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Abstract. This paper describes a parallel implementation that allthesevalua-
tions of the likelihood function for data analysis methodsun cooperatively on
heterogeneous computational devices (i.e. CPU and GPUhdiely to a single
computational node. The implementation is able to split bance the work-
load needed for the evaluation of the likelihood functioncorresponding sub-
workloads to be executed in parallel on each computatiomdtd. The CPU paral-
lelization is implemented using OpenMP, while the GPU impdatation is based
on OpenCL. The comparison of the performance of these imgations for dif-
ferent configurations and different hardware systems grerted. Tests are based
on a real data analysis carried out in the high energy phgsicsnunity.
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Introduction

Current high energy physics experiments are collectingecgrented large amounts of
data, which gives a great opportunity to look for effectsdicted by several physics
models or totally unpredicted effects. It is crucial to pedp analyze the data, since
the new phenomena can be very rare and their contributiofi sorapared to the total
amount of data. The data samples are a collectiofv ahdependengevents, an event
being the measurement of a set@fbservablesi = (2!,...,2°) (energies, masses,
spatial and angular variables...) recorded in a brief sgaime by physics detectors.
The events can be classified$ndifferentspecies. Each observable’ is distributed for
the given species with a probability distribution function (PDFPJ (27; ), whered?
are parameters of the PDF. Several data analysis technignese used to distinguish
between the events belonging to each species, using particbservables that have
different PDF distributions for the species [1]. The maximlikelihood (ML) fitting
procedure is a popular statistical technique used to ifjeatients and to estimate the
number of events belonging to each species and the parafigter(d!, ..., 09) of the
PDFs, that can be related to the prediction obtained fronsiphynodels.

This work describes a strategy for the parallelization efltkelihood function eval-
uation for ML fits for execution on CPU and GPU computatioralides. It represents
a continuation of a previous work, which described the atgor and the corresponding
implementations for CPU and GPU based on OpenMP and CUDpectisely [2]. Here



an improved version of the CPU implementation and a new implation for GPU
based on OpenCL are described. Furthermore, a novel implatien that allows the
evaluations of the likelihood function to run cooperatjweh both devices belonging to
the same computational node (hybrid evaluation) is intcedult is worthwhile to point
out from the beginning that the implementations are spetl§ioptimized for running
on commodity systems, i.e. systems than can be consideregtnis of cost and power
consumption, easily accessible to general data analygtsa(single socket desktop with
a GPU whose main target is computer gaming). Performing yheidhevaluation, data
analysts can fully exploit their systems.

Existing works in literature report on the parallelizatiomplemented on GPUs for
the evaluation of likelihood functions in some specific atific fields, such as phyloge-
netic analysis [3] and medical image reconstruction [4].

This paper is organized as follows. Section 1 gives an ogerof likelihood func-
tion definition in the case of ML fits and the algorithm usedifsrevaluation. Section 2
describes the changes of the OpenMP implementation amdiintes the OpenCL imple-
mentation and the hybrid solution. Section 3 reports theltesbtained from tests done
with a benchmark analysis on a testing system with two GPbtls fwo main vendors.
Conclusion are given in Section 4.

1. Likelihood function evaluation

The description of the data analysis techniques basede@lihidod function can be found
elsewhere [1]. Here a short description in case of ML fitsvegi If the observables are
uncorrelated, then the total PDF for the speciésexpressed by

Py(#:0,) = [ [ Pi(a?;00). (1)

The PDFs are normalized over their observables, as funofitreir parameters, which
implies an analytical or numerical evaluation of their gr. Then the evaluation of the
PDFs can be considered in two steps: evaluation of the nomalized function values
and their normalization. Thextended likelihood function is
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whereng are the number of events belonging to each species. Then thedinique
allows to estimate the values of the parameters by maxignthiis function with respect
to the parameters to estimate. Usually, it is used to miréntiie equivalent function
—In(L), thenegative log-likelihood (NLL). So theNLL to be minimized has the forin
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1The N! term in the expression is omitted, since it does not deperti@parameters.



that is a sum of logarithms. The terms of the sum can graghicalvisualized as a tree,
where the leaves are the PDP$(z7;07) (basic PDFs), which are then linked to the
corresponding product PDFB, (i; 6,), and finally the root that i5°°_, n,P,(&:; )
(sum PDF). Product and sum PDFs are denoted as composite Pidtsfore, the root
hasS child nodes, each wit® children, which means that in the tree there 8ire (O +

1) + 1 nodes in total. The evaluation of the term in the sum of ldbers consists of
traversing the entire tree, first evaluating the leaves updaoot.

The search for the minimum foNLL can be carried out numerically [5]. The whole
procedure of minimization requires several evaluationthefNLL, which themselves
require the calculation of the corresponding PDFs for edseivable and each event of
the data sample.

The algorithm for the evaluation of tHéLL is described in detail in the previous
work [2]. For eachNLL evaluation the tree is traversed sequentially only once.alo-
rithm starts evaluating the basic PDFs, belonging to a gareduct PDF, looping over
all values of their observables, and storing the resultsrizya (an array for each PDF).
This part is done in two phases: first evaluating all the nonvalized function values
and then looping on the corresponding arrays of resultshimbrmalization, i.e. two
loops per basic PDF. Then it does the evaluation of the qooreding product PDF, loop-
ing and combining the arrays of results of the daughter PDRsriew array. It repeats
the procedure for all product PDFs. After that it loops agaid combines the arrays of
results of the product PDFs to get a new array of results ®sthm PDF (final results).
So in total there aré x (2 x O + 1) + 1 loops. Eventually, the algorithm calculates the
logarithm of the final results and their sum (reduction)aifalism has been introduced
in each loop (data parallelism). Also the reduction has hgseallelized. The parallel
reduction can affect the final value of thkL, due to rounding problem in case of as-
sociative floating point arithmetics. In particular theuésan depend on the number
of threads used in the parallelization, and moreover it oaba deterministic between
two different evaluations, even with the same number ofatise This can lead to unpre-
dictable behavior during the minimization procedure,umstable results of the ML fits.
For this reason a new algorithm for the reduction has beeteimgnted. It preserves the
order of the operations for a given number of threads andliteces the rounding prob-
lem due to associative floating point arithmetics using thiebde-double compensation
algorithm 2Sum [6]. In this way the results are determiniatid stable in all tests.

2. Parallel Implementations

This section describes the implementations for the evialmain CPU, GPU, and the
hybrid. The code is implemented in C++ and all floating pojpe¢@tions are performed
in double precision.

2.1. OpenMP CPU Implementation

The parallelization on the CPU is based on OpenMP. It has inggmoved to have better
scalability and overall performance with respect to thevjoes work.

Recalling the description of the algorithm from the prewosection, the
S x(2x0+1)+1 loops, which are implemented &r loops, have been paral-



lelized via the#pr agma onp paral | el for directive. Each loop iterates times.
The scheduling of the iterations is statically partitionieel each thread executes a fixed
number of iterations. The partitioning is implemented sinch way that one thread can
have maximum one iteration of difference with respect todtreer threads, to ensure
an equal load-balancing. The same technique is appliedhélobp that computes the
reduction. Each thread accesses consecutive elements afriys of observables and
results, allowing coalescing of memory accesses and datarnization of the loops.
These arrays are shared among the threads, so that theregéigibiie increment in the
memory footprint of the application when running in parallurthermore, race condi-
tions can be easily avoided since the parallel region arérehto the loop iterations.
However, this implementation has some limitations thatioetthe overall performance:

1. For eacNLL evaluationS x (2 x O + 1) 4+ 2 independent OpenMP parallel re-
gions have to be considered. This could lead to a larger eagrthan necessary,
which drastically reduces the scalability. It is better &awvé as few OpenMP par-
allel regions as possible, since threading overhead shomulegpt at a minimum.

2. S x (O +1) + 1 arrays of results an@ arrays of observables have to be man-
aged, each array composed&ydouble precision values. The amount of data to
manage becomes consistent in case of complex models arddatg samples,
and it becomes crucial to have an optimal treatment of the idatde the cache
memories. Tests have proved that there is a significant fyetoathe scalability
when running with high number of threads in a system wherdattgest cache
memory is shared among the cores. An analysis of the probhemvssthat the
culprits are the loops of the composite PDFs, which have tolione arrays of
results with just a simple operation.

To remove the potential overhead due to OpenMP, the eNtite evaluation was
redesigned using a different pattern: there is only ondllearagion for each evaluation,
and this region will start at the root of the tree. The pantithg of the iterations is done
as before, but now each thread executes the entire evaidetio the root to the leaves
within its own partition only. This implementation can le@dconsequences that may be
problematic. Indeed, the parallel region covers a largetiggoof the execution, so it is
crucial to not modify member variables of the object the mdtis running on, or global
variables, without carefully assuring that race condgiare avoided.

Three different optimizations have been considered inraimeeduce the load on
memory. First, in each PDF the loop for the evaluation of the-normalized values was
merged with the loop of the normalization in a single loopfidusion). In this way
computation and memaory accesses overlap. The second patiom specifically regards
the composite PDFs. The code was changed so that these PDBesrahtheir results
array “down” to the children, which then do their own evalaatand the correspond-
ing combination directly on the array of value of the mothes(lts propagation). The
main benefit of this change is that each basic PDF does notthatere its own results
anymore. The last optimization consists of splitting thead#domain into blocks so that
the entire procedure of evaluation is done one by one (blplittisg). This optimization
directly targets cache misses, since it increase localithtiaereby cache efficiency. With
these optimizations the number of total loops is reducetitqO + 1) times the number
of blocks and the number of arrays of resultsste- 1.



2.2. OpenCL GPU Implementation

In the OpenCL implementation the PDF loops are offloaded texdeeuted on the GPU.
Each loop is thereby replaced by a corresponding OpenClekevhich runs théV iter-
ations using GPU threads. This implementation also takesrdadge of the loop fusion,
as explained in the OpenMP implementation. The resultsggation and block splitting
are not considered. The former is tedious to implement inn@he(it would require a
consistent duplication of the code in plain C), and the tattees not fit with the way a
GPU does computations. Therefore, theresire (O + 1) + 1 kernels to launch and a
corresponding same number of arrays of results to manage tA¢ reduction is done in
parallel (tree-based reduction) on the GPU. This redudtiateterministic and it takes
into account the rounding problem described in the OpenM#amentation.

It is important to point out that the implementation is fupgrformance-portable
between NVIDIA and AMD GPU cards. Tests have shown margimakrovements (less
than 5%) when doing specific optimizations, e.g. using eat&ctor types, which lead
to different implementations for each device with respea tommon implementation.

The arrays of the observables are copied from the host to Bié global memory
using synchronous functions. These arrays are read-omiggithe entire execution of
the application, so only one copy at the beginning is neetiieey are then used for all
NLL evaluations. For each evaluation, the CPU traversedlthetree and it launches
the corresponding kernels to be executed on the GPU, faillpttie algorithm described
in Section 1. The arrays of results for each PDF can be kejutenatsin the GPU global
memory. Eventually the reduction is done on the final arragestilts and the value of
the sum is copied back to the host memory for the finalizatioth@ NLL value. The
kernels are asynchronously executed, i.e. the evaluafitiredree is non-blocking and
the kernels are just enqueued for execution on the GPU. Tiniengdicit synchronization
will occur at the end when the final reduction result has todyged. The possibility of
interleaving the CPU and GPU computations reduces the ingdbe operations that
are not of the loops, i.e. only executed by CPU, such as tlegyiiak calculation for the
normalization.

The optimization of the occupancy is not an easy task to seti@ two main rea-
son. First of all, it can depend on the GPU architectures fidfarent vendors. Then it
depends on what kind of PDFs analysts decide to use for thalysis. Because of that,
a very general procedure, based on a heuristic approachebasised to decide the size
of the workgroups. The rule is that if a kernel contains adcamdental function, the
workgroup size is set to a “low” number. If the kernel does emrttain transcendentals,
but rather only basic arithmetics, the workgroup size igsat“slightly higher” number.
Tests have shown that 64 and 128, respectively, providedaig results, with occupancy
numbers ranging from 0.33 to 0.67 depending on the kernedtmparison between us-
ing these numbers and the OpenCL default numbers gives ddétiimprovement in
performance.

2.3. Hybrid Implementation
The two implementations described in the previous sectipresthe possibility to fully

use the CPU and GPU computational devices, but independemthe case of the GPU
implementation, the CPU runs only a single thread, so a ourkiCPU would be under-



utilized. Therefore, it is interesting to explore the pbsiy of fully loading the CPU in

a hopefully implementation-pleasant way. Although it isgible to program both CPU

and GPU with OpenCL, this would lead to a worsening of thegremfince with respect

to using OpenMP implementation since several optimizatiocluded in OpenMP are

not easy to implement in OpenCL. For this reason the hybrigtism described here

allows simultaneous use of the OpenMP and OpenCL descriktbe iprevious sections.
The strategy for the hybrid implementation consists ofatdi#ferent steps:

1. Decomposition of thé/ iterations of the loops in two groups of iteratiodé&py
and Ngpy to be executed by OpenMP and OpenCL implementations, respec
tively.

2. Each implementation runs the entideL tree evaluation, considering the itera-
tions [0, Ncpy|[ for OpenMP andNc¢py, N| for OpenCL.

3. The result of the reductions from the two implementatiars collected and
summed together to finalize tiNLL evaluation on the CPU.

In this strategy, the part that needs to be implemented iesepted by the first step,
since the second step requires execution of the alreadyibed©penMP and OpenCL
implementations on different ranges on the observableshanidst step is trivial.

The determination oiVNcpy and Ngpy is done using a load-balancer, which deter-
mines the best decomposition, i.e. both implementatioesdthe same amount of time.
In order to have result determinism, the reductions musiieewted for the same static
configuration during alNLL evaluations in a ML fit. This means that users can run the
load-balancer once at the beginning to determine the deasitigm, and then fixing it
for their ML fits.

The load-balancer starts assuminy BU = N((;P))U = N/2, where the apex index
denoted that is the first configuration. Then the two impletatgons are executed for

this configuration. Their execution times at@\llU andtgllU, respectively. If the ratio
max(tSF),U, tgF),U)/ min(t(ch),U, tSF),U) is less then a given threshold, then an optimal de-
composition was reached. Otherwise, the procedure is tegh@dth a new configura-
tion [7]:

NP =N x

1 1

NG “
1 1 1 1 ’

NGB + NG 10k

where the subscript D represents CPU or GPU, and so on uetthtieshold condition

is satisfied. The measurement of the execution times of bBth &hd GPU implemen-
tations is done using thenp_get _wt i me OpenMP function. It is possible to consider
averages from sever8lLL evaluations to reduce the fluctuations of these timings (the
number of evaluation can be set by the users depending oothglexity of theirNLL).

In the case the threshold condition is not satisfied aftevarghumber of cycles of the
load-balancer, because of large fluctuations with respeztsmall threshold, the proce-
dure ends and the last configuration is returned. Testsqesbin this paper have shown
that the load-balancer is able to reach the convergenaeoaie 3 cycles.

The hybrid implementation is itself based on OpenMP. Essiéntthe OpenMP
implementation start$®> + 1 threads, where® is the number of threads used for the
NLL evaluation, while the other thread is used by the OpenCLemghtation. This is
possible since in the OpenMP implementation starts a sibgknMP parallel region at



the root of theNLL tree, so that it is possible to branch between the two impfeatie®ns
at the beginning of the evaluation. Then the OpenMP stangaadantees an implicit
synchronization at the end of the parallel region. It is imi@ot to remember that the
OpenCL kernel calls are non-blocking and ideally consumeanmal CPU time, i.e. the
evaluation of the tree on the CPU impose a minimal overhdatid holds, then users
can decide to ru® + 1 threads on a CPU witl® cores.

3. Tests

In the following tests a statistical model based on BaBR analysis for the branching
fraction measurement of theé meson toy’ K decay is used [8]. There are 3 observables
and 5 species. In total there are 21 PDFs: 7 Gaussians, 5qmigts, 3 Argus functions,
which are combined in 5 PDFs for multiplication and one foditidn, respectively. All
PDFs have an analytical integral. The number of events dersil ranges between 10k
and 1M events. Each run does 1000 times a pire function evaluation, and we time
5 runs to achieve an accurate timing result.

The CPU system is an Intel Core i7 965 Nehalem running at 3.2,®th 2GB
DDR3 RAM. It is a quad-core CPU and it also supports SMT, whigkans that it has
the ability to physically execute 8 threads simultaneoasly on a per-core basis (with 2
threads). Two GPUs are used: NVIDIA GeForce GTX470 and AMdédda HD5870.

The OpenMP CPU implementation improves the previous ona feingle thread
by a factor 1.8x. The new speed-up results are: 1.8x witheatts, 3.6x with 4 threads,
and 4.7x with 8 threads, independently by the number of evesd in the test. In the
previous implementation the maximum speed-up was 2.5x8vithreads.

The results for the OpenCL GPU implementation are showngutéi 1 on the left
plot. Only in this case tests are also executed on a NVIDIAAI€2050. This implemen-
tation is not beneficial for a low number of events with resgeche OpenMP imple-
mentation. This is a direct consequence of the need to capfyrtal value over the PCI-
Express bus. Another interesting result is that neitheHtbB&870 nor the Tesla C2050
give any higher speedups than the GTX470, although theaiistithey are almost 4x
faster than the GTX470 when performing double-precisidth@etic. The reason for
this is that the computation is completely memory-boundilsthe ALUs on the cards
are starved while waiting for memory reads.

Figure 1 shows also the results from the hybrid implemeoratin the right plot. A
general observation is that must be large to gain anything on this, so that the overhead
can be amortized. Running the GTX470 (with 4 threads in ther®P implementation)
and the HD5870 (3 threads) in a hybrid scenario is very beagfigchieving nearly
perfect balancing for high workloads.

4. Conclusion

Two new implementations for thHLL evaluation have been presented in this paper,
based on OpenMP and OpenCL. It is also described a novel agpito the hybrid
evaluation for GPU and CPU computational devices. The Ogemplementation gives
better performance and scalability with respect to the iptesyimplementatin reported
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Figure 1. Comparison between CPU and GPU for the OpenCL implementdtéit plot) and the hybrid
implementation (right plot). The reference is the OpenMPplementation with 4 threads. The “theoretically
perfect” lines are obtained when summing the performantieecDpenMP and OpenCL implementation alone,
i.e. no considering the overhead from the hybrid implenténa

in [2]. Comparing this version to an OpenCL implementatibig possible to conclude
that the GPU should be used for a sufficient number of eventsilds is suitable since
the need for computing power increases with The possibility of using the hybrid
implementation further improves the performance.
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