch ON all charmonium processes, ISUB = 421 439;
 - **@** 62: switch ON all bottomonium processes, ISUB = 461 479;
 - **63**: switch ON both of above, ISUB = 421 439, 461 479.

Marianne Bargiotti

χ_c implementations in PYTHIA 6.3: g-g, q-g, q-q channels					
ISUB	$g + g \rightarrow c\bar{c}[{}^{3}P_{J}^{(1)}] + g$	ISUB	$q + g \rightarrow q + c \overline{c} [{}^{3}P_{\mathrm{J}}^{(1)}]$	ISUB	$q + \overline{q} \rightarrow g + c\overline{c}[{}^{3}P_{\mathrm{J}}^{(1)}$
431	$g + g \rightarrow c\bar{c}[{}^{3}P_{0}^{(1)}] + g$	434	$q + g \rightarrow q + c\bar{c}[{}^{3}P_{0}^{(1)}]$	437	$q + \overline{q} \to g + c\overline{c}[{}^{3}P_{0}^{(1)}]$
432	$g + g \rightarrow c\bar{c}[{}^{3}P_{1}^{(1)}] + g$	435	$q + g \rightarrow q + c\bar{c}[{}^{3}P_{1}^{(1)}]$	438	$q + \overline{q} \rightarrow g + c\overline{c}[{}^{3}P_{1}^{(1)}]$
433	$g + g \rightarrow c\bar{c}[{}^{3}P_{2}^{(1)}] + g$	436	$q + g \rightarrow q + c\bar{c}[{}^{3}P_{2}^{(1)}]$	439	$q + \overline{q} \rightarrow g + c\overline{c}[{}^{3}P_{2}^{(1)}]$
Bottomonia implementation in PYTHIA 6.3					
ISUB	$g + g \rightarrow b\overline{b}[n] + g$	ISUB	$q + g \rightarrow q + b\overline{b}[n]$	ISUB	$q + \overline{q} \rightarrow g + b\overline{b}[n]$
461	$g + g \rightarrow b\overline{b}[{}^{3}S_{1}^{(1)}] + g$				
462	$g + g \rightarrow b\overline{b}[{}^{3}S_{1}^{(8)}] + g$	465	$q + g \rightarrow q + b\overline{b}[{}^{3}S_{1}^{(8)}]$	468	$q + \overline{q} \rightarrow g + b\overline{b}[{}^{3}S_{1}^{(8)}]$
463	$g + g \rightarrow b\overline{b}[{}^{1}S_{0}^{(8)}] + g$	466	$q + g \rightarrow q + b\overline{b}[{}^{1}S_{0}^{(8)}]$	469	$q + \overline{q} \rightarrow g + b\overline{b}[{}^{1}S_{0}^{(8)}]$
464	$g + g \rightarrow b\bar{b}[{}^{3}P_{J}^{(8)}] + g$	467	$q + g \rightarrow q + b\overline{b}[{}^{3}P_{J}^{(8)}]$	470	$q + \overline{q} \rightarrow g + b\overline{b}[{}^{3}P_{J}^{(8)}]$

 χ_b implementations in PYTHIA 6.3: g-g, q-g, q-q channels

ISUB	$g + g \rightarrow b\overline{b}[{}^{3}P_{J}^{(1)}] + g$	ISUB	$q + g \rightarrow q + b\overline{b}[{}^{3}P_{\rm J}^{(1)}]$	ISUB	$q + \overline{q} \rightarrow g + b\overline{b}[{}^{3}P_{J}^{(1)}$
471	$g + g \rightarrow b\overline{b}[{}^{3}P_{0}^{(1)}] + g$	474	$q + g \rightarrow q + b\overline{b}[{}^{3}P_{0}^{(1)}]$	477	$q + \overline{q} \rightarrow g + b\overline{b}[{}^{3}P_{0}^{(1)}]$
472	$g + g \rightarrow b\overline{b}[{}^{3}P_{1}^{(1)}] + g$	475	$q + g \rightarrow q + b\overline{b}[{}^{3}P_{1}^{(1)}]$	478	$q + \overline{q} \rightarrow g + b\overline{b}[{}^{3}P_{1}^{(1)}]$
473	$g + g \rightarrow b\overline{b}[{}^{3}P_{2}^{(1)}] + g$	476	$q + g \rightarrow q + b\overline{b}[{}^{3}P_{2}^{(1)}]$	479	$q + \overline{q} \rightarrow g + b\overline{b}[{}^{3}P_{2}^{(1)}]$

Marianne Bargiotti

NEW PARAMETERS: THE NRQCD MATRIX ELEMENTS (1)

- As CSM, NRQCD parametrises the non-perturbative fragmentation of the $Q\overline{Q}$ pair into the quarkonium state....**BUT**:
 - while CSM requires only two parameters (|R(0)|² and |R'(0)|² = wave function at the origin, and first derivative squared: PARP(38) and PARP(39)):

$$\left\langle O^{J/\psi} [{}^{3}S_{1}^{(1)}] \right\rangle = \frac{3N_{C}}{2\pi} \left| R(0) \right|^{2},$$

 $\left\langle O^{\chi_{c}} [{}^{3}P_{0}^{(1)}] \right\rangle = \frac{3N_{C}}{2\pi} \left| R'(0) \right|^{2}.$

→ NRQCD requires INDIPENDENT matrix

elements:

 $\left\langle O^{H}\left[{}^{2S+1}L_{J}^{\left(C
ight) }
ight]
ight
angle$

to denote the probability that a $Q\overline{Q}$ pair in a state ${}^{2S+1}L_{J}^{(C)}$ build up the bound state H.

These matrix elements fullfils the relation due to heavy quark spin symmetry:

 $\left\langle O^{\chi_{cJ}} \left[{}^{^{3}}P_{J}^{(8)} \right] \right\rangle = (2J+1) \left\langle O^{J/\psi} \left[{}^{^{3}}P_{0}^{(8)} \right] \right\rangle,$ $\left\langle O^{\chi_{cJ}} \left[{}^{^{3}}P_{J}^{(1)} \right] \right\rangle = (2J+1) \left\langle O^{\chi_{c0}} \left[{}^{^{3}}P_{0}^{(1)} \right] \right\rangle.$

NEW PARAMETERS: THE NRQCD MATRIX ELEMENTS (2)

 \rightarrow The rates for these new processes are regulated by 10 **NEW NRQCD** matrix elements values (their default values are set to one in the current release, and need tuning):

	PARP(141)	$\left\langle O^{J/\psi}[{}^3S_1^{(1)}] \right\rangle$
	PARP(142)	$\left\langle O^{J/\psi}[^3S_1^{(8)}] \right\rangle$
•	PARP(143)	$\left\langle O^{J/\psi} [{}^1S_0^{(8)}] ight angle$
→	PARP(144)	$\left\langle O^{J/\psi}[{}^3P_0^{(8)}]\right\rangle/m_c^2$
*	PARP(145)	$\left\langle O^{\chi_{c0}}[{}^{3}P_{0}^{(1)}]\right\rangle/m_{c}^{2}$
	PARP(146)	$\left< O^{\Upsilon}[{}^3S_1^{(1)}] \right>$
	PARP(147)	$\left\langle O^{\Upsilon}[^{3}S_{1}^{(8)}] ight angle$
	PARP(148)	$\left\langle O^{\Upsilon}[{}^{1}S_{0}^{(8)}] ight angle$
	PARP(149)	$\left\langle O^{\Upsilon}[{}^{3}P_{0}^{(8)}]\right\rangle/m_{b}^{2}$
	PARP(150)	$\left\langle O^{\chi_{b0}}[{}^{3}P_{0}^{(1)}]\right\rangle/m_{b}^{2}$

SIMULATION SETTINGS

- Several data samples produced under the following Tevatron settings:
 - \bigcirc p-p collisions;
 - 980.0 GeV Beam Momentum;
 - Energy reference for Tevatron: 1960 GeV;
 - oprocesses on:
 - all new numbered processes: both for CSM and for COM
 - only J/ψ processes considered, both direct or produced from χc, excluding all B decays.
 - Fragmentation processes on;
 - Rapidity region between -0.6 ÷ 0.6 ;
 - CTEQ6L used as PDF set
 - Object to the provide the provide the provided of the provi

CURRENT STATUS FOR COM MATRIX ELEMENTS

- 10 new values for NRQCD matrix elements inserted based on values extracted from: hep-ph/0003142
 - CSM values extracted from Buchmuller-Tye (Eichten-Quigg) potential model (hep-ph/9503<u>356)</u>
- ▶ Renormalization and factorization scale $\mu = \sqrt{p_t^2 + 4m_c^2}$
- Charm quark mass: m_c= 1.5 GeV
- Different p_T cuts methods applied:
 - @ CKIN(3) min. p_T cut
 - Reweighting function PYEVWT (activated with MSTP(142)=2)

CURRENT STATUS (VALUES)

• New Corresponding Matrix elements inserted:

PARP(141)	$\left\langle O^{J/\psi}[^3S_1^{(1)}] ight angle$	1.16
PARP(142)	$\left\langle O^{J/\psi}[{}^3S_1^{(8)}] \right\rangle$	0.0119
PARP(143)	$\left\langle O^{J/\psi}[{}^1S^{(8)}_0] ight angle$	0.01
PARP(144)	$\left\langle O^{J/\psi}[{}^{3}P_{0}^{(8)}]\right\rangle/m_{c}^{2}$	0.01
PARP(145)	$\left\langle O^{\chi_{c0}}[{}^{3}P_{0}^{(1)}]\right\rangle/m_{c}^{2}$	0.05
PARP(146)	$\left\langle O^{\Upsilon}[^{3}S_{1}^{(1)}] ight angle$	9.28
PARP(147)	$\left\langle O^{\Upsilon}[^{3}S_{1}^{(8)}] ight angle$	0.15
PARP(148)	$\left\langle O^{\Upsilon}[{}^{1}S_{0}^{(8)}] ight angle$	0.02
PARP(149)	$\left\langle O^{\Upsilon}[{}^{3}P_{0}^{(8)}]\right\rangle/m_{b}^{2}$	0.48
PARP(150)	$\left\langle O^{\chi_{b0}}[{}^3P_0^{(1)}] \right\rangle / m_b^2$	0.09

STATUS WITH CSM/COM ONLY (1GEV PT MIN CUT)

- OSM:
 - In 10.0 million events produced with CSM model processes:
 - msub 421 active (same as 86): (S Wave):
 - > $g + g \rightarrow c\bar{c}[{}^{3}S_{1}^{(1)}] + g$
 - ▶ msub 431, 432, 433 (same as 87, 88, 89): (P Wave)
 > g+g → cc[³P₀⁽¹⁾]+g
 > g+g → cc[³P₁⁽¹⁾]+g
 > g+g → cc[³P₂⁽¹⁾]+g
 - all COM <u>inactive</u>
- OM:
 - 10.0 million events produced with COM model processes:
 - msub 422-430 active
 - all CSM inactive

x: p_T distribution, in y: $d\sigma/dp_T$ *Br (in mb)).

STATUS WITH CSM+COM (1GEV P_T MIN CUT)

- msub :421, 422, 423, 424, 425, 426, 427, 428, 429, 430 active (all CSM and COM process for S wave implemented so far)
- msub 431, 432, 433 (same as 87, 88, 89) and more:
 - 434, 435, 436 active: are the *qg* contribution for P wave
 - > 437, 438, 439 active: are the qq contribution for P wave

TEVATRON data as estracted from paper: Phys. Rev.Lett.79:578-583, 1997

FULL SPECTRA @1 GEV P_T MIN CUT

On Full size scale

≻FERMILAB-PUB-04-440-E.

STATUS WITH CSM/COM ONLY (2GEV PT MIN CUT)

 $\rightarrow \mu\mu)\square d\sigma / dp_T (mb/GeV)$

 $Br(J/\psi$ -

- OCSM:
 - 9.2 million events produced with CSM model processes:
 - msub 421 active (same as 86): (S Wave):
 - > $g + g \rightarrow c\bar{c}[{}^{3}S_{1}^{(1)}] + g$
 - msub 431, 432, 433 (same as 87, 88, 89): (P Wave)
 - > $g + g \rightarrow c\bar{c}[{}^{3}P_{0}^{(1)}] + g$ > $g + g \rightarrow c\bar{c}[{}^{3}P_{1}^{(1)}] + g$ > $g + g \rightarrow c\bar{c}[{}^{3}P_{1}^{(1)}] + g$
 - all COM <u>inactive</u>
- OM:
 - 9.8 million events produced with COM model processes:
 - msub 422-430 active
 - all CSM inactive

x: p_T distribution, in y: $d\sigma/dp_T$ *Br (in mb)).

STATUS WITH CSM+COM

(2GEV P_T MIN CUT)

- msub :421, 422, 423, 424, 425, 426, 427, 428, 429, 430 active (all CSM and COM process for S wave implemented so far)
- msub 431, 432, 433 (same as 87, 88, 89) and more:
 - 434, 435, 436 active: are the *qg* contribution for P wave
 - > 437, 438, 439 active: are the qq contribution for P wave

TEVATRON data as estracted from paper: Phys. Rev.Lett.79:578-583, 1997

FULL SPECTRA @ 2 GEV P_T MIN CUT

On Full size scale

STATUS WITH CSM/COM ONLY (2.5 GEV PT MIN CUT)

P_T(GeV)

FULL SPECTRA @ 2.5 GEV P_T MIN CUT

A DIFFERENT APPROACH: PYEVWT • Call PYEVWT wit

- Call PYEVWT with
 MSTP(142)=2 allows to
 reweight event cross section by
 process type and kinamatics of
 the hard scattering.
 - In the present case, it's assumed that the true cross section have to be modified by a multiplicator factor WTXS set by us.
- → unlike the CKIN(3) factor that cuts from a certain p_T onward as a box function, the PYEVWT reweights the cross sections definig a p_{T0} bound to the center of mass energy, as used in multiple interactions. The WTXS is defined as:

WTXS = (PT2/(PT02+PT2))**2

RESULTS USING PYEVWT FOR EVENT-BY-EVENT REWEIGHTING

PERSPECTIVES FOR LHC (1)

- Using the reweightening approach:
 - P_{T0} extrapolated to 14 TeV by (see LHCb note 99-028):
 P_{T0} = 2.5 GeV*(14 TeV / 1.96 TeV)**0.16 = 3.42 GeV
 - Analogously as done for extrapolating the P_T min cut for multiple parton-parton interactions in Pythia
 - Parameters chosen according to LHCb tuning for multiple parton interactions;
 - - Total cross section*BR(μμ): 3.34 μb for |y|<2.5
 - Total cross section*BR($\mu\mu$) for LHCb : 1.58 μ b for 1.8<y<4.9
 - Total cross section*BR(µµ) without acceptance cut: 6.48 μb

PERSPECTIVES FOR LHC (2)

MCWS – Frascati LNF 22 – 24 May 2006 25

CONCLUSIONS

• Actual scenario:

- Studies with fragmentation contributions at different low p_T cuts: unsatisfactory results with 1, 2 and 2.5 GeV with CKIN low p_T cut.
- More promising results with PYEVWT re-weighting routine
- Next step at LHC energies: wider production and tests.
- Future studies:
 - p_T cut not universal, need to check the extrapolation at LHC energies

Can use total cross section calculation available at NLO

• Test to be performed also for Y (missing at the moment the possibility to produce $\psi(2S)$ and Y(2S) at the same time)

NRQCD QUICK THEORY SLIDES

Color Singlet Model (CSM)

Quarkonia inclusive decay rates and cross section were calculated at LO (*Leading Order*), with assumption of factorization:

 \rightarrow short distance part, describing the annihilation (or creation) of the heavy quark pair in a COLOR SINGLET state;

 \rightarrow non perturbative long distance factor, accounting for the soft part of the process.

The *c* pair is created in a color neutral state with the same quantum numbers as the final charmonium state:

→CSM (Color Singlet Model)

✓ For charmonia S-wave, NO infrared divergences of CSM for one-loop corrections;
 ✓ BUT in P-wave decays in light hadrons, appearance of infrared singularities in short distance coefficients → PROBLEM !

Experimental tests of CSM

In fact: during the last 10 years, found orders of magnitude of disagreement between CSM prediction and new measurements of J/ψ and ψ ' production at several collider facilities. An example is the striking observation

by CDF of large p_T

 J/ψ and ψ^{\prime} states

→ more than 1 order of magnitude larger than the theoretical predictions by CSM !

> Tevatron transverse momentum differential cross sections: Color Singlet predictions \checkmark both for J/ ψ and ψ ' production

NRQCD

- ➢ Possible solution? → Effective field theory introduced → Non-Relativistic QCD (NRQCD).
 - quarkonium production and decay take place via intermediate states with different quantum numbers than the physical quarkonium state, that is producing or decaying.
 - > a transition probability $\langle O_{1,8}^{H}(q) \rangle$ ribes the transition of pair (cokor octet + color singlet) into the final state; qq
 - The NRQCD factorization formula for the production cross section of state H is:

$$\sigma^{H} = \sum_{n} \sigma_{1,8}^{c\bar{c}}(n) \left\langle O_{1,8}^{H}(n) \right\rangle$$

- > $\sigma_{1,8}^{cc}(n)$ short-distance production of a pai $q \dot{q}$ n color, spin and angular momentum state $n ({}^{2S+1}L_{J}{}^{[1,8]});$
- $\succ \quad \left\langle O_{1,8}^{H}(n) \right\rangle_{\text{describes the hadronization of the pair into the observable state H.} \right\rangle$

NRQCD predictions

 \rightarrow With the addiction of color octet contributions, the Tevatron transverse momentum cross sections **AGREE** well with the **NRQCD** predictions for both of charmonium states.

BACKUP

Photoproduction channels implemented in PYTHIA 6.2 only: the tests of the proper implementation of these channels only include the expression of partonic amplitude squared (PYSIGH). Not tested yet

ISUB	$g + \gamma \rightarrow c \overline{c} [^{(2S+1)} L_{J}^{(C)}] + g$	ISUB	$g + \gamma \rightarrow q + c \bar{c} [^{(2S+1)} L_{J}^{(C)}]$
440	$g + \gamma \rightarrow c \bar{c} [{}^{3}S_{1}^{(1)}] + g$		
441	$g + \gamma \rightarrow c \bar{c} [{}^{3}S_{1}^{(8)}] + g$	444	$g + \gamma \rightarrow q + c\bar{c}[{}^{3}S_{1}^{(8)}]$
442	$g + \gamma \rightarrow c \overline{c} [{}^{1}S_{0}^{(8)}] + g$	445	$g + \gamma \rightarrow q + c\bar{c}[{}^{1}S_{0}{}^{(8)}]$
443	$g + \gamma \rightarrow c \bar{c} [{}^{3}P_{J}^{(8)}] + g$	446	$g + \gamma \rightarrow q + c\bar{c}[{}^{3}P_{J}^{(8)}]$

Marianne Bargiotti

ALTARELLI-PARISI EVOLUTION (1)

Contributions from $Q\overline{Q}[{}^{3}S_{1}^{(8)}]$ partly come from the fragmentation of a gluon \rightarrow since the gluon could have splitted into 2 gluons before fragmentation, this effect have to be included:

•2 NEW switches: MSTP(148) to switch ON & OFF the splitting:

 $Q\overline{Q}[{}^{3}S_{1}^{(8)}] \rightarrow Q\overline{Q}[{}^{3}S_{1}^{(8)}] + g$

and MSTP(149) to choose if it's ensured that the QQ pair always takes the larger fraction of the four-momentum. This evolution obeys the Altarelli-Parisi evolution for $g \rightarrow g+g$

➤ Handling of the Altarelli-Parisi evolution of $Q\overline{Q}[{}^{3}S_{1}^{(8)}]$, done with the parameter MSTP(148) (defalt value 0), allows the final- state shower evolution both for $c\overline{c}[{}^{3}S_{1}^{(8)}]$ and for $b\overline{b}[{}^{3}S_{1}^{(8)}]$

Marianne Bargiotti

ALTARELLI-PARISI EVOLUTION (2)

- □ ATTENTION! switching MSTP(148) ON may exaggerate shower effects, since not all $QQ[{}^{3}S_{1}^{(8)}]$ comes from the fragmentation component where radiation is expected!!!! : Since the fragmentation contribution of $QQ[{}^{3}S_{1}^{(8)}]$ to production processes is the most important contribution, the higher the transverse momentum of the QQ pair is..... → highly advisable to switch ON the Altarelli-Parisi evolution for events with large transverse momentum
- □ →If the $Q\overline{Q}[{}^{3}S_{1}^{(8)}]$ states are allowed to radiate [MSTP(148) = 1], the parameter MSTP(149) determines the kinematic of the $Q\overline{Q}[{}^{3}S_{1}^{(8)}] \rightarrow Q\overline{Q}[{}^{3}S_{1}^{(8)}] + g$ branching:
 - □ MSTP(149) = 0, daughter $Q\overline{Q}[{}^{3}S_{1}^{(8)}]$ picks always the larger momentum fraction (z > 0.5);
 - □ MSTP(149) = 1, daughter $Q\overline{Q}[{}^{3}S_{1}^{(8)}]$ picks momentum fraction equally z < 0.5 and z > 0.5

Marianne Bargiotti

POLARIZATION

 Possibility to swich ON & OFF the polarized generation of quarkonia through the parameter MSTP(145) [0=unpolarized, 1=polarized, with selection of helicity states or density matrix elements]

\rightarrow FOR EXPERTS ONLY:

- The selection of the different polarization reference is done through MSTP(146) whose possible states are:
 - 1: Recoil (recommended since it matches how PYTHIA defines particle directions);
 - 2: Gottfried-Jackson;
 - 3: Target;
 - 4: Collins-Soper
- The selection of the different helicity states or density matrix is done through MSTP(147) (with MSTP(145)=1):
 - 0: helicity 0;
 1: helicity +-1;
 2: helicity +-2;
 3: density matrix element rho_{{0,0}};
 4: density matrix element rho_{{1,1}};
 5: density matrix element rho_{{1,0}};
 6: density matrix element rho_{{1,-1}}.

Marianne Bargiotti