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The extracted value of the relic density has reached the few percent level precision. One can therefore

no longer content oneself with calculations of this observable where the annihilation processes are

computed at tree level, especially in supersymmetry where radiative corrections are usually large.

Implementing full one-loop corrections to all annihilation processes that would be needed in a scan

over parameters is a daunting task. On the other hand one may ask whether most of the corrections are

taken into account through effective couplings of the neutralino that improve the tree-level calculation and

would be easy to implement. We address this issue by concentrating in this first study on the neutralino

coupling to (i) fermions and sfermions and (ii) Z. After constructing the effective couplings we compare

their efficiency to the full one-loop calculation and comment on the failures and success of the approach.

As a bonus we point out that large nondecoupling effects of heavy sfermions could in principle be

measured in the annihilation process, a point of interest in view of the latest limit on the squark masses

from the LHC. We also comment on the scheme dependencies of the one-loop corrected results.
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I. INTRODUCTION

With barely 1 fb�1 of data, the LHC is pushing many
hitherto popular, though naive, extensions of supersymme-
try to the corners of high masses [1] while leaving some
hope for a discovery of a rather light Higgs particle that
could still be compatible with supersymmetry [2]. Before
this very recent paradigm, supersymmetric models (and
most models of new physics for that matter) were very
strenuously constrained to a thin sliver in parameter space,
most notably from the very precise measurement of the
dark matter relic density that has now reached the few
percent level and that will get even more precise in the
future, hence cornering even further model building.
Combining the results of the 7-year WMAP data [3] on
the 6-parameter �CDM model, the baryon acoustic oscil-
lations from SDSS [4] and the most recent determination of
the Hubble constant [5] one [6] arrives at �CDMh

2 ¼
0:1123� 0:0035, where �CDM is the density of cold dark
matter (CDM) normalized to the critical density, and h is
the Hubble constant in units of 100 km s�1 Mpc�1. One
has reached a precision of 3%. The data from the LHC do
not infer that dark matter within supersymmetry, exempli-
fied most nicely through the neutralino, the lightest super-
symmetric particle (LSP), is of order of 1 TeVor so; this is
just a limit on the colored constituents of the model. As for
the Higgs particle, were it not for the large radiative
corrections on the mass of the lightest member, supersym-
metry would long be a forlorn construct. The Higgs parti-
cle is the most prominent example where radiative
corrections are far from negligible in supersymmetry, yet

practically all analyses that aim at constraining the parame-
ter space of the minimal supersymmetric standard model
(MSSM) through the relic density are based on tree-level
cross sections of the annihilation processes entering the
predictions of this quantity which, as stressed, is experi-
mentally given within the percent accuracy. Only seldom
do some analyses assign a theory uncertainty to these
annihilation cross sections, an uncertainty due essentially
to the fact that higher order loop effects are not known.
This uncertainty, in the rare case where it is taken into
account, is however assumed to be invariably the same
whatever the nature of the dominant process and the com-
position of the LSP. The reason the loop corrections are
ignored, irrespective of the model specified, is that the
calculation of the relic density requires most often the
evaluation of a large number of processes. Most analyses
are done with public codes [7–9] based on tree-level cal-
culations. Computations of the relic density at one loop
have now been achieved for quite a few channels [10–14]
and tools exist now to perform in principle any calculation
of the relic density beyond tree-level amplitudes thanks to
the recent development of adapted automation tools [15].
Beside the findings [10–14] that these corrections are
important, the improvements have not percolated into
most analyses. It must be said that these calculations do
involve some nontrivial issues about the renormalization of
the MSSM and more generally techniques for one-loop
integrals that certainly require expertise. The other reason
is that even when they could be implemented, they are still
certainly extremely CPU time consuming, forbidding any
attempts of fits, likelihood search, and in a more general
context any sampling of the parameter space, especially if
one takes into account the fact that the MSSM is more than*UMR 5108 du CNRS, associée à l’Université de Savoie.
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liberal with unconstrained parameters. Yet, apart from
providing a more precise prediction, one-loop calculations
can probe higher masses, a situation akin to the precision
electroweak observables and their sensitivity to the top and
Higgs mass. For example, nondecoupling corrections have
been revealed in one-loop calculations of supersymmetry
observables [16–18]. They stem from the superoblique
contribution which is termed in analogy to the more famil-
iar oblique corrections that appear in one-loop corrections
to 4-fermion processes in the standard model. They origi-
nate from the universal, process-independent self-energy
corrections. An example in view of the recent findings of
the LHC is that super heavy squarks leave a non-negligible
imprint on many observables, in particular, the annihilation
cross sections involving dark matter.

The aim of this paper is two-fold. First, to stress again
the importance of the loop corrections for the relic density
and show again that even when a loop calculation is
available, there still remains in some cases an uncertainty
that pertains to the choice of the renormalization scheme.
The second and more detailed aspect is to discuss whether
an approximation to the one-loop calculation can be found.
We aim at implementing a universal correction through
effective couplings of the LSP and checking its validity
against a complete one-loop calculation. If such an ap-
proximation is possible and general enough, it could be
implemented in existing codes (based on tree-level cross
sections) calculating the relic density. Such was the case
with the inclusion of the Sommerfeld effect [19] in the case
of coannihilation or processes dominated by Higgs ex-
change for which �mb [20] corrections are included [7].

This preliminary study takes a simple process, namely
~�0
1 ~�

0
1 ! �þ��, as a testing ground. The aim of this study

is not to find a good scenario that returns the correct actual
value of the relic density but to try to unravel some general
common features of the loop calculation to improve the
predictions of the relic density. The aim is to rather find out
whether one can improve on the tree-level calculation by
introducing effective couplings of the LSP that could be
used for any process. As we will see, though at first sight
naive, the process ~�0

1 ~�
0
1 ! �þ�� embodies the three types

of couplings of the neutralino: to f=~f, gauge bosons, and
Higgs particles. Here we cover the bino and the Higgsino

case. One might argue that the bino case corresponds to
what was referred to as the bulk region in the constrained
MSSM and is largely ruled out, whereas for a Higgsino this
would not be the dominant process. As we have just
stressed, the aim is not to strive to find a good scenario.
Besides, it suffices to change the cosmological ingredients
[21] entering the calculation of the relic density to revive the
so-called bulk region. We will see that by considering these
few simple examples the conclusions about the efficacy of
the effective coupling is quite different. Moreover, there is
no need here to convert a full corrected cross section into a
relic density value; we rather take for all the models we
study the annihilation cross section for an energy corre-
sponding to a relative velocity of v ¼ 0:2, typical for the
relic density calculation. As known, for zero relative veloc-
ity the process enjoys chirality suppression which is lifted at
higher order through gauge boson radiation; however the
effect on the relic is totally marginal [10].
The paper is organized as follows. We first briefly de-

scribe the ingredients necessary to perform a one-loop
calculation in supersymmetry covering both automation
and renormalization schemes; it is in this section that we
will write down the effective universal neutralino cou-
plings as well as some definitions. Section III contains
our main results. After a few definitions we first study
the case of a binolike neutralino before addressing the
case of a Higgsino-like LSP. We also quantify the possible
uncertainties due to the scheme dependence. We conclude
in Sec. IV by some general observations.
Throughout the paper we use some shorthand notation

for angles. Generically c�, s�, t� stand for cos�, sin�,
tan�. The weak mixing angle �W is defined as cos�W ¼
cW ¼ MW=MZ, where MW is the W mass and MZ the Z
mass.

II. CALCULATIONS, RENORMALIZATION
SCHEMES AT FULL ONE-LOOP

A. Tree-level considerations

At tree level (see Fig. 1), ~�0
1 ~�

0
1 ! �þ�� proceeds

through (i) t-channel smuon exchange dominated by a
~�R in the case of a binolike since it has the largest hyper-
charge; (ii) a Z exchange which, on the other hand, is

FIG. 1. Tree-level diagrams contributing to ~�0
1 ~�

0
1 ! �þ��. (a) is the t-channel ~� exchange, (b) is the Z exchange, and (c) an

example of a Higgs exchange.
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suppressed for the bino; and (iii) Higgs exchange, but this
is small in view of the Yukawa coupling of the muon.
Therefore, as advertised, all types of couplings for the
LSP are present: to fermions in the ~�0

1 ~�� coupling, gauge

bosons in the ~�0
1 ~�

0
1Z, and Higgs scalars such as ~�0

1 ~�
0
1A

0

(A0 is the pseudoscalar Higgs). It is through the choice of a
hierarchy in the set M1, M2, � that we can largely define
the nature of the LSP. Numerically speaking we call a
neutralino pure or almost pure when its mixing to the
specified species is over 99%.

B. Renormalization and loop corrections, general
considerations and issues

1. Set up of the automatic calculation: SLOOPS

One-loop processes calculated via the diagrammatic
Feynman approach involve a huge number of diagrams
even for 2 ! 2 reactions, especially in a theory like super-
symmetry. Performing a full one-loop calculation by hand
without automation is practically untractable. Our exact
full one-loop calculation is done with the help of the
automated code SLOOPS. SLOOPS is an automated code
for one-loop calculations in supersymmetry. It is a combi-
nation of LANHEP [22], the bundle FEYNARTS [23],
FORMCALC [24], and an adapted version of LOOPTOOLS

[25,26]. LANHEP deals with one of the main difficulties
that has to be tackled for the automation of the implemen-
tation of the model file, which is entering the thousands of
vertices that define the Feynman rules. On the theory side,
a proper renormalization scheme needs to be set up, which
then means extending many of these rules to include
counterterms. This part is done through LANHEP which
allows one to shift fields and parameters and thus generate
counterterms most efficiently. The ghost Lagrangian is
derived directly from the Becchi-Rouet-Stora-Tyutin
charge (BRST) transformations. The loop libraries used
in SLOOPS are based on LOOPTOOLS with the addition of
quite a few routines, in particular, those for dealing with
small Gram determinants that appear in our case at small
relative velocities of the annihilating dark matter, and even
more so of relevance for indirect detection [26].

2. Renormalization

In SLOOPS all sectors of the MSSM are implemented
through a one-loop renormalization. This is explained in
detail in [10,13,27,28]. Here we only briefly sketch the
renormalization procedure. We have worked, as far as
possible, within an on-shell scheme generalizing what is
done for the electroweak standard model [29].

(i) The standard model (SM) parameters: the fermion
masses as well as the mass of the W and Z are taken as
input physical parameters. The electric charge is defined in
the Thomson limit; see for example [29]. The light quarks
(effective) masses are chosen [30] so as to reproduce the
SM value of ��1ðM2

ZÞ ¼ 127:77. This should be kept in

mind since one would be tempted to use a DR scheme for
�, defined as MZ, to take into account the fact that dark
matter is annihilating at roughly the electroweak scale, so
that �ðð2m~�0

1
Þ2Þ is a more appropriate choice. One should

remember that the use of �ðð2m~�0
1
Þ2Þ instead of the on-shell

value in the Thomson limit would correct the tree-level
cross section for ~�0

1 ~�
0
1 ! �þ�� by about 14%, indepen-

dently of the neutralino mass in the range 50<M~�0
1
<

300 GeV. As we will see and have reported elsewhere for
other processes this running does not, most of the time,
take into account the bulk of the radiative corrections that
we report here. Therefore for further reference, let us
introduce the correction due to the running of �,

�� ¼ ��eff � �0

�0

¼ 2��; (1)

where the cross section �0 is the tree level calculated with
�0 ¼ �ð0Þ ¼ 1=137:035 989 5, whereas ��eff is the tree
level with �0 ! �eff:ðQ2Þ ¼ �ðQ2Þ ¼ �0=ð1þ ��ðQ2ÞÞ,
Q ¼ 2m~�0

1
. With our input parameters ��ðM2

ZÞ ¼ 0:06. In

the running we allow for all charged particles including the
W boson contribution, the top and the sfermions, and the
charginos, though for the light LSP scenario we consider
these added contributions are very small1

(ii) The Higgs sector: the pseudoscalar Higgs massM0
A is

used as an input parameter while insisting on vanishing
tadpoles. t�, which at tree level is the ratio of the two

expectation values of the Higgs doublets, can be defined
through several schemes:
(a) In the Dabelstein-Chankowski-Pokorski-Rosiek

(DCPR) scheme [31,32] t� is defined by requiring

that the (renormalized) A0Z transition vanishes at
Q2 ¼ M2

A0 .

(b) A DR definition where the t� counter term, �t�, is

defined as a pure divergence leaving out all finite
parts.

(c) A process-dependent definition of this counterterm
by extracting it from the decay A0 ! �þ�� that we
will refer to as A�� for short. This definition is a
good choice for the gauge independence of the
processes.

(d) An on-shell definition with the help of the mass of
the heavy CP Higgs H taken as input parameter
called the MH scheme from now on. We have
reported elsewhere that this scheme usually intro-
duces large radiative corrections.

These schemes are critically reviewed in [27]. By default
we use the DCPR scheme but when quantifying the effect
of the scheme dependence on t� we also use the DR and

MH scheme.

1For the W boson contribution the self-energy of the photon is
calculated in a nonlinear gauge [29] corresponding to the back-
ground gauge in order to maintain Uð1ÞQED gauge invariance.
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(iii) The sfermion sector: for the process at hand only the
smuon parameters require renormalization. For the slepton
sector we use as input parameters masses of the two
charged sleptons which in the case of no-mixing define
the R-slepton soft breaking mass,M ~�R

and the SUð2Þmass,

M ~�L
, giving a correction to the sneutrino mass at one loop.

Though not needed here, in the squark sector each genera-
tion needs three physical masses to constrain the breaking
parameterM ~QL

for the SUð2Þ part,M~uR ,M~dR
for the R part.

See [28] for details.
(iv) The chargino/neutralino sector: first of all, for the

neutralinos at tree level the physical fields �0
i , i ¼ 1; . . . ; 4

are obtained from the current eigenstates ðc nÞt ¼
ð ~B0; ~W0; ~H0

1;
~H0
2Þ through a unitary complex matrix N

�0 ¼ Nc n: (2)

N diagonalizes the mass mixing matrix Y in the neutralino
sector; see [28] for details and conventions. Although only
~�0
1 enters our calculations we do need to fix all the elements

that define its composition and hence couplings. For this
sector we implement an on-shell scheme by taking as input
three masses in order to reconstruct the underlying parame-
ters M1, M2, �. In SLOOPS [28] the default scheme is to
choose two chargino masses m~��

1
and m~��

2
as input to

define M2 and � and one neutralino mass to fix M1. The
masses of the remaining three neutralinos receive one-loop
quantum corrections. In this scheme, these counterterms
are [28]

�M2 ¼ 1

M2
2 ��2

�
ðM2m

2
~�þ
1

��detXÞ�m~�þ
1

m~�þ
1

þ ðM2m
2
~�þ
2

��detXÞ�m~�þ
2

m~�þ
2

�M2
WðM2 þ�s2�Þ�M

2
W

M2
W

��M2
Ws2�c2�

�t�
t�

�
;

��¼ 1

�2 �M2
2

�
ð�m2

~�þ
1
�M2 detXÞ

�m~�þ
1

m~�þ
1

þ ð�m2
~�þ
2
�M2 detXÞ

�m~�þ
2

m~�þ
2

�M2
Wð�þM2s2�Þ�M

2
W

M2
W

�M2M
2
Ws2�c2�

�t�
t�

�
;

(3)

�M1 ¼ 1

N2
1i

ð�m�0
i
� N2

2i�M2 þ 2N3iN4i��� 2N1iN3i�Y13 � 2N2iN3i�Y23 � 2N1iN4i�Y14 � 2N2iN4i�Y24Þ; (4)

with detX ¼ M2��M2
Ws2� [28]. �m~�0

i
is the counterterm

of ith neutralino defined entirely from its self-energy; see
[28]. �O represents the shift on the parameter O that gen-
erates the counterterm for that quantity. Looking at these
equations some remarks can be made. First, in the special
configuration M2 ��� an apparent singularity might
arise. Reference [10] pinpointed this configuration which
can induce a large t�-scheme dependence in the counter-
terms �M1;2 and ��. Such a mixed scenario is not covered
here. Second, the choice of m~�0

1
as an input parameter is

appropriate only if the lightest neutralino is mostly bino
(jN11j � 1) or if the binolike neutralino is not too heavy
compared to other neutralinos. Indeed we can see that if
N1i � 0 the counterterm �M1 is subject to large uncertainty
and may introduce a large finite correction; this is related to
the fact that M1 is badly reconstructed. To avoid such
uncertainty we only choose i as the most binolike; in other
words in Eq. (4), jN1ij ¼ MaxðjN1jjÞ; j ¼ 1; . . . 4.

v) Finally diagonal field renormalization is fixed by
demanding the residue at the pole of the propagator of all
physical particles to be unity, and the nondiagonal part by
demanding no mixing between the different physical par-
ticles when on shell. This is implemented in all the sectors.
In our case apart from the muon, this step is important for
the ~�0

1. We insist that Nij is used both at the tree level and

one-loop level. Nonetheless to define the physical state we
do introduce the shift for the neutralinos [28] through wave
function renormalization

~� 0
i ! ~�0

i þ
1

2

X
j

ð�ZijPL þ �Z�
ijPRÞ~�0

j : (5)

(vi) Dimensional reduction is used as implemented in
the FEYNARTS-FORMCALC-LOOPTOOLS bundle at one-loop
through the equivalent constrained dimensional renormal-
ization [33].

3. Infrared divergences

For the processes ~�0
1 ~�

0
1 ! �þ��, we can decompose

the one-loop amplitudes in a virtual part MEW
1 loop and a

counterterm (CT) contributionMCT. The sum of these two
amplitudes must be ultraviolet finite and gauge indepen-
dent. Because of the virtual exchange of the massless
photon, this sum can contain infrared divergencies. This
is cured by adding a small mass to the photon and/or gluon,
	
 and 	g. This mass regulator should exactly cancel

against the one present in the final-state radiation of a
photon. The QED contribution is therefore split into two
parts: a soft one where the photon energy E
 is integrated

to less than some small cutoff kc and a hard part with
E
 > kc. The former requires a photon mass regulator.

Finally the sum M1 loop þMCT þMsoft

 ðE
 < kcÞ þ

Mhard

;g ðE
;g > kcÞ should be ultraviolet finite, gauge invari-

ant, not depend on the mass regulator, and on the cut kc.
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4. Checking the result

(i) For each process and set of parameters, we first check
the ultraviolet finiteness of the results. This test applies to
the whole set of virtual one-loop diagrams. The ultraviolet
finiteness test is performed by varying the ultraviolet pa-
rameterCUV ¼ 1=", " is the usual regulator in dimensional
reduction. We vary CUV by 7 orders of magnitude with no
change in the result. We content ourselves with double
precision.

(ii) The test on the infrared finiteness is performed by
including both the loop and the soft bremsstrahlung con-
tributions and checking that there is no dependence on the
fictitious photon mass 	
.

(iii) Gauge parameter independence of the results is
essential. It is performed through a set of the eight gauge
fixing parameters based on the implementation of a non-
linear gauge [27].

C. Effective couplings for neutralino
interactions vs full calculation

1. Contributions at full one loop

The full set of one-loop contributions to the process
~�0
1 ~�

0
1 ! �þ�� consists of two-point functions (self-

energies and transitions such as ~�0
1 ! ~�0

2), vertex three-
point functions as in Figs. 2(a) and 2(b), and box diagrams.
The vertex corrections include also the counterterms; the
latter as explained previously involve two-point functions.
To these, one should also add the QED final-state radiation.

2. Effective couplings of the neutralino at one loop

Among this full set of corrections one can construct a
finite subset that is not specific to the muon. This subset will
be involved in all processes involving neutralinos. For ex-
ample, the vertex correction to ~�0

1 ~�
0
1Z is obviously indepen-

dent of the muon being in the final state; a similar statement
can be said for ~�0

1 ~�
0
1h=H=A. Also, all occurrences of the

wave function renormalization of the neutralino (including
transitions between neutralinos) and the Z are process inde-
pendent. The same can be said also of the counterterms to the
gauge couplings and the vacuum expectation values or in
other words v, t�. On the other hand the wave function

renormalization of the muon is specific to the muon final
state. The boxes the four-point one-particle irreducible (1-PI)
functions, as well as the QED correction are also specific to
the process. The construct of the universal correction for the

effective coupling ~�0
1f

~f from ~�0
1� ~� is different from that of

~�0
1 ~�

0
1Z, since in the latter all three particles can be consid-

ered as universal. For example the full correction to the
vertex ~�0

1� ~� shown in Fig. 2(a) consists of a 1-PI three-

point function vertex correction (triangle) which is muon
specific and that does not need to be calculated to build up
the effective coupling. It also contains wave function renor-
malization of the neutralinos as well as counterterms for the
gauge couplings and for other universal quantities such as t�
which must be combined to arrive at the universal correction

for the ~�0
1f

~f vertex. The aim of the paper is therefore to

extract these process-independent contributions and define
effective vertices for the LSP interactions. This is akin to the
effective coupling of the Z to fermions where universal
corrections are defined. Describing the bulk of the radiative
corrections in terms of effective couplings has been quite
successful to describe, for example, the observables at the Z
peak. Although not describing most perfectly the effect of
the full corrections for all observables (for example Zb �b
receives an important triangle contribution due to the large
top Yukawa coupling) one must admit that the approach has
done quite a good job. Most of the effective corrections were
universal, described in terms of a small set of two-point
functions of the gauge bosons.
The other benefit was that such approximations were

sensitive to nondecoupling effects that probe higher scales
(top mass and Higgs mass). The set of two-point functions,
and for ~�0

1 ~�
0
1Z three-point functions, should of course lead

to a finite and gauge-invariant quantity. Loops involving
gauge bosons have always been problematic (even in the
case of the Zf �f) in such an approach since it is difficult to
extract a gauge-independent value. For the couplings of the
neutralinos as would be needed for approximating their
annihilation cross section independently of the final state,
one would therefore expect that apart from the rescaling
of the gauge couplings which can be considered as an
overall constant, the mixing effect between the different
neutralinos should be affected. One can in fact reorganize a

FIG. 2. Different types of corrections appearing at one-loop for the process ~�0
1 ~�

0
1 ! �þ��. (a) is the correction to vertex ~�0

1� ~�
for the t-channel ~� exchange, (b) is the full correction to the ~�0

1 ~�
0
1Z vertex for the s-channel Z exchange, and (c) is an example of a

box loop.
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few of the two-point functions (that can be written also as
counterterms) to define an effective coupling for the neu-
tralino. One should of course also correct in this manner
the Z�þ�� coupling. Let us stress again that in this first
investigation wewill primarily take into account the effects
of fermions and sfermions in the universal loops. For the
~�0
1 ~�

0
1Z effective coupling we also attempt to include the

virtual contribution of the gauge bosons especially since
for the Higgsino-like case the couplings toW and Z are not
suppressed.

3. The effective ~�0
1f

~f

To find the process-independent corrections to this cou-
pling, we recall that in the basis ð ~B0; ~W0; ~H0

1;
~H0
2Þ before

mixing and for both fL;R the couplings for the two chiral

Lorentz structures write as

1ffiffiffi
2

p ðg0Yf; g�
3
f; y1;f; y2;fÞ ¼

1ffiffiffi
2

p
�
g0Yf; g�

3
f;

gmu

MWc�
;
gmd

MWs�

�

!
�
g0; g;

g

MWc�
;

g

MWs�

�
: (6)

Yf, �
f
3 are the isospin and SUð2Þ charges of the corre-

sponding fermion/sfermions. The two Higgsinos couple
differently to the up and down fermions with a coupling
that is proportional to the Yukawa coupling. Though this is
not universal we can still isolate a universal part where
there is no reference to the final fermion/sfermion. This is
what is meant by the last expression in Eq. (6), where the
explicit mass of the corresponding fermion masses has
been dropped. The variations/counterterms on these pa-
rameters have to be implemented before turning to the
physical basis. The latter as explained in the previous
paragraph is achieved through the diagonalizing matrix N
[Eq. (2)] as in tree-level supplemented by wave function
renormalization which involve both diagonal and nondiag-
onal transitions of the neutralino; see Eq. (5). In the case of
effective coupling of neutralinos, this is achieved by defin-

ing an effective mixing matrix such that N ! N þ �N�f~f

in all couplings of the neutralino. The �N�f~f write as

�N
�f~f
i1 ¼ �g0

g0
Ni1 þ 1

2

X
j

Nj1�Zji;

�N�f~f
i2 ¼ �g

g
Ni2 þ 1

2

X
j

Nj2�Zji;

�N�f~f
i3 ¼

�
�g

g
� 1

2

�M2
W

M2
W

� �c�
c�

�
Ni3 þ 1

2

X
j

Nj3�Zji;

�N
�f~f
i4 ¼

�
�g

g
� 1

2

�M2
W

M2
W

� �s�
s�

�
Ni4 þ 1

2

X
j

Nj4�Zji;

(7)

where j runs from 1 to 4 and for the LSP, i ¼ 1.
All the counterterms above are calculated from self-

energy two-point functions and are fully defined in

[27,28]. �g=g ¼ �e=e� �sW=sW , �g0=g0 ¼ �e=e�
�cW=cW , and �s�=s� ¼ c2��t�=t�. Equation (7) agrees

with what was suggested in [34]. Let us stress again that
in these self-energies no gauge bosons and therefore no
neutralinos and charginos are taken into account but just
sfermions and fermions; otherwise this would not be finite.
For binolike case, self-energies containing gauge and
Higgs bosons (with their supersymmetric counterparts)
are not expected to contribute much. This is not necessarily
the case for winos and Higgsinos.

4. The effective ~�0
1 ~�

0
1Z

Since all particles making this vertex can now be con-
sidered as being process independent (as far as neutralino
annihilations are concerned), all counterterms including
wave function renormalization of both the Z and ~�0

1 must

be considered. The price to pay now is that the genuine
triangle vertex corrections ~�0

1 ~�
0
1Zmust also be included. It

is only the sum of the vertex and the self-energies that
renders a finite result. When correcting this vertex one
must also correct the Z�þ�� vertex keeping within the
spirit of calculating the universal corrections. This can be
implemented solely through self-energy corrections (ex-
cluding the muon self-energies) and there is no need to
calculate here the genuine vertex corrections. An exception
would be the production of the b and to some extent the top
quark where genuine vertex corrections are important.
Talking of heavy flavors, when computing the correction
to the ~�0

1 ~�
0
1Zwith the Z off shell with an invariant massQ2,

one should also include the ~�0
1 ~�

0
1G

0 vertex, whereG0 is the

neutral Goldstone boson. In our case we restrict ourselves
to almost massless fermions. The case of the top and
bottom final states will be addressed elsewhere together
with the potential relevant contribution of the Higgs parti-
cles in the s-channel.
Since one is including the genuine 1-PI vertex correc-

tion, it is important to inquire whether this correction
generates a new Lorentz structure beyond the one found
at tree level. The contribution to the tree-level Lorentz
structure is finite after adding the self-energies and the
vertex. Any new Lorentz structure will on the other hand
be finite on its own. General arguments based on the
Majorana nature of the neutralinos backed by our numeri-
cal studies show that no new Lorentz structure is generated
for neutralinos. First of all, at tree level one has only one
structure

L~�0
1
~�0
1
Z ¼ gZ

4
ðN13N13 � N14N14Þ~�0

1
�
5 ~�
0
1Z

�;

gZ ¼ e

cWsW
:

(8)

The overall strength is a consequence of the fact that the
coupling emerges solely from the Higgsino with a gauge
coupling. Indeed in the ð ~B0; ~W0; ~H0

1;
~H0
2Þ basis the coupling

is / gZð0; 0; 1;�1Þ. Only the Lorentz structure 
�
5
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survives as a consequence of theMajorana nature. With p1,
p2 denoting the incoming momenta of the two ~�0

1, at
one-loop a contribution (p�

1 � p�
2 ) does not survive sym-

metrization, whereas (p�
1 þ p�

2 ) will not contribute for

massless muons. We calculate this correction for a Z
with an invariant mass Q2; in the application this Q2 will
be set to the invariant mass of the muon pair. This vertex

contribution is denoted �g4
~�0
1
~�0
1
Z
ðQ2Þ � �g4

~�0
1
~�0
1
Z
. The con-

tribution of the coupling counterterms defining gZ and the
Z wave function renormalization define the universal cor-
rection to the Z coupling strength geffZ ¼ gZð1þ�gZÞ,
with �gZ=gZ ¼ �gZ=gZ þ �ZZZ=2. �ZZZ is the wave
function renormalization of the Z. We of course have to
add the wave function renormalization of the ~�0

1 like what

was done for the ~�0
1f

~f vertex. We improve on this imple-
mentation by taking into account the fact that the Z is off
shell and therefore the wave function renormalization
through �ZZZ ¼ �0

ZZðM2
ZÞ is only part of the correction

that would emerge from the correction to the complete Z
propagator in the s-channel contribution with invariant
mass Q2. Note that here there is no need for including a
Z
 transition since photons do not couple to neutralinos.
Collecting all these contributions, the effective vertex is

obtained by making gZ ! geff
~�0
1
~�0
1
Z

and Ni1 ! Ni1 þ
�N

~�0
1
~�0
1
Z

i1 with

geff
~�0
1
~�0
1
Z
¼ gZð1þ �gZðQ2Þ þ�g�

~�0
1
~�0
1
Z
ðQ2ÞÞ; (9)

�N
~�0
1
~�0
1
Z

ij ¼ 1

2

X
k

Nkj�Zki; ði; j; kÞ ¼ 1 . . . 4: (10)

Explicitly

�gZ ¼ 1

2

�
�0



ð0Þ � 2
sW
cW

�
Zð0Þ
M2

Z

�

þ 1

2

�
1� c2W

s2W

��
�ZZðM2

ZÞ
M2

Z

��WWðM2
WÞ

M2
W

�

� 1

2

�
�ZZðQ2Þ ��ZZðM2

ZÞ
Q2 �M2

Z

�
: (11)

At the same time for the fermion with charge qf we correct

the Zf �f / gZð
5 þ ð1� 4jqfjs2WÞÞ
� by effectively mak-

ing gZ ! gZð1þ�gZÞ with �gZ defined in Eq. (11) and
s2W to

�s2W ¼ c2W
s2W

�
�ZZðM2

ZÞ
M2

Z

��WWðM2
WÞ

M2
W

�
þcW

sW

�
Zðk2Þ
k2

: (12)

By default we include only the fermions and sfermions in
the virtual corrections described by Eqs. (11) and (12). For
the ~�0

1 ~�
0
1Z one expect the contribution of the gauge bosons

and the neutralinos/charginos to be non-negligible espe-
cially for the Higgsino case. In fact, including such con-
tributions still gives an ultraviolet finite result for geff

~�0
1
~�0
1
Z
in

Eq. (11) which is a nontrivial result. Moreover this con-
tribution is gauge parameter independent in the class of
(linear) and nonlinear gauge fixing conditions [29]. To
weigh up the gauge/gaugino/Higgsino contribution, we
will therefore also compare with this generalized effective
geff
~�0
1
~�0
1
Z

including all virtual particles. Observe that in

Eq. (11) we have the contribution �
Zð0Þ which vanishes

for fermions and sfermions but which is essential for the
contribution of the virtual W. In any case, including gauge
bosons in the renormalization of electromagnetic coupling
requires the inclusion of the �
Zð0Þ in Eq. (11) for gauge

invariance to be maintained [29]. We stress that we will
present the effect of the generalized effective coupling
geff
~�0
1
~�0
1
Z
as an indication of the gauge boson contribution

while keeping in mind that this result may lead to unitarity
violation. Indeed, through cutting rules, the W loop can be
seen as made up of the scattering WþW� ! Z ! �þ��
that needs a compensation from the cut in the box shown in
Fig. 2(c). For the effective Z�þ�� coupling we only
include the fermion/sfermion contribution in Eqs. (11) and
(12); adding the gauge bosons would require part of the
1-PI triangle contribution to Z ! �þ��.

III. ANALYSIS

Since we will be studying different compositions of the
neutralinos we will take different values for the setM1,M2,
�. On the other hand, the default parameters in the Higgs
sector are

MA0 ¼ 1 TeV t� ¼ 4: (13)

The sfermion sector is specified by a rather heavy spectrum
(in particular within the limits set by the LHC for squarks
[1]). All sleptons left and right of all generations have a
common mass which we take to be different from the
common mass in the squark sector. All trilinear parameters
Af (including those for stops and sbottom) are set to 0. The

default values for the sfermion masses are

M~lR
¼ M~lL

¼ 500 GeV;

M~uR ¼ M~dR
¼ M ~QL

¼ 800 GeV;

Af ¼ 0:

(14)

By default we will focus on relatively light neutralinos
(around 100 GeV) scattering with a relative velocity
v ¼ 0:2.
To analyze consistently the efficiency of effective cor-

rections we will refer to the following quantities:

�eff ¼ �eff � �0

�0

: (15)

Here �eff is the cross section calculated with the effective
couplings that include, by default, universal process-
independent particles excluding gauge bosons and gaugi-
nos/Higgsinos. We will explicitly specify when including
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all virtual particles in those corrections, referring to it as
�W

eff . This correction will be compared to the correction

solely due to the running of the electromagnetic coupling;
see Eq. (1). To see how well the correction through the

effective couplings ~�0
1f

~f and ~�0
1 ~�

0
1Z reproduces the full

one-loop correction we introduce

�NE ¼
�one-loop��eff

�0

; �full ¼
�one-loop��0

�0

; (16)

with �one-loop the full one-loop cross section, �NE mea-

sures what we will refer to as the noneffective (NE) cor-
rections since this measures the remainder of all the
corrections that are not taken into account by the effective
vertices approach. �full ¼ �eff þ �NE is the full one-loop
correction.

A. Bino case

1. Effective vs full corrections

We first take ðM1;M2; �Þ ¼ ð90; 200;�600Þ GeV,
which yields a lightest binolike neutralino (the bino com-
position is 99%) with mass m~�0

1
¼ 91 GeV. At tree level

the cross section for relative velocity v ¼ 0:2 is �
~b
�þ�� ¼

6:75� 10�3 pb. Note for further reference that this is an
order of magnitude larger than annihilation into a pair of

W’s: �
~b
WþW� ¼ 4:51� 10�4 pb. The annihilation pro-

ceeds predominantly through the t-channel; binos coupling
to Z are very much reduced. This leads to the following set
of corrections:

�eff ¼ 17:52%ð�� ¼ 14:56%Þ
�NE ¼ 2:06%ð�full ¼ 19:58%Þ:

(17)

For our first try, the effective universal coupling does
remarkably well, falling short of only 2% correction com-
pared to the full calculation. Note that although the most
naive implementation through a running of the electromag-
netic coupling fares also quite well it is nonetheless 5% off
the total correction, therefore the effective correction
through the effective couplings performs better. It must

be admitted though that the bulk of the correction is
through the running of �. To see how general this con-
clusion is we scanned over the set ðM1;M2; �Þ while
maintaining ~�0

1 with a 99% binolike component. This is

simply obtained by taking M2 ¼ 500, � ¼ �600 GeV,
and scanning up to M1 ¼ 350 GeV. We also checked
how sensitive our conclusion is depending on t� by varying

t� from 2 to 40. The supersymmtery-breaking sfermion

masses were first left to their default values. As Fig. 3
shows, our conclusions remain quantitatively unchanged.
There is no appreciable dependence in t�, we arrive at the

same numbers as our default t� value. As for the depen-

dence in M1, it is very slight; for M1 � 50 GeV there is
perfect matching with our effective coupling implementa-
tion, then as M1 increases to 350 GeV, the nonuniversal
corrections remain negligible, below 2%.
The annihilation of neutralinos and hence the relic den-

sity is a very good example of the nondecoupling effects of
very heavy sparticles, a remnant of supersymmetry break-
ing. The variation in the fermion/sfermion masses is all
contained in the effective couplings that we have intro-
duced. Leaving the dependence on the smuon mass at tree
level, and the very small (see below) contribution of the
smuon to the 1-PI vertex ~�0

1� ~�, the bulk of the smuon

mass dependence is within the effective coupling. Figure 4
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FIG. 3 (color online). Corrections to the tree-level cross section for the process ~�0
1 ~�

0
1 ! �þ�� in the bino case as a function of M1

(left panel) and t� (right panel). We show the full one-loop, the effective correction, and the difference which we term noneffective.

M2 ¼ 500, � ¼ �600 GeV.
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FIG. 4 (color online). Corrections to the tree-level cross sec-
tion for the process ~�0

1 ~�
0
1 ! �þ�� in the bino case (M1 ¼ 90,

M2 ¼ 200, � ¼ �600 GeV) as a function of the common soft
supersymmetry-breaking squark mass.
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shows how the correction increases as the mass of the
squarks increases from 400 GeV to 3 TeV; we take here
a common mass for the supersymmetry-breaking squark
masses (both right and left in all three generations). The
nonuniversal correction of about 2% is insensitive to this
change in squark masses whereas both �eff and �NE show
the same logarithm growth that brings a 3% change as the
squark mass is varied in the range 400 GeV to 3 TeV. This
result also confirms that genuine vertex corrections and
box corrections are very small. We have also extracted the
individual contribution of each species of fermions to the
total nondecoupling effect of sfermions. To achieve this we
numerically extracted the logarithm dependence of the
nondecoupling effect for each species of sfermions. We
have parametrized the effective correction as

�f ¼ a~f lnm~f=Q� af lnmf=Qþ bf with

Q ¼ 2m~�0
1

~f ¼ ~dR þ ~uR þ ~QL:
(18)

The coefficients of the fit are given in Table I. As expected
the fit to af is extremely well reproduced by the running of

�, i.e, af ¼ Ncq
2
f
4�
3� . We also find a~e ¼ a~� ¼ a ~�, be ¼

b� ¼ b�. The fit to af is made to validate the fit procedure.

The most important observation is that the stops behave
differently; this is due to the Yukawa coupling of the top
and mixing. If there were not a compensation between the
left and right contribution of the stops (compare to ~u) the
contribution of the stops would be even more important
and would dominate. Considering the different contribu-
tions and the scales that enter our calculations, it is difficult
to attempt giving an analytical result. Leaving the stop
aside, the different contributions to a~f can be roughly

approximated by y2fNcNd=8=c
2
W , Nd ¼ 2 for doublets and

1 for a singlet of SUð2Þ. yf is the hypercharge, correspond-
ing to the couplings of the sfermions to the bino
component.

2. Scheme dependence in the bino case

We have compared the full correction to an approximate
effective implementation and observed that the approxi-
mation is quite good. However, even the full correction,
being computed at one loop, is potentially dependent on
the renormalization scheme chosen. As discussed earlier,
we analyze the t� scheme dependence and the M1 scheme

dependence. For t� we obtain the following corrections:

19:58%ðDCPRÞ; 19:79%ðDRÞ; 19:51%ðMHÞ:

This confirms that the t� scheme dependence is very

negligible. For the bino case, it is natural to reconstruct
M1 from the LSP; nonetheless analyzing the M1 scheme
dependence one chooses another neutralino, say ~�0

2, which

in our example is winolike. This introduces more uncer-
tainty or error since with this scheme the corrections attain
24.08%, more than 4% compared to the usual scheme.

B. Higgsino case

1. Effective versus full corrections

In the bino case our trial point had a neutralino of mass
91 GeV. We therefore take the point (600, 500, �100)
which gives a LSP with M~�0

1
¼ 95 GeV with a 99%

Higgsino content. The sfermion parameters are the default
values. In the Higgsino case the cross section is dominated
by the exchange of the Z in the s-channel, so the bulk of the
corrections through the effective couplings will be through
the effective ~�0

1 ~�
0
1Z. For further reference note that the

tree-level cross section for annihilation into muons is

�
~h
�þ�� ¼ 2:58� 10�3 pb, tiny and totally insignificant

especially compared to annihilation into W, �
~h
WþW� ¼

18:83 pb. This is an observation we will keep in mind.

The one-loop corrections we find for �
~h
�þ�� are

ðfor� ¼ �100GeVÞ
�eff ¼ 13:55ð�� ¼ 14:62%Þ
�NE ¼ �21:09%ð�full ¼ �7:54%Þ:

(19)

This result is in a quite striking contrast to the bino case.
The effective coupling does not reproduce at all the full
correction and is off by as much as 21%. It looks like, at
least for this particular choice of parameters, that going
through the trouble of implementing the effective ~�0

1 ~�
0
1Z

was in vain since this correction is, within a percent,
reproduced by the naive running of �. As we will see,
both of these conclusions depend much on the parameters
of the Higgsino and even the squark masses. For example
consider � ¼ �50 GeV, leaving all other parameters the
same. Of course this is a purely academic exercise, since in
this case, the charginos with mass m��

1
¼ 55 GeV are

ruled out by LEP data. Nonetheless, in this case

TABLE I. Coefficients of the lnðmfÞ (running couplings) lnðm~fÞ (nondecoupling effects) in
�eff . ðc; sÞ give very similar results to ðu; dÞ.

a �QL
a �uR a �dR

af af

e 0.0010 0.002 31 0.003 10 0.15%

ðu; dÞ 0.000 575 0.002 36 0.000 698 (0.004 13, 0.001 03) 0.15%

ðt; bÞ �0:004 06 0.008 38 0.000 661 (0.004 13, 0.001 03) 0.15%

ONE-LOOP CORRECTIONS, UNCERTAINTIES, AND . . . PHYSICAL REVIEW D 84, 116001 (2011)

116001-9



ðfor� ¼ �50 GeVÞ �eff ¼ 10:7ð�� ¼ 12%Þ
�NE ¼ �6:9%ð�full ¼ 3:8%Þ: (20)

Had we included all particles in the effective vertex, we
would get a correction �W

eff ¼ 4:4%, improving thus the

agreement with the one-loop correction for this particular
value of � up to 0.6%. At the same time a correction in
terms of a running of � will be off by more than 8%.

These two examples show that one cannot, in the
Higgsino case, draw a general conclusion on the efficiency
of the effective coupling as was done in the bino case. Let
us therefore look at how the corrections changewith�, and
therefore with the mass of the LSP, while maintaining its
Higgsino nature. We have varied � from �200 GeV to
�40 GeV. Figure 5 shows that the full correction is ex-
tremely sensitive to the value of �. For � ¼ �200 GeV
the full one-loop correction is as much as �42%, casting
doubt on the loop expansion. The effective coupling cor-
rections with only fermions/sfermions on the other hand is
much smoother and positive, bringing about 10% correc-
tion. Including all particles in the effective ~�0

1 ~�
0
1Z vertex

brings in an almost constant reduction of about 6%.
Therefore as the value of j�j increases, the effective one-
loop corrections in the case of the Higgsino cannot be
trusted. The same figure shows that the behavior and the
increase in the corrections are due essentially to the con-
tribution of the boxes. Here the boxes mean the non-QED
box (involving an exchange of a photon which is infrared
divergent before including the real photon emission2). The
large contribution of the boxes can be understood by
looking at the box in Fig. 1(c). Indeed, as argued previ-
ously, cutting through the box reveals that it represents
~�0
1 ~�

0
1 ! WþW� production that rescatter into �þ��.

Both these processes have very large cross sections com-
pared to the tree-level ~�0

1 ~�
0
1 ! �þ��. Our conclusion is

therefore that the effective vertex approximation is inade-
quate as soon as the channel ~�0

1 ~�
0
1 ! WþW� opens up.

When this occurs, in practical calculations of the relic
density, the channel ~�0

1 ~�
0
1 ! �þ�� is irrelevant and

must rather analyze the loop corrections to ~�0
1 ~�

0
1 !

WþW�. This process was studied in [10,13] and will be
investigated further through an effective approximation
in a forthcoming study. On the other hand, the dependence
of the relative correction on t� is quite modest even

though there is certainly more dependence than in the
bino case, especially at lower values of tan�. This is shown
in Fig. 6.

We now investigate the nondecoupling of very heavy
squarks (and heavy sfermions in general). Since we are
in a Higgsino scenario, we expect the Yukawa coupling of
the fermions to play a more prominent role than what
was observed in the bino case. This is well supported by

our study. Figure 7 shows how the effective (with only
fermions and sfermions) and the full correction get modi-
fied when the common mass of all squarks (all generations,
left and right) increases from 400 GeV to 3 TeV. To better
illustrate the important effect of the Yukawa coupling of
the top/stop sector, we plot the corrections also for mt ¼
0:1 GeV. For mt ¼ 170:9 GeV, the correction drops by
about 13% when the mass of the squarks increases from
400 GeV to 3 TeV. This is much more dramatic than in the
bino case where we observed a 3% increase in the same
range. Observe that for our default squark mass of
800 GeV, the effective correction including sfermions/
fermions is such that it almost accidentally coincides
with the running of �. If one switches off the top quark
mass, instead of a 13% decrease we observe an 8% increase
formt ¼ 0:1 GeV! Observe that the difference one sees for
m ~Q ¼ 400 GeV between mt ¼ 170:9 GeV and mt ¼
0:1 GeV is due essentially to the running of � with very
light top that accounts for 3%.
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FIG. 6 (color online). Corrections to the tree-level cross sec-
tion for the process ~�0

1 ~�
0
1 ! �þ�� in the Higgsino case as a

function of t�. We show the full one-loop, the effective correc-

tion, and the remainder (Noneffective). � ¼ �100, M2 ¼ 500,
� ¼ �600 GeV.
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FIG. 5 (color online). Corrections to the tree-level cross sec-
tion for the process ~�0

1 ~�
0
1 ! �þ�� in the Higgsino case as a

function of �. Shown are the effective vertex correction
(Effective, with only fermions/sfermions in the loops), the ef-
fective ~�0

1 ~�
0
1Z coupling including all particles [denoted Effective

(All)], the non-QED boxes (Boxes), and the full correction.
M2 ¼ 500, M1 ¼ 600 GeV.

2The contribution of the QED box þ real photon emission is
only 0.1%
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The special role played by the top can be seen even more
clearly from each individual contribution of the fermion/
sfermions and the fit of the contribution according to
Eq. (18) as was done for the bino case. The contribution

of the stop is clearly (especially through ~QL) an order of
magnitude larger than for all other sfermions; see Table II.
It is the only one that brings a negative contribution. Since
this effect is in the universal ~�0

1 ~�
0
1Z, it will show up in

many processes where the Higgsino contributes.

2. Scheme dependence in the Higgsino case

We analyze here the t� scheme dependence and the M1

scheme dependence. For t� we obtain the following cor-

rections:

� 7:5%ðDCPRÞ; �12:4%ðDRÞ; �4:76%ðMHÞ:
As expected and in line with the behavior of the corrections
with respect to tan�, Fig. 6, we see that the corrections
though larger than in the bino case are nonetheless within
5%. On the other hand, as expected, the choice of M1 has
less impact than in the bino case, where the reconstruction
of M1 is essential to define the LSP. In the case of the
Higgsino, changing theM1 scheme turns the full correction
from �7:5% (in DCPR scheme for t�) to �10:7%, a 3%

uncertainty.

IV. CONCLUSIONS

Very few analyses have been done taking into account
the full one-loop corrections to the annihilation cross sec-
tions entering the computation of the relic density despite
the fact that this observable is now measured within 3%
precision. In supersymmetry, radiative corrections have

been known to be important, yet practically all analyses
that constrain the parameter space of supersymmetry are
performed with tree-level annihilation cross sections.
Taking into account the full one-loop corrections to a
plethora of processes is most probably unrealistic. On the
other hand, one must incorporate, if possible simply and
quickly, a parametrization of the theory error or implement
the corrections through effective couplings of the neutra-
lino, in the case of supersymmetry. This is what we have
attempted in this study for two of the most important

couplings of the neutralinos ~�0
1f

~f and ~�0
1 ~�

0
1Z. In order to

look more precisely at the impact of each of these effective
couplings we take as a testing ground a most simple
process, ~�0

1 ~�
0
1 ! �þ��, and select a neutralino that is

either almost pure bino or pure Higgsino. We do not strive
at finding a scenario with the correct relic density since our
primary task is to study the vertices and the approximations
in detail. In this exploratory study, taking a final state
involving gauge bosons would only confuse the issues.
Nonetheless, the impact of the gauge bosons is studied.
Indeed, we have shown how the construction of the effec-

tive ~�0
1 ~�

0
1Z is quite different from that of the ~�0

1f
~f. For the

latter, the effective coupling involves self-energy correc-
tions, whereas for the former the one-particle irreducible
vertex correction must be added. These examples and the
construction of the effective coupling already pave the way
to a generalization to the effective couplings ~�0

1 ~�
0
1h, H, A,

and ~�0
1�

þW, which we will address in forthcoming pub-

lications with applications to different processes, including
gauge boson final states. Even with the effective couplings
we have derived, we could generalize the study of ~�0

1 ~�
0
1 !

�þ�� to cover not only pure winos, but also mixed
scenarios and also heavy fermions.

TABLE II. Coefficients of the lnðmfÞ (running couplings) lnðm~fÞ(nondecoupling effects) in
�eff . ðc; sÞ give very similar results to ðu; dÞ. Higgsino case.

a �QL
a �uR a �dR

af af

e 0.003 04 0.000 366 0.003 09 �0:12%
ðu; dÞ 0.008 61 0.000 489 0.000 122 (0.004 14, 0.001 01) �0:15%
ðt; bÞ �0:0701 0.000 826 0.000 108 (0.004 14, 0.001 01) 0.13%
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FIG. 7 (color online). Corrections to the tree-level cross section for the process ~�0
1 ~�

0
1 ! �þ�� in the Higgsino case (M1 ¼ 600,

M2 ¼ 500, � ¼ �100) as function of the common squark mass. The right panel illustrates the case mt ¼ 0:1 GeV.
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Our preliminary study on the simple process ~�0
1 ~�

0
1 !

�þ�� is already very instructive. To summarize the bino
case, we can state that the effective couplings approach is a
very good approximation that embodies extremely well the
nondecoupling effects from heavy sfermions, irrespective
of many of the parameters that are involved in the calcu-
lation, as long as one is in an almost pure bino case. The
effective coupling implementation is within 2% of the full
one-loop calculation. Here, this reflects essentially the

correction to the ~�0
1f

~f coupling. The scheme dependence
from t� is very small; this result stands for largeM1 masses

as long as the neutralino is more than 90% binolike. In
particular for Higgsino-like LSP in excess of 90 GeV as
imposed by present limits on the chargino, the effective
coupling implementation in the annihilation ~�0

1 ~�
0
1 !

�þ�� fails. It worsens as the mass increases due to the
importance of a large box contribution corresponding to
the opening up of ~�0

1 ~�
0
1 ! WþW�, which would in any

case be the dominant process to take into account when
calculating the relic density. The large Yukawa coupling of
the top has a big impact on the radiative corrections and, in

particular, on the nondecoupling contribution of a very
heavy stop. Although this is an example which shows, in
principle, the failure of the effective approach apart from
correctly reproducing the nondecoupling effect of very
heavy squarks, we need further investigation on the domi-
nant processes, in this case annihilations intoW, Z, to see if
these dominant processes could on the other hand be
reproduced by an effective coupling approach. If the effec-
tive approach turns out to be efficient for the dominant
processes, where and if the box corrections are tamed, the
effective coupling could still be a good alternative for the
calculation of the relic density with high precision. We
leave many of these interesting issues to further analyses.
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