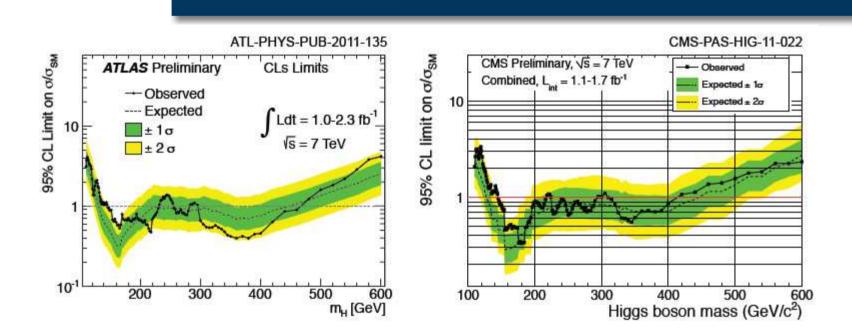


Prospects for ttH

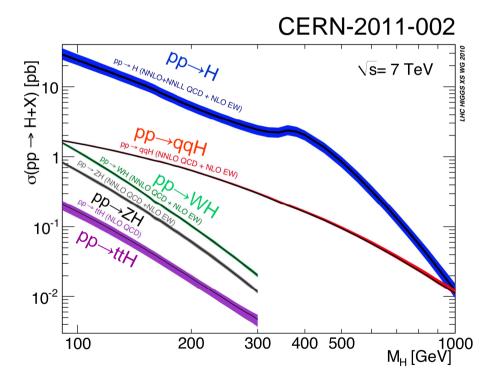
Sarah Allwood-Spiers (University of Glasgow) On behalf of the ATLAS+CMS collaborations Top 2011



Overview

- Motivation
- Previous Studies
 - CMS TDR (2006), ATLAS (2008)
- Updates
 - 14TeV \rightarrow 7TeV, LO \rightarrow NLO cross sections
- Current Status
 - tt+jets measurement,
 - jet systematics,
 - b-tagging
- Tools for the future
 - Data driven background measurement
 - Boosted Higgs
 - Available Event Generators
- Conclusion

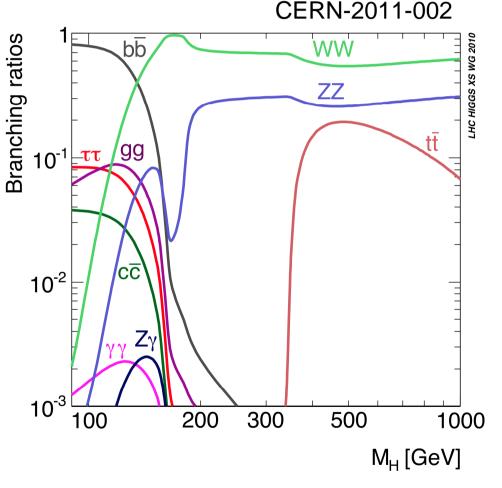
Motivation



- If the Higgs boson is light, a combination of channels is needed for discovery.
- ttH observation gives access to top-Higgs Yukawa coupling.
- $t\bar{t}H(H \rightarrow b\bar{b})$ gives access to H-b Yukawa coupling.

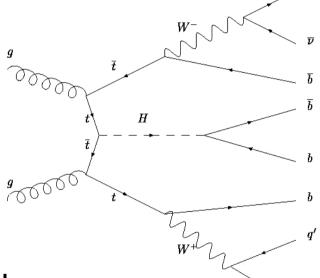
The Challenge (1)

- At $\sqrt{s} = 7$ TeV, for a Higgs m_h=120 GeV, $t\bar{t}H$ production σ ~100fb
- Branching ratios:
 - bb: 65%
 - WW: 15%
 - gg: 8%
 - тт: 7%
 - cc: 3%
 - ZZ: 1%
 - γγ: _0.1%
- $ttH(H \rightarrow bb)$ in lepton+jets channel:
 - σ*BR ~20fb



Sarah Allwood-Spiers, ttH Prospects

The Challenge (1)


- At $\sqrt{s} = 7$ TeV, for a Higgs m_h=120 GeV, $t\bar{t}H$ production σ ~100fb
- Branching ratios:
 - bb: 65%
 - WW: 15%
 - gg: 8%
 - тт: 7%
 - cc: 3%
 - ZZ: 1%
 - γγ: _0.1%
- $ttH(H \rightarrow bb)$ in lepton+jets channel
 - σ*BR ~20fb

Sarah Allwood-Spiers, ttH Prospects

The Challenge (2)

Issues:

- ttbb background,
- tt+jets background
- Combinatorial background (very dependent on jet reconstruction),
- Very dependent on B-tagging.

- e.g. lepton+jets channel:
 - 1 isolated lepton (µ or e)
 - Missing E_{T}
 - ≥6 jets, of which ≥4 are b-tagged Signal reconstruction:
 - Hadronic W : 2 jets, m_{ii}~m_w
 - Leptonic W: lepton+Etmiss
 - Reconstruct the top quarks

Previous Studies

120 GeV Higgs boson, 14TeV (signal σ 6× higher than 7TeV).

- CMS TDR (2006 LHC-2006-021), 60fb⁻¹.
- ATLAS CSC book (2008 CERN-OPEN-2008-020), 30fb⁻¹.
- Leading order Monte Carlos and poor scale choice for *ttbb*.
- Jets defined by cone algorithm, and advanced btagging algorithms assumed.

	ATLAS		CMS	
samples	generators	Cross section (pb)	generators	Cross section (pb)
ttH	Pythia	0.537 LO	CompHEP + Pythia	0.664 NLO
ttbb (QCD)	AcerMC+Pythia	8.7 LO	CompHEP + Pythia	3.28 LO
ttbb(EW)	AcerMC+Pythia	0.94 LO	CompHEP + Pythia	0.65 LO
tt(+jets)	MC@NLO+Herwig	833 NLO+NLL	Alpgen + Pythia	588 LO (*)
				7

Sarah Allwood-Spiers, ttH Prospects

Previous Studies

- CMS TDR (2006 LHC-2006-021), 60fb⁻¹.
 - All-hadronic channel and dilepton: optimised cuts.
 - Lepton+jets: Preselection followed by event likelihood (constraints on m_w, m_t, b-tags, kinematics)
- ATLAS CSC book (2008 CERN-OPEN-2008-020), 30fb⁻¹:
 - Considered lepton+jets channel. Preselection followed by:
 - Cut based: Mass window cuts made on hadronic W and m_t . Jets assigned to tops by minimising a χ^2
 - Pairing likelihood: topological distributions of the top system used as input to a combinatorial likelihood.
 - Constrained mass fit: adjust lepton and jet momenta and Etmiss to match m_W and m_t . Calculate χ^2 followed by 2 step likelihood technique.

Preselection Cuts

CMS 2006

Leptons:

- Lepton trigger p_T>15GeV
- Likelihood based μ reconstruction
- Likelihood based e reconstruction Jets: cone R=0.5
- 6 or 7 jets, $|\eta| < 3.0$, $p_T > 10 \text{GeV}$ (for $10 < p_T < 20 GeV$, extra check that 2 tracks point to primary vertex)

b-jets:

- 4 jets tagged as b-jets, (combined secondary vertex, 70% working point)
- Dilepton veto \bullet
- Event likelihood to assign jets lacksquare
- Second likelihood for background rejection (stronger b-tag requirement) Sarah Allwood-Spiers, ttH Prospects

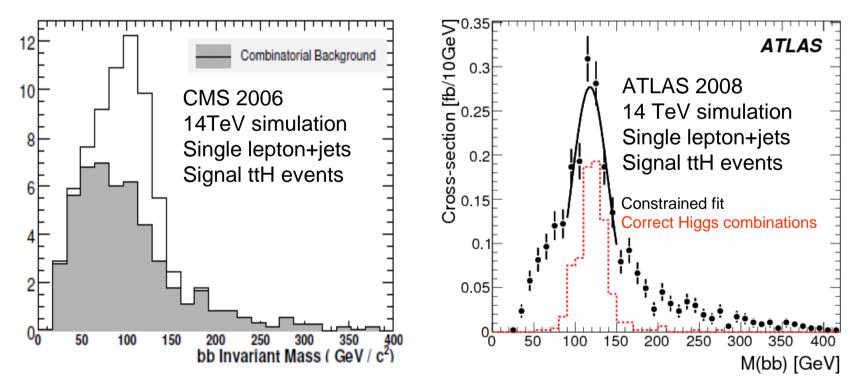
ATLAS 2008

Leptons:

- Lepton trigger p_T > 22GeV (e), p_T>20GeV (μ).
- 1 isolated lepton, $|\eta| < 2.5$, p_T>25GeV (e), p_T>20GeV (μ)

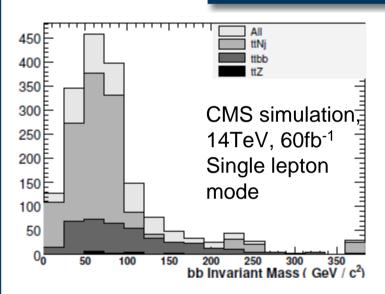
Jets: cone R=0.4

≥6 jets, p_T>20GeV

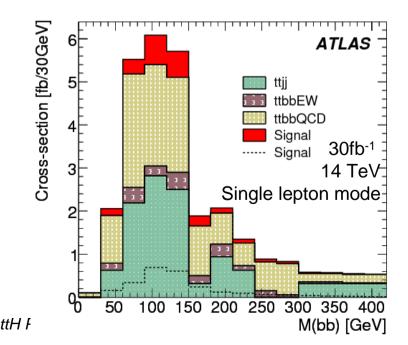

b-jets:

- ≥4 jets passing loose b-tag cuts (IP3D+SV1, 85% working point)
- For cut-based and pairing likelihood analyses, ≥4 jets passing tight b-tag cuts (IP3D+SV1, 50% working point).

Combinatorial background


- Multivariate techniques aimed to reduce combinatorial background
- ~30% correct assignments to $H \rightarrow b\bar{b}$

Sarah Allwood-Spiers, ttH Prospects



Statistical Significance, $\sqrt{s} = 14$ TeV

CMS, 2006, 14TeV, 60fb⁻¹:

- ttH selection efficiency: 1.9%(µ), 1.4%(e)
- S/B: 4.8%(µ), 4.4%(e)
- Statistical significance S/ \sqrt{B} : 1.8(µ), 1.6(e)

ATLAS, 2008, 14TeV, 30fb⁻¹:

- $t\bar{t}H$ selection efficiency 2.5%
- Constrained fit achieved S/B=0.12, accepted σ=1.3fb
- Statistical significance S/\lambda B: 2.2
 BUT large systematics reduced this greatly....
 Sarah Allwood-Spiers, ttH F



Systematics

- Systematics: 20-30%
- Reduced significance to S/ $\sqrt{(B+\Delta B)} \sim 0.5$
- Largest contribution:
 - Jet Energy Scale and Jet Energy Resolution (≥ 6 jets)
 - B-tagging (≥ 4 b-jets)_
- Not including *tt jj* or *ttbb* cross sections (assumed these are measured)

oncertainties assumed for each jet .					
	ATLAS 2008	CMS 2006			
JES	7%	3-10%			
JER	45%/√E(GeV) barrel 63%/√E(GeV)forward	10%			
b/c tag effic.	5%	4%			
uds tag effic.	10%	10%			

Uncertainties assumed for each jet :

Then and Now: Theory

Changes since the old studies:

 $14 \text{ TeV} \rightarrow 7 \text{ TeV},$ $t\bar{t}H_{\sigma}$ σ: 685 fb → 100 fb (m_h=120GeV) Inclusive $t\bar{t}$ σ: 886 pb → 160 pb

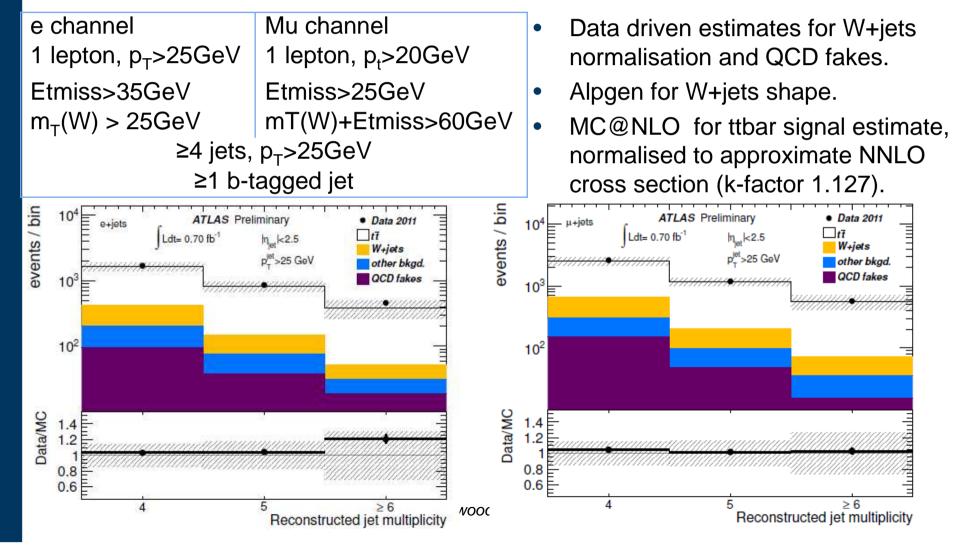
Theory updates:

tt H NLO corrections increased σ by up to 20%.
 (Beenakker, Dittmaier, Kramer, Plumper, Spira, Zerwas '01; Reina, Dawson '01; Dawson, Orr, Reina, Wackeroth '03)

BUT

- Poor scale choice in previous leading order $t\bar{t}b\bar{b}$.
- $t\bar{t}b\bar{b}$ at NLO calculations at new scale show an increase of >100%. (A. Bredenstein, A. Denner, S. Dittmaier and S. Pozzorini 2010)
- NLO QCD corrections to $t\bar{t}jj$ have also been calculated. (Bevilacqua, Czakon, Papadopoulos, Worek 2010).

Then and Now: Reconstruction

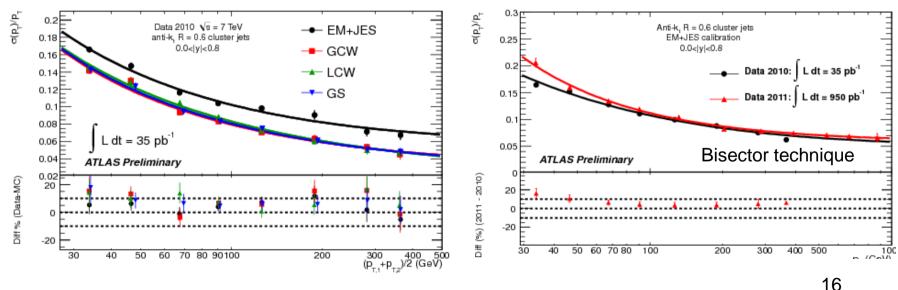

- Jet reconstruction techniques have improved:
 - cone \rightarrow anti-k_T as standard,
 - Interest in subjet analysis
- Experiments are no longer in "early data" phase:
 - Uncertainties in jet energy scale are at a similar precision to those assumed in the ATLAS CSC book and the CMS TDR.
 - sophisticated b-tagging algorithms are ready for use.
 - \rightarrow Background measurements to ttH can be started soon
- Next slides look at the ingredients we have and outline plans.

ATLAS-CONF-2011-142

Measurement of tt+jets

Reconstructed jet multiplicity after single lepton+jets ttbar selection cuts.

ATLAS-CONF-2010-054

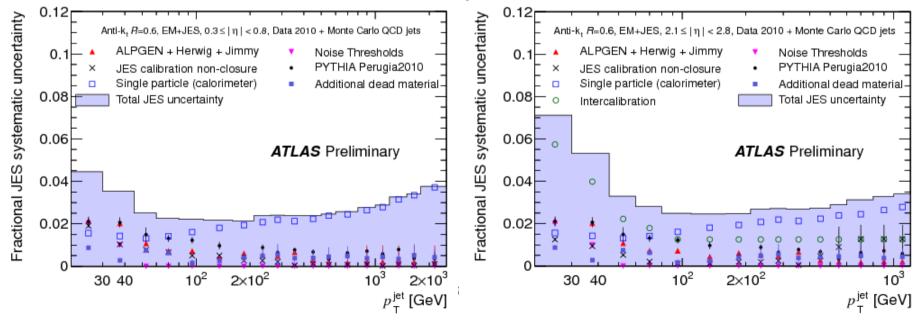

Introduction • Previous Studies • Current Status • Plans

Jet Energy Resolution (JER)

In situ techniques to measure jet resolution in dijet events (anti-kt, R=0.6)

- Dijet balance: Measure asymmetry between p_T of two leading jets.
- Bisector technique: Vector sum of momenta of two leading jets to define imbalance vector \vec{P}_T . Measure variance in 2 orthogonal coordinates of transverse plane.
- Systematic uncertainties ~10%, estimated from data-MC agreement.

Sarah Allwood-Spiers, ttH Prospects


ATLAS-CONF-2011-032

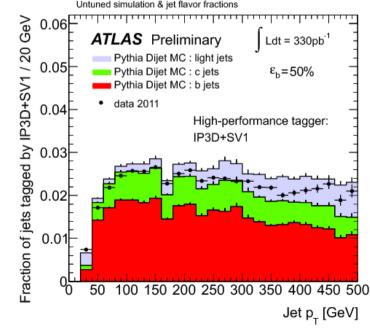
Jet Energy Scale

Jet Energy Scale measurement for inclusive jets, combined:

- in-situ and single pion test-beam measurements,
- uncertainties on the material budget of the ATLAS detector,
- description of the electronic noise,
- Monte Carlo modelling
- → Including 2011 pileup estimate, JES uncertainty < ±10% for |η|<2.8, p_T>20 GeV. Additional 2.5% uncertainty for b-tagged jets, derived from difference between JES for b-tagged jets and non b-tagged jets in MC.

ATLAS-CONF-2011-102

B tagging


- In early data, simple and robust taggers were used.
- Now, commissioning of advanced taggers.
 - Expect light jet rejection ~1000 for 50% b-tagging efficiency
- ATLAS:
 - IP3D+SV1

(Impact parameter + secondary vertex)

- IP3D+JetFitter

(Impact parameter +

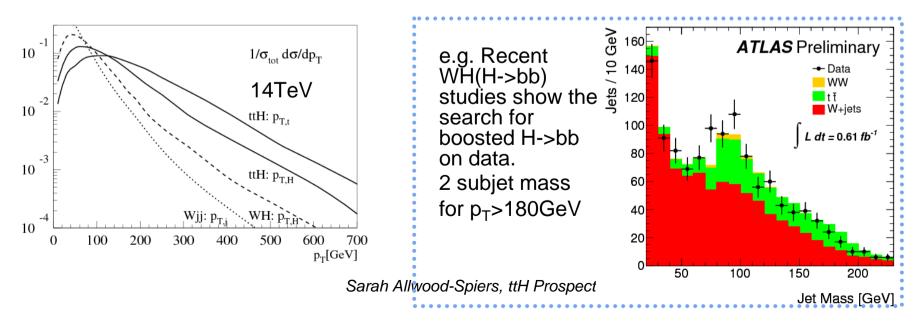
fitter to primary vertex, b and c vertices)

Sarah Allwood-Spiers, ttH Prospects

Data driven backgrounds

Background measurements should be data-driven. Possible strategy:

- Take ttbb/ttjj fraction from Monte Carlo
- Define loose/medium/tight btag working points
 - Loose and medium have low (~1%) signal contamination
 - Tight working point is the cut used for $t\bar{t}H$ analysis.
- Measure m_{bb} in events with tt+ 2 b-tagged jets (i.e. $t\bar{t}jj + t\bar{t}b\bar{b}$) at loose working point.
- Use tagging efficiencies ϵ_{b} , $\epsilon_{c}\,$, $\epsilon_{light}\,$ for "loose" and "medium" btagging working points.
- Extrapolate to medium working point.
- Compare to measurement of m_{bb} at medium working point.
- Extrapolate to tight working point.
 - also look at sidebands in m_{bb}.
- Also possibility to look at 3 btags instead of 4.


Phys. Rev. Lett. 104.111801 Introduction • Previous Studies • Current Status • Plans

Boosted Higgs

Plehn, Salam, Spannowsky, 2009:

- Use Cambridge-Aachen algorithm, R=1.5 to find 2 "fat jets" with p_T>200GeV
- Subjet analysis:
 - "Top tagger": undo clustering to find subjets, m_{ii} ~ m_W , m_{iii} ~ m_t .
 - "Higgs tagger": undo clustering, order subjet pairs by a distance measure $J=p_{T1}p_{T2}(\Delta R_{12})^4$. Require 2 btags and ±10GeV mass window
- Apply 3rd btag to jets (R=0.6) after removing the Higgs and top constituents

Event Generators

Available tools:

- $t\bar{t}H$: POWHEG, aMC@NLO for NLO $t\bar{t}H$ production.
- $t\bar{t}b\bar{b}$:
 - AcerMC: leading order, QCD+EW contributions.
 - Alpgen: leading order QCD (ME+PS).
 - POWHEG: *ttbb* NLO+PS with massless b's work in progress.
 - aMC@NLO: -
 - Sherpa: *ttbb* (QCD contribution only) (ME+PS).
 - Menlops/SHERPA: -
- *tt jj* :
 - Alpgen: LO *tt jj*. Needs overlap removal between *tt jj* and ttbb sample.
 - MC@NLO: total cross section NLO, tt+1j LO, subsequent_jets LL.
 - POWHEG: ttj at NLO (parton shower by Pythia or Herwig). *tt jj* future work.
 - aMC@NLO: -
 - SHERPA: LO *tt jj* (ME+PS).
 - Sherpa/MENLOPS: total rate NLO, work in progress.

Conclusion

- $t\bar{t}H$ is an interesting complementary measurement if the Higgs boson is low mass.
- Background measurements can be started now.
- NLO Monte Carlos are needed for *ttbb* and *ttjj*.
- Development of advanced b-taggers and jet energy resolution / jet energy scale measurements will help to control systematics.
- Investigation of new reconstruction techniques (e.g. jet substructure) vital to reduce backgrounds and control combinatorial problems.
- However, $t\bar{t}H$ remains a challenging channel.