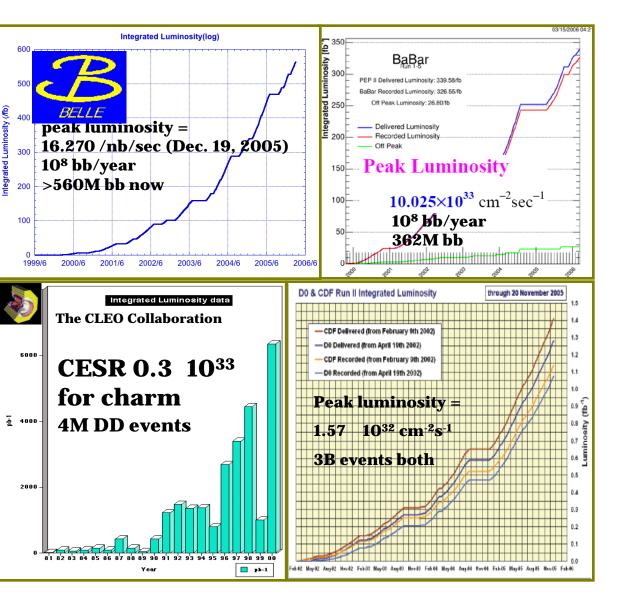
Andrey Golutvin ITEP/CERN

Introduction to the Heavy Flavor session

XLIst Rencontres de Moriond March 18-25 2006 QCD and Hadronic interactions at high energy

Introduction of the Heavy Flavour gentleman to the QCD at La Thuile


Background of Heavy Flavor

Excellent Detectors (in the past, present and nearest future)

BELLE/BaBar, CLEO-c, BES & BESII, CDF/D0 (Tevatron), LHCb

- Huge DATA Samples
- Many experimental observables

Existing data samples and prospects

Many experimental observables Topics discussed at this conference include:

- Measurement of the masses, lifetimes and Mixings (Bs mixing) at the Tevatron
- Rare B decays
 B → baryon decays
- D and Ds hadronic decays
 Determination of f_{D,Ds}
- Spectroscopy of charmed mesons and baryons

- Calculation of B to s gamma and Xs *ll*
- Threshold resumed
 spectra in B to Xu lv NLO
- Polarization in B decays to vector final states

- Observation of new resonances
- Dalitz analyses of B and D decays
- Results on charmonium and bottomonium with CLEO & BESII New observations and multiquark candidates at BESII

Baryonic B decays with $b \rightarrow c$

Mode	Belle (10^{-4})	CLEO (10 ⁻⁴)
$\overline{B}^0 o D^{*+} n ar{p}$		$14.5^{+3.4}_{-3.0} \pm 2.7$
$\overline{B}^{0} ightarrow D^{*+} p ar{p} \pi^{-}$		$6.5^{+1.3}_{-1.2}\pm1.0$
$\overline{B}^0 o D^{*0} p ar{p}$	$1.20^{+0.33}_{-0.29}\pm 0.21$	
$\overline{B}^0 o D^0 p ar{p}$	$1.18 \pm 0.15 \pm 0.16$	
$B^c \to \Lambda^+_c \bar{p} \pi^- \pi^0$		$18.1 \pm 2.9^{+2.2}_{-1.6} \pm 4.7$
$\overline{B}^0 \to \Lambda_c^+ \bar{p} \pi^+ \pi^-$	$10.3 \pm 0.9 \pm 1.2 \pm 2.7$	$16.7 \pm 1.9^{+1.9}_{-1.6} \pm 4.3$
$B^- \to \Lambda_c^+ \bar{p} \pi^-$	$2.01 \pm 0.15 \pm 0.20 \pm 0.52$	$2.4 \pm 0.6^{+0.19}_{-0.17} \pm 0.6$
$B^- \rightarrow \Sigma_c(2455)^{++} \bar{p}\pi^-\pi^-$		$2.8 \pm 0.9 \pm 0.5 \pm 0.7$
$B^{-}_{c} \to \Sigma_{c}(2455)^{0} \bar{p} \pi^{+} \pi^{-}$		$4.4 \pm 1.2 \pm 0.5 \pm 1.1$
$\overline{B}^0_{-} \rightarrow \Sigma_c(2455)^{++} \bar{p}\pi^-$	$1.15 \pm 0.22 \pm 0.14 \pm 0.30$	$3.7 \pm 0.8 \pm 0.7 \pm 0.8$
$\overline{B}^0 o \Sigma_c (2455)^0 \bar{p} \pi^+$	$0.97 \pm 0.21 \pm 0.12 \pm 0.05$	$2.2 \pm 0.6 \pm 0.4 \pm 0.5$
$B^- \rightarrow \Sigma_c (2455)^0 \bar{p} \pi^0$		$4.2 \pm 1.3 \pm 0.4 \pm 1.0$
$\overline{B}^0 \to \Sigma_c(2520)^{++} \bar{p}\pi^-$	$1.04 \pm 0.24 \pm 0.12 \pm 0.27$	
$\overline{B}^0 o \Sigma_c (2520)^0 \bar{p} \pi^+$	$0.33 \pm 0.19 \pm 0.04 \pm 0.09$	
$B^- \to \Lambda_c^+ \bar{\Lambda}_c^- K^-$	$6.5^{+1.0}_{-0.9}\pm0.8\pm3.4$	
$\overline{B}^0 o \Lambda_c^+ \bar{\Lambda}_c^- \overline{K}^0$	$7.9^{+2.9}_{-2.3}\pm1.2\pm4.2$	

2-body baryonic B decays

Mode	BaBar	Belle	CLEO	
$\overline{B}^{0} ightarrow p ar{p}$	$< 2.7 imes 10^{-7}$	$< 4.1 imes 10^{-7}$	$< 1.4 \times 10$	-6
$\overline{B}^0 o \Lambda ar{\Lambda}$		$< 6.9 imes 10^{-7}$		
$B^- \to \Lambda \bar{p}$	$< 1.5 \times 10^{-6}$	$< 4.9 imes 10^{-7}$	$< 1.5 \times 10$	6
Mode	E	Belle		CLEO
$\overline{B}^0 o \Lambda_c^+ ar{p}$		$2.2^{+0.6}_{-0.5}\pm 0.3\pm 0.2$	· · · · · · · · · · · · · · · · · · ·	$< 0.9 imes 10^{-4}$
$B^- \rightarrow \Sigma_c(245)$		$3.7 \pm 0.7 \pm 0.4 \pm$	$(1.0) \times 10^{-5}$	
$B^- \rightarrow \Sigma_c (252)$		$< 2.7 imes 10^{-5}$		
$B^- \to \Lambda_c^+ \bar{\Delta}^-$	-	$< 1.9 imes 10^{-5}$		
$B^{c} \rightarrow \Xi^0_{c} (\rightarrow z)$		$4.8^{+1.0}_{-0.9} \pm 1.1 \pm 1.$		
$\overline{B}^0 ightarrow \Xi_c^+ (ightarrow \Xi_c^+)$	$\Xi^-\pi^+\pi^+)ar\Lambda^c$ ($9.3^{+3.7}_{-2.8} \pm 1.9 \pm 2.0$	$(2) \times 10^{-5}$	

 $\Xi_{c}\Lambda_{c} \sim 10^{-3} >> \Lambda_{c}p \sim 10^{-5} >> \Lambda_{p} \leq 10^{-7}$

Baryonic B decays

To be understood:

- Three-body baryonic B decays have larger branching fraction than two-body decays
- Strong enhancement toward the baryon-antibaryon mass threshold
 - intermediate gluonic resonant states
 - non-perturbative QCD effects of the quark fragmentation
- Huge rate of doubly charmed baryon modes !!!

Spectroscopy of charmed mesons (recent results on Ds mesons)

- 4 states D_s(1968), D_s*(2112), D_{s1}(2536), D_{s2}*(2573) in good agreement with theoretical predictions
- 2 new states discovered by BaBar and CLEO with masses significantly lower than predictions:

 $D_{sJ}^{*}(2317)^{+} \rightarrow D_{s}^{+}\pi^{0}$ $D_{sJ}^{}(2460)^{+} \rightarrow D_{s}^{*} + \pi^{0}$

Isospin violation decays

- BELLE confirmed both new D_s states and found them in the decays of B meson.
- Need to determine quantum numbers will be discussed today
- SELEX reported a state (at M=2632 MeV) that decays into $D_s^+\eta$ and D^0K^+ (not seen at B factories)

Good candidates for missing 0⁺, 1⁺ cs states Low mass has to be understood !!!

Charmed baryon spectroscopy

Recent results:

- Update on charm baryon masses: Λ_c^+ (high precision measurement) and $\Xi_c^{+,0}$
- Discovery of $\Sigma_c(2800)$ isotriplet decaying to $\Lambda_c^+\pi$ Tentatively have $J^P = 3/2^-$ decaying to $\Lambda_c^+\pi$ in D-wave Mass difference is ok but width (Γ ~15 MeV) is larger than expected
- First observation of Ω_c in a single decay channel ($\Omega \pi^+$) with >5 σ significance. First observation of production in B decays
- We are waiting for the discovery of new states at this conference

Observation of new resonances *X*, *Y*,*Z*...

X(3872) observed by BELLE in B⁺ \rightarrow K⁺ (J/ $\psi \pi^+ \pi^-$) Confirmed by CDF, D0, BaBar wa: M=3871.9 0.5 MeV/c^2

What is that: charmonium, DD* molecule, tetraquarks...???

 $\frac{Br(X \to \gamma J/\psi)}{Br(X \to \pi^+ \pi^- J/\psi)} = 0.14 \pm 0.05$ $\frac{Br(X \to \pi^+ \pi^- \pi^0 J/\psi)}{Br(X \to \pi^+ \pi^- J/\psi)} = 1.0 \pm 0.4 \pm 0.3$

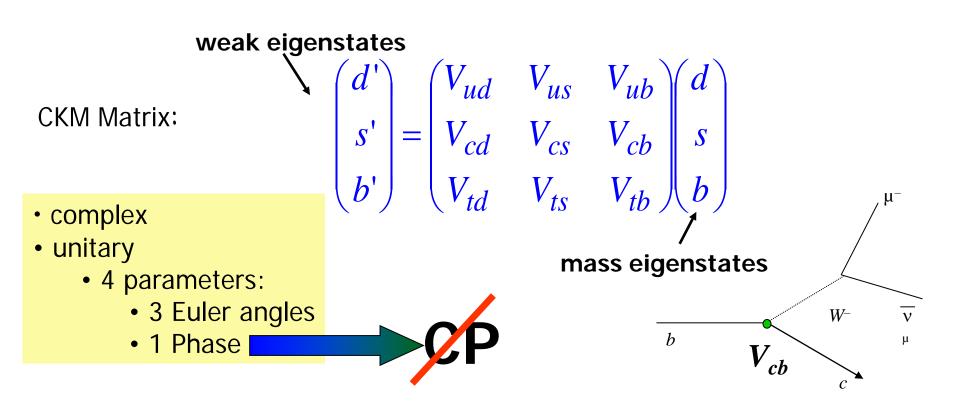
$$0.13 < \frac{B(B^0 \to K^0 X(3872))}{B(B^- \to K^- X(3872))} < 1.10 \text{ at } 90\% \text{ CL}$$

For DD* molecule expected ratio ~0.1 factorization and isospin symmetry

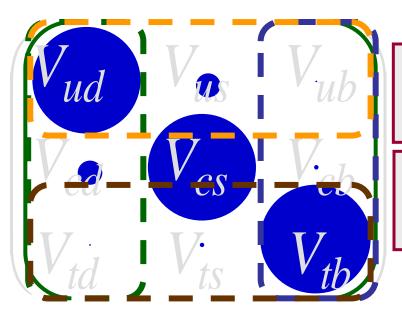
For the mixture of Xu and Xd tetraquarks the ratio can vary as a function of mixing angle

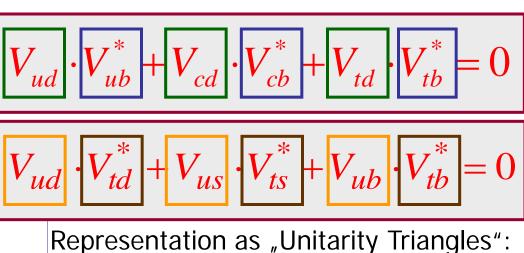
Other new states

- Y(4260) discovered by BaBar in e⁺e⁻ → γ_{ISR}Y(4260) → γ_{ISR} π⁺π⁻J/ψ
 (allowed only for J^{PC} = 1⁻⁻)
 CLEO observed direct production of Y(4260):
 e⁺e⁻ → Y(4260) → π⁺π⁻J/ψ
 + observation of Y(4260) → π⁰π⁰J/ψ
 + evidence of Y(4260) → K⁺K⁻J/ψ
- Z(3930) observed by BELLE: $\gamma\gamma \rightarrow Z(3930) \rightarrow DD$
- Y(3940) observed by BELLE: B→KY(3940)→KωJ/ψ BR(B→YK)xBR(Y→ωJ/ψ) ~ 7x10⁻⁵
- X(3940) observed by BELLE in e⁺e⁻ → X(3940)J/ψ no signal is seen in ωJ/ψ channel

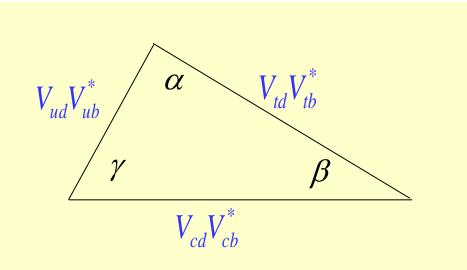

Request of Heavy Flavor to QCD

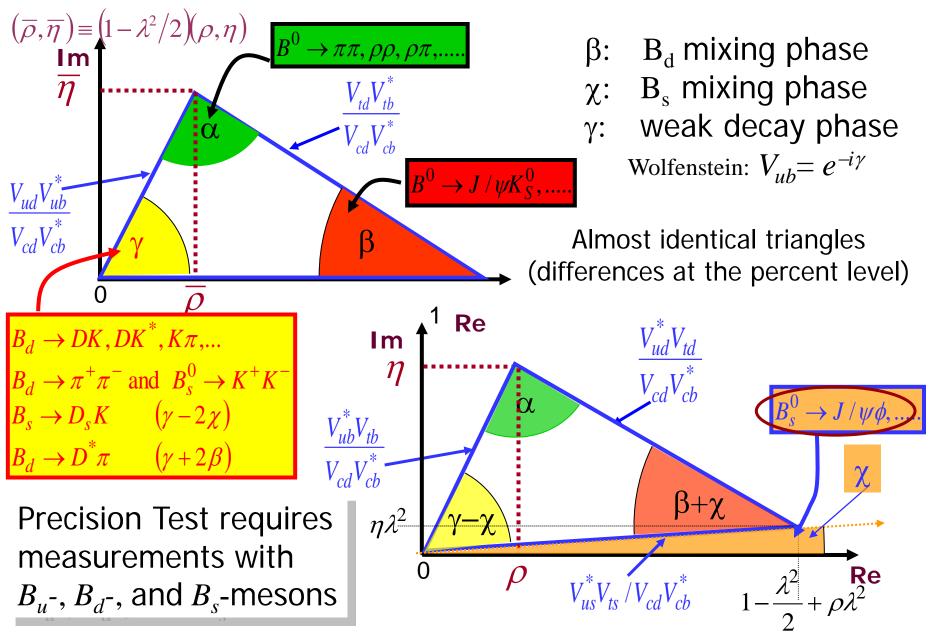
Help to search for a New Physics !!!


Quark Mixing in the Standard Model

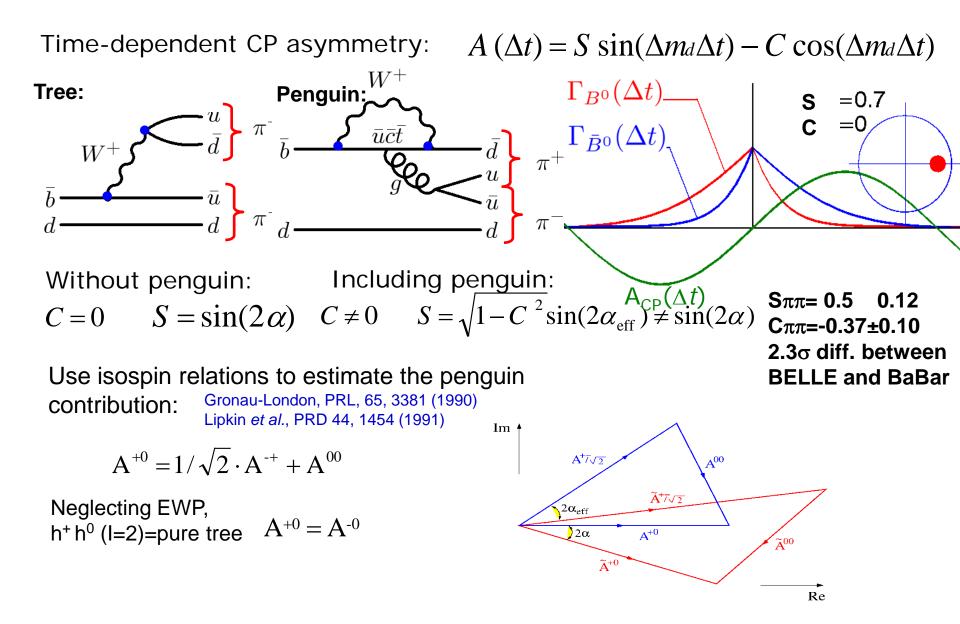

Cabibbo Kobayashi Maskawa (CKM) Matrix

Unitarity Test of the CKM-Matrix:


6 unitarity conditions



6 triangles are possible, all with the same area. However, 4 of them are almost degenerated and do not allow a sensitive unitarity test.


Sensitive tests: $\Rightarrow B_d$ - and B_s -mesons

Unitarity Triangles

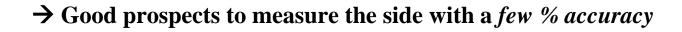
Determination of α/φ_2

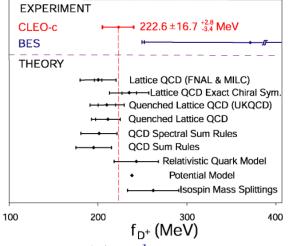
Comments on the precision of the CKM triangle elements

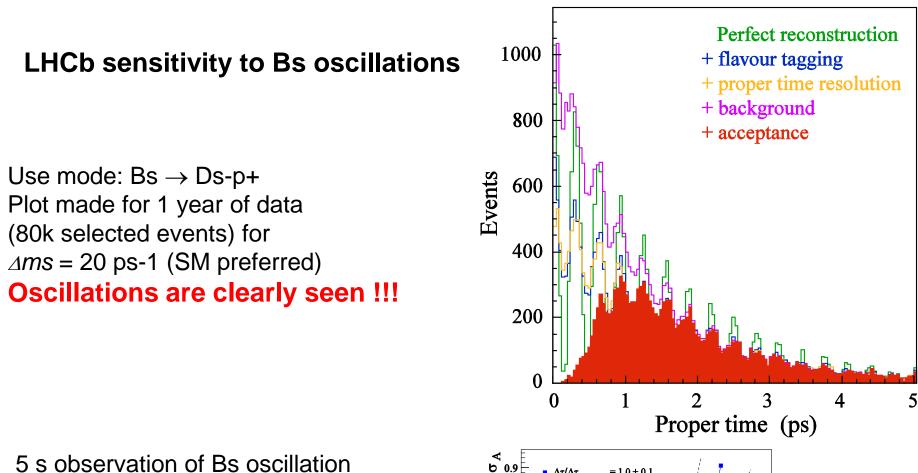
- β/ϕ_1 : present accuracy 1 degree; theoretically clean since penguins contribute with the same phase
- α/φ₂: present accuracy (~12) is limited by experiment. B→ρρ currently is the most perspective channel. It will be very difficult to go down to a few degree measurement both experimentally and theoretically.
 Request to theory: estimate a contribution from electroweak penguins

 - |VudVub*/VcdVcb*| : To separate the b→u from b→c one has to apply cuts on leptonic energy, hadronic invariant mass or lepton invariant mass.

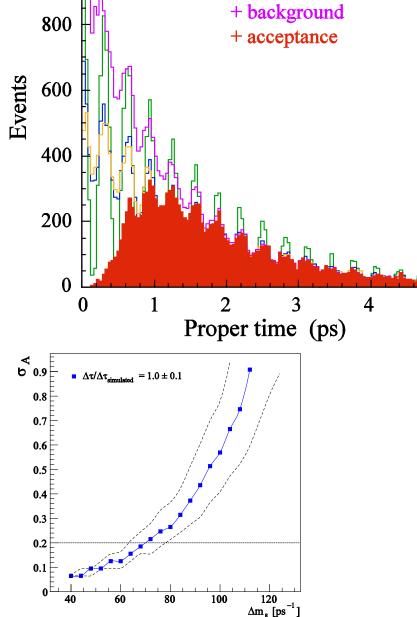
New dynamical scale, so called hardness (~1G Combined analysis of b \rightarrow ulv and b \rightarrow sy; use of experimentally measured hadronic momenta. An accuracy of ~5% is a theoretical challenge Already now the precision is limited by theory.




Comments on the precision of the CKM triangle elements


- γ/φ_3 : Theoretically very clean measurement since only tree amplitudes contribute. Experimentally can be measured in many channells \rightarrow possibility for cross-checks Current precision is limited by statistics. Using GLW method the Daliz- analysis of $B^- \rightarrow DK^-$ with $D \rightarrow Ks\pi^+\pi^-$ gives precision of ~17 (see A.Bondar talk at EW Moriond). In future after a 5 years of LHCb operation 1 precision can be achieved !!!
 - |**VtdVtb*/VcdVcb***| : |Vtd/Vts| is determined by:

$$\left|\frac{V_{td}}{V_{ts}}\right| = \xi \sqrt{\left(\frac{M_{B_s}}{M_{B_d}}\right) \left(\frac{\Delta M_d}{\Delta M_s}\right)} \qquad \qquad \xi = \frac{\sqrt{\hat{B}_{B_s}} f_{B_s}}{\sqrt{\hat{B}_{B_d}} f_{B_d}}$$


CLEO will measure f(D)/f(Ds) with a precision of a *few* % !!! Perfect way to calibrate *LQCD* calculations experimentally. The measurement of ΔMs is long awaited result \rightarrow wait for D0 ¹⁰⁰ f_{D} talk tonight. *Preferred value 19ps*⁻¹ *is well above the expected sensitivity 14 ps*⁻¹ 10 times more data needed for 3σ measurement !!!

for Δm s < 68 ps-1 (in one year) \rightarrow LHCb could exclude *full* SM range Once observed, precise value is obtained: $\sigma_{stat}(\Delta ms) \sim 0.01 \text{ ps-1}$

Last Slide

We are looking forward :

- for exciting discussions at this conference and in future
- for further experimental and theoretical progress to discover **NEW PHYSICS**

