

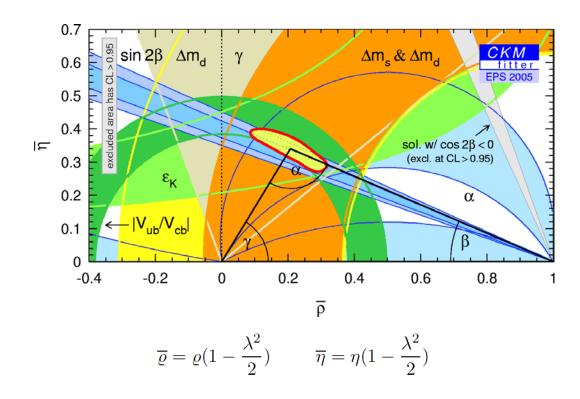
B physics prospects at LHCb

XLIst Rencontres de Moriond QCD and high energy hadronic interactions

La Thuile, March 18-25 2006

Tomáš Laštovička (CERN)

Overview


- Introduction
 - ☐ status present, motivation
 - ☐ new physics searches
 - ☐ B physics at LHC
- 2 LHCb experiment
- 3 Physics performance
 - \square sin 2 β measurement
 - \square measurements of Δm_s , ϕ_s and $\Delta \Gamma_s$
 - \square measurements of γ
- 4 Summary

CKM picture

- BABAR and BELLE
 - unitarity traingle well constrained within the standard model
 - room for improvements[measurement of γ]
- How accurate is the CKM picture?
- Is there any place for new physics still?

New Physics at LHCb

- Standard Model is a low energy effective approximation of more ultimate theory at a higher energy scale [expected to be in the TeV region – LHC accessible]
- New Physics can be discovered and studied
 - ☐ direct observation: new particles are produced and observed as real particles
 - ☐ indirect approach: new particles appear as virtual particles (e.g. in loops) and thus may lead to deviations of observables from Standard Model predictions.

For instance "Penguin diagrams" or "box diagrams":

$$B_{s}^{0} \left\{ \begin{array}{c|c} \overline{b} & \hline \\ W & \overline{t} & W \\ S & \hline \end{array} \right\} \overline{B}_{s}^{0} \quad B_{s}^{0} \left\{ \begin{array}{c} \overline{b} & \hline \\ \overline{S} & \overline{S} \\ S & \hline \end{array} \right\} \overline{B}_{s}^{0} \\ B_{s} - \overline{B}_{s} \text{ oscillations} \\ \end{array} \quad \text{New physics? } \Delta m_{s} \neq \Delta m_{s}^{SM}$$

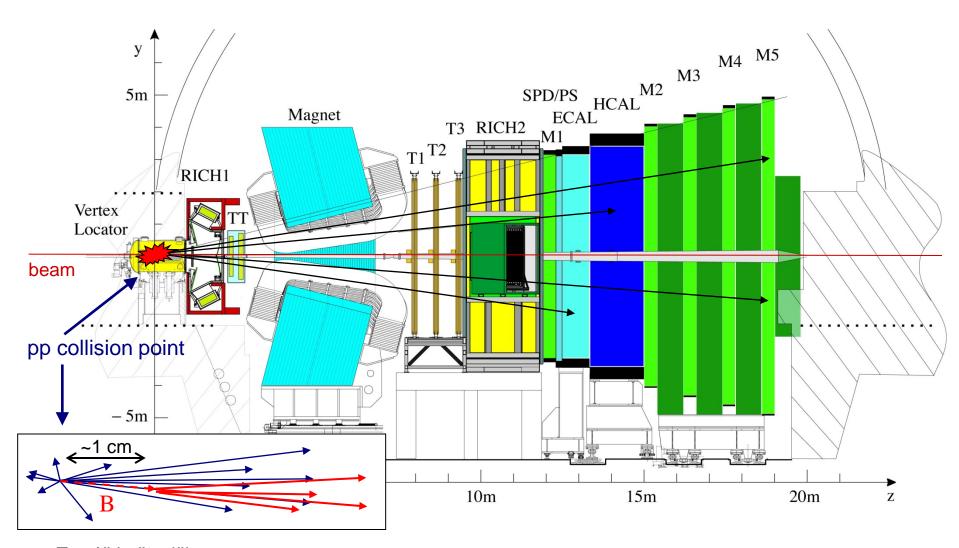
Indirect approach

- Allows to access high energy scales sooner and thus to see possible new physics effects earlier
- Can in principle also access the phases of the new couplings:
 - □ NP at TeV scale needs to have a "flavour structure" to provide the suppression mechanism for already observed FCNC processes
 - once NP is discovered, it is important to measure this structure, including new phases
- Complementary to direct observations
 - may help to understand their nature and flavour structure

B physics: LHC vs B-factories

	e⁺e⁻ → Ύ(4S) → BB PEPII, KEKB	pp→bbX (\sqrt{s} = 14 TeV, Δt_{bunch} =25 ns) LHCb	
Production σ _{bb}	1 nb	~500 μb	
Typical bb rate	10 Hz	100 kHz)
bb purity	~1/4	$\sigma_{bb}/\sigma_{inel} = 0.6\%$ Trigger is a major issue!	
Pileup	0	0.5	
b-hadron types	B+B- (50%) B ⁰ B ⁰ (50%)	B+B- (40%), B ⁰ (40%), B _s (10%) B _c (< 0.1%), b-baryons (10%)	
b-hadron boost	Small	Large (decay vertexes well separated)	
Production vertex	Not reconstructed	Reconstructed (many tracks)	
Neutral B mixing	Coherent B ⁰ B ⁰ pair mixing	Incoherent B ^o and B _s mixing (extra flavour-tagging dilution)	
Event structure	BB pair alone	Many particles not associated with the two b hadrons	

LHCb experiment

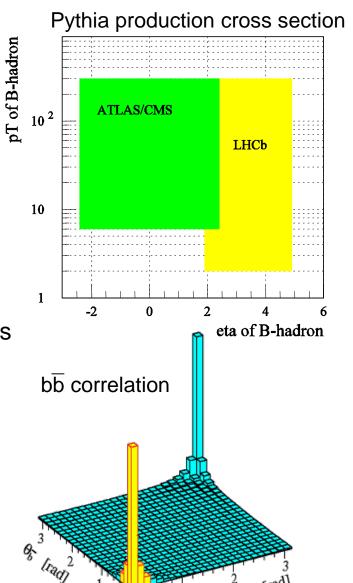

Vertex Locator: VELO [around interaction point]

TT, T1, T2, T3: Tracking stations

RICH1-2: Ring Imaging Cherenkov detectors

ECAL, HCAL: Calorimeters

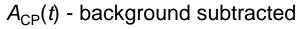
M1-M5: Muon stations

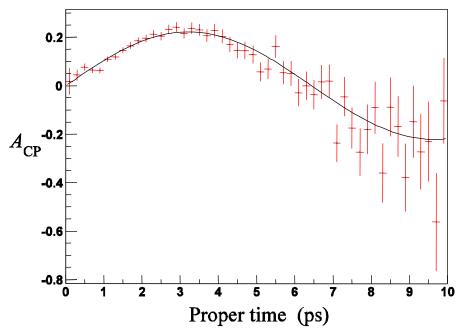


B acceptance

- LHCb
 - designed to maximize B acceptance[within cost and space constraints]
 - \square forward spectrometer, 1.9 < η < 4.9
 - more b hadrons produced at low angles
 - single arm OK since bb pairs produced correlated in space
 - □ rely on relatively soft higt p_T triggers,
 efficient also for purely hadronic B decays
 - ☐ 1 year of running = ~2 fb⁻¹

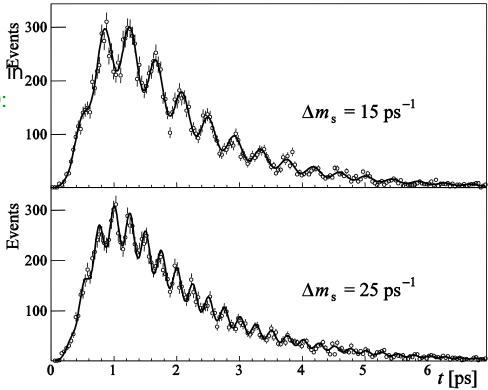
 nominal luminosty: 2.10³² cm⁻²s⁻¹





Measurement of sin 2β with $B^0 \rightarrow J/\psi K_S$

- One of the first CP measurements
 - ☐ golden mode, very well measured by b-factories
 - ☐ not the main physics goal at LHCb
 - will be an important check of CP analyses and of tagging performance
 - □ can search for direct CP violating term ∞ cos $\Delta m_{d}t$
- Expect 240k reconstructed $B^0 \rightarrow J/\psi K_S$ events/year
- Precision $\sigma_{\text{stat}}(\sin 2\beta) \sim 0.02$ in one year of data taking [currently $\sigma(\sin 2\beta) \sim 0.04$]



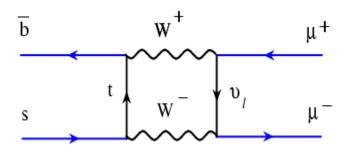
Measurement of Δm_s from B_s oscillations

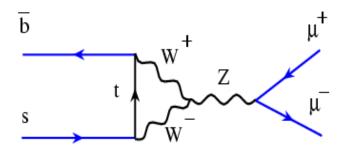
- One of the first LHCb physics goals
 - important measurement
 - □ aiming for 5σ observation for $\Delta m_{\rm s}$ < 68 ps⁻¹ [in one year]
 - ☐ LHCb could exclude full SM range
 - Once observed, precise value is obtained: $\sigma_{\rm stat}(\Delta m_{\rm s}) \sim 0.01~{\rm ps^{-1}}$ one year of data taking [D0: $\sigma_{\rm stat}(\Delta m_{\rm s}) \sim 1~{\rm ps^{-1}}$]
- Once oscillations are observed CP asymmetry measurements follow

$$B_s \rightarrow D_s^- \pi^+$$

Distribution of unmixed sample after 1 year (2 fb⁻¹), ~80k events

ϕ_s and $\Delta\Gamma_s$ from $B_s \rightarrow J/\psi \phi$, ...

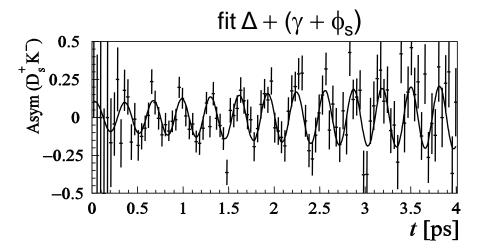

- \blacksquare B_s \to J/ $\psi \phi$ is the B_s counterpart of the golden mode B⁰ \to J/ ψ K_s
 - \square CP asymmetry measures ϕ_s , the phase of B_s oscillation
 - $\square \phi_s$ is very small in SM: $\phi_s = -arg(V_{ts}^2) = -2\lambda \eta^2 \sim -0.04$
 - sensitive probe for the new physics
 - final state contains CP-even and CP-odd contributions
 - \Box fit for sin ϕ_s , $\Delta\Gamma_s$ and CP-odd fraction [needs external Δm_s]
- Sensitivity [assuming ∆m_s = 20 ps⁻¹]
 - \square 125k signal events/year [before tagging], S/B_{bb} > 3
 - $\Rightarrow \sigma_{\text{stat}}(\sin \phi_s) \sim 0.031, \ \sigma_{\text{stat}}(\Delta \Gamma_s / \Gamma_s) \sim 0.011$ [1 year]
 - □ pure CP modes can also be added [e.g. J/ψη 7k events/year]
 - $\Rightarrow \sigma_{\text{stat}}(\sin \phi_{\text{s}}) \sim 0.013$ [first 5 years]

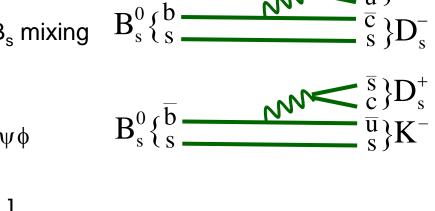


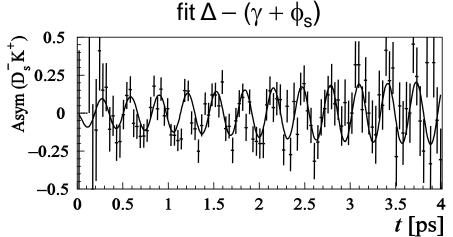
Measurement of $B_s \rightarrow \mu^+\mu^-$

- Very rare decay
 - \square BR ~ 3.5 × 10⁻⁹ in SM, can be strongly enhanced in SUSY
 - sensitive to new physics
 - \square current limit from Tevatron (CDF+D0): 1.5 \times 10⁻⁷ at 95% CL
- LHCb should have prospect for significant measurement, but difficult to get reliable estimate of expected background
 - aim for 2σ measurement in 2 years

Measurements of γ


- from $B_s \rightarrow D_s K$
 - \Box $\sigma(\gamma) \sim 14^{\circ}$ in one year [$\Delta m_s = 20 \text{ ps}^{-1}$]
 - tree decay
- \blacksquare from B⁰ \rightarrow D⁰K*⁰
 - \Box $\sigma(\gamma) \sim 8^{\circ}$ in one year
 - \square both γ and strong phase Δ to be extracted
- from $B^{\pm} \rightarrow DK^{\pm}$
 - \Box $\sigma(\gamma) \sim 5^{\circ}$ precision in one year
 - tree decay
- from $B^0 \rightarrow \pi^+\pi^-$ and $B_s \rightarrow K^+K^-$
 - \Box $\sigma(\gamma) \sim 5^{\circ}$ precision in one year
 - sensitive to New Physics
 - nice yields: 26k B $^0 \to \pi^+\pi^-$ events/year 37k B $_{\rm s} \to {
 m K}^+{
 m K}^-$ events/year
- B \rightarrow D⁰K Dalitz (D⁰ \rightarrow K_s $\pi\pi$,K_sKK) under investigation





Measurements of γ from $B_s \rightarrow D_s K$

- from $B_s \rightarrow D_s^- K^+$ and $B_s \rightarrow D_s^+ K^$
 - both tree decays, interference via B_s mixing
 - ☐ insensitive to new physics
 - \square measures $\gamma + \phi_s$ and thus γ
 - \Box ϕ_s will be determined using $B_s \rightarrow J/\psi \phi$
 - very little theoretical uncertainty
- $\sigma(\gamma) \sim 14^{\circ}$ in one year [$\Delta m_s = 20 \text{ ps}^{-1}$]



Measurements of γ from B[±] \rightarrow DK[±]

- New proposed clean measurement of γ for LHCb, based on ADS (Atwood, Dunietz, Soni) method
 - tree decays, not sensitive to new physics
 - □ measure the relative rates of B⁻ → DK⁻ and B⁺ → DK⁺ decays with neutral D's observed in final states
 [such as: K⁻π⁺ and K⁺π⁻, K⁻π⁺π⁻π⁺ and K⁺π⁻π⁺π⁻, K⁺K⁻]
- Candidate for LHCb's statistically most precise determination of γ
 - \Box $\sigma(\gamma) \sim 5^{\circ}$ precision in one year

Conclusion

- New physics at LHC will be searched for in loop B decays
 - ☐ There are few highly sensitive b→s observables:
 - B_s mixing magnitude and phase
 - Exclusive B→μμ, ...
 - Large phase space can already be covered with the first LHC collisions
- LHCb will improve precision on CKM angles
 - \square Several γ measurements from tree decays only
 - \blacksquare $\sigma_{\text{stat}}(\gamma)$ few ° precision in ~5 years
 - ☐ May reveal inconsistencies with other measurements
- Looking forward to first collisions in 2007/2008
 - ☐ LHCb aiming for complete detector at end of 2006, ready to exploit nominal luminosity from day one

LHCb cavern – February 2006

