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1 Introduction

1.1 General
This is the final report for a Bachelor project at the École d'Ingénieurs et d'Architectes, in 
collaboration with the European Organization for Nuclear Research (CERN) near Geneva. The 
official starting date for this project was June 30th 2011. All of the work described in this document 
was done at CERN during an internship in the IT-UDS-CDS team. 

1.2 Invenio
INVENIO1 is a free, open-source software for running digital libraries or document repositories on 
the web. It was originally developed at CERN to run the CERN document server, where it currently 
manages over 1'000'000 bibliographic records in high-energy physics since 2002, covering articles, 
books, journals, photos, videos, and more. Currently, INVENIO is being co-developed by an 
international collaboration comprising institutes such as CERN, DESY, EPFL, FNAL, SLAC and is 
being used by about thirty scientific institutions worldwide2. As underlying bibliographic format, it 
uses the so called MARC 213 standard which is still the main international standard for large-scale 
digital library management systems.

1.3 The Goal of the Project: Authority Control
The goal of the project was to add Authority Control4 to INVENIO. Authority control provides a 
library management software with two main functions. 1. It allows the disambiguation between 
similar or identical terms, such as author names referring to different people. 2. It allows for the 
collocation of seemingly distinct information that logically belongs together, e.g. alternate names 
for an author or institution. In recent years, INVENIO users  have seen the need to control 
standardized ways of managing the names of authors and institutions, journals and subjects. 
“Authority records” keep track of the standard way (e.g. “Curie, Marie”) as well as alternative ways 
of writing a name (e.g. “Skłodowska Curie, Marie” or “Skłodowska, Marya”) and also help 
disambiguate between multiple authors/institutions etc with the same name. These records can be 
used by librarians as a reference for those fields in “bibliographic records” that require such a 
standardization.

1.4 The INVENIO Team(s)
The internship associated with this Bachelor project was done as part of the IT-UDS-CDS team on 
the Meyrin site of CERN. Jean-Yves Le Meur (F) is the head of this team and project manager for 
INVENIO. Tibor Simko (CZ) is the head developer and main architect of INVENIO. Jerome 
Caffaro (CH) and Samuele Kaplun (IT) are among the more experienced developers for INVENIO. 
There are also a number of developers working in the same team for a limited duration of between 3 
and 12 months. 

1 http://invenio-software.org/   
2 http://invenio-software.org/wiki/General/Demo   
3 http://en.wikipedia.org/wiki/MARC_standards#MARC_21  
4 http://en.wikipedia.org/wiki/Authority_control  
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Besides the team just mentioned, there are various other teams involved in the development of 
INVENIO. Various developers contributing to INVENIO work for the GS-SIS group at the Meyrin 
Site of CERN, responsible for managing the Library as well as the Historical and Scientific 
Archives of CERN. Developers working for the INSPIRE5 project also contribute back to 
INVENIO, since INSPIRE is built upon the INVENIO software. 

Finally, there are organizations that use INVENIO for their own digital libraries (e.g. the FZ 
Jülich6), and that besides the occasional contribution to the code base are in close communication 
with the main INVENIO team and contribute with their feature suggestions which often find their 
way into new releases of the software.

All of the teams mentioned played a role in the planning and coordination of the new Authority 
Control module and had an interest in it's completion and use in production.

1.5 The Structure of this Document

This document presents the work done on this project according to the main development phases 
Analysis, Design, Implementation and Tests. The Conclusion section looks back at the results and 
experiences learned during the project as well as offering an outlook of possible future 
improvements to be made to INVENIO's authority control module. An illustration index is given for 
an overview and references of the illustrations used throughout the document. The glossary explains 
the most current terms and abbreviations related to INVENIO. The contents of the CD-ROM are 
included in a separate sections. And finally, the Appendices Section contains the various appendices 
to this document.

Besides being a technical report, it also includes some description of the experiences made at 
CERN. The latter should help in evaluating not only the technical work accomplished, but also give 
some insight into the project management and soft skills required.

The report was created using OpenOffice 3.2. The decision to use this rather than the much more 
modern Microsoft Word was based upon the fact that everyone at IT-UDS-CDS uses some form of 
Linux and hence would prefer a document format which is truly platform independent. Compared to 
a purely academic project, this document contains only very few diagrams or images. This is due 
mainly to the way work is done in the INVENIO teams (very few diagrams, many iterative 
prototype cycles).

5 http://www.projecthepinspire.net/  
6 http://www.fz-juelich.de/  
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2 Preparations
This section describes the various preparations that were necessary at the very beginning of the 
project and that preceded the Analysis phase.

2.1 Arrival at CERN
Upon arrival at CERN, I learned that all of the administrative paperwork that is usually done a few 
weeks before an intern arrives, had in my case been forgotten. This meant I had no CERN card (and 
hence no authorization to enter the Meyrin site of CERN unaccompanied – and no authorization to 
enter through the much closer French gate at all, no possibility of renting a bike in time before the 
arrival of the summer students, no authorization to rent books from the library), no computing 
account (and hence no access to the INVENIO developer mailing list and chat rooms, no space on 
the lxplus grid to host my private and public GIT repository and code backups, no account to create 
tickets and merge requests on the team's TRAC system7, no access to the virtual windows machines 
for printing, etc.) and no key to our shared office. Until this was finally done 7 days after my 
arrival, I spent a great deal of time trying to do as much as I possibly could to make sure this work 
was done as quickly as possible and trying to find alternatives and workarounds in the mean time so 
that I could continue in my work. 

2.2 Scope statement
During the first 2 weeks of the internship, there was no scope statement either. Finding a date with 
the project manager and the head developer in order to discuss the detailed project requirements 
was one of the first non-administrative tasks that fell into the responsibility of this internship, a task 
which was not easily accomplished due to the frequent absences and busy schedule of the parties 
involved. Since none of the requirements could be obtained in written form from the project 
management, writing the scope statement was also one of the early tasks of this project.

2.3 Making the most out of it
In order to make the best possible use of the time until the project description meeting could be 
arranged, various activities were completed in this period:

First of all, the latest version of the INVENIO software had to be pulled from the central git 
repository and installed locally on a Debian machine. Thanks to previous experience with Debian 
Linux, GIT, Apache 2 and MySQL, this was accomplished fairly easily with the help of on-line 
installation instructions, and in the case of conflicting third-party program dependencies with the 
direct help of Tibor Simko. 8 

Secondly, since the INVENIO in its current form is written mainly in Python, part of the preparation 
consisted in becoming familiar with this language and the development work-flow associated with 
it. One of the extremely useful tutorials for Python as such was found in Google's Python Class9 
which offers tutorials combined with coding exercises and solutions that can be downloaded and 

7 http://invenio-software.org/query  
8 For future reference, the most up to date installation instructions are not to be found on-line, but in the README 

file that ships with the software bundle.
9 http://code.google.com/edu/languages/google-python-class/  
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run locally.

Both of these requirements were completed before the actual beginning of the internship for the 
most part, but the extended delays before receiving the detailed project description allowed for a 
more in-depth study in both areas.

Finally, the first 2 weeks were also used to become familiar with the coding style and work-flow 
customs of the various INVENIO developer teams as described in numerous public web pages 
dedicated to this subject10. This was useful and necessary in order to adopt the proper coding style 
and work-flow from the outset and not to run into problems with the way the team was used to 
working later on.

Throughout this period, various members of the IT-UDS-CDS team were very helpful and friendly 
in regard to questions about INVENIO, Python, command-line GIT and related subjects. Towards 
the end of the preparation time, Jerome Caffaro offered to give me a 1h introduction to INVENIO 
based on the on-line tutorials mentioned above.

10 Most of them can be found by starting at https://twiki.cern.ch/twiki/bin/view/CDS/Invenio.
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3 Analysis

3.1 Data collection
Since the writing of the scope statement was part of this project, much of the Analysis phase was 
done as part of the process of inquiring about the detailed project requirements before the scope 
statement was written. In addition, however, various meetings were held with key users of 
INVENIO in order to understand their unique needs for this new Authority module. One of these 
people was Jocelyne Jerdelet from the CERN library who used to work with a commercial library 
management software called ALEPH and who now uses INVENIO in stead. She was able to explain 
the work-flow she was accustomed to from ALEPH for the use and management of authority 
records, but also of the limitations and frustrations encountered with the previous system. This gave 
me a good idea of what kind of the kind of user interface that was expected as well as of the 
improvements that would be necessary compared to the older system.

Another meeting was held with Alexander Wagner from the Forschungszentrum Jülich11, Germany, 
who happened to be in Geneva for a convention and who had the time to see me for a meeting in the 
city. He was one of the main inspirations for adding authority control to INVENIO since his 
institution has a strong need for it, esp. related to their various institutions who want to know across 
institutional hierarchies and historical mergers and divisions which publications can be attributed to 
which institutions. Thanks to this talk I was able to get a very precise idea of the requirements and 
use cases to expect.  

3.2 A brief introduction to MARC 21
In order to understand the basics of what is to follow, it is important to have at least a rudimentary 
understanding of some of the main properties of the MARC notation.

MARC records are composed of fields, indicators and subfields. We will use a demo bibliographic 
record from the default INVENIO installation to demonstrate these 3 types.

Demo bibliographic record in MARC 21 format:

001__ 97
003__ SzGeCERN
005__ 20060914104330.0
035__ $$9INIS$$a34038281
035__ $$9UNCOVER$$a251,129,189,013
041__ $$aeng
088__ $$9SCAN-0005061
088__ $$aTESLA-FEL-99-07
100__ $$aTreusch, R
245__ $$aDevelopment of photon beam diagnostics for VUV radiation from a 
SASE FEL
269__ $$aHamburg$$bDESY$$cDec 1999
260__ $$c2000
595__ $$aSIS INIS2004
595__ $$aSIS UNC2002
595__ $$dDevelopment of photon beam diagnostics for VUV radiation from a 
SASE FEL

11 http://www.fz-juelich.de/   
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65017 $$2SzGeCERN$$aAccelerators and Storage Rings
690C_ $$aARTICLE
694__ $$9INIS$$aParticle accelerators
695__ $$9INIS$$aphoton-beams
700__ $$aLokajczyk, T
700__ $$aXu, W
700__ $$aJastrow, U
700__ $$aHahn, U
700__ $$aBittner, L
700__ $$aFeldhaus, J
773__ $$c456-462$$n1-3$$pNucl. Instrum. Methods Phys. Res., A$$v445$$y2000
8564_ $$uhttp://invenio.lo/record/97/files/convert_SCAN-0005061.pdf
916__ $$sn$$w200430
960__ $$a13
961__ $$c20061230$$h0016$$lCER01$$x20040727
962__ $$b000289917$$k456-462$$nhamburg990823
963__ $$aPUBLIC
970__ $$a002471378CER
980__ $$aARTICLE

The example shown above is taken from the default INVENIO installation and represents the 
meta-data for an article with the title “Development of photon beam diagnostics for VUV 
radiation from a SASE FEL”. As one can see, this title is contained within the MARC data on the 
line that begins with 245__ $$a. 245 is a so called field, whereas $$a is called a subfield. 
The indicators are the two digits that follow the field, in this example they are mostly empty, 
which looks like “__”. In INVENIO the indicator fields are mostly left empty. All values are 
contained within the subfields. Here the author names have been highlighted. The main author 
name is contained in the 100__a subfield, the other author names are contained within the 
700__a subfields. The full list of MARC 21 field/subfield to human readable field names 
mapping for bibliographic records can be found at 
http://www.loc.gov/marc/bibliographic/ecbdlist.html (the same lists exist for authority 
records as well).

Although authority records have the same basic MARC format, it is important to know that 
identical field numbers may have different meanings in authority records vs. bibliographic 
records. E.g. field 500 is used for 'General Note' in bibliographic records, whereas in authority 
records it is used for a personal name 'see also from' information, typically referring to separate 
author name authority records.

Note: The number code of a field, e.g. '245' is often referred to as a 'tag'. In INVENIO, the whole 
field-subfield combination is often simply referred to as a 'field' or 'tag' and is written in this 
format: 'XXX__x'.

3.3 Collections in INVENIO
Note 2: Since INVENIO has no way to know if a particular MARC record is a bibliographic or 
authority record, it will treat authority records as bibliographic records. This introduces some 
problems, which need to be addressed by this project. In order for INVENIO to have an easy 
way to know if a record is an authority record or not, we will introduce a value 'AUTHORITY' into 
the MARC subfield '980__a', the subfield used by INVENIO to designate which collection a MARC 
records belongs to. An additional '980__a' subfield will contain the type of authority record (e.g. 
'AUTHOR'). For more details on this notation, cf. the user manuals for librarians and for INVENIO 
administrators.

- 10 -
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Illustration 1 below shows INVENIO collections as they appear on the CDS Document Server

3.4 Detailed Specifications

3.4.1 Technological restrictions

As stated in the INSTALL file that ships with the software, INVENIO currently requires the 
following setup:

• A Unix-like operating system. The main development and production platforms for 
INVENIO at CERN are the GNU/Linux distributions Debian, Gentoo, Scientific Linux (aka 
RHEL) and Ubuntu.

• MySQL versions 4.1 or 5.0 .

• Python v2.4 or above.

• Apache 2 server, with support for loading DSO modules

• mod_wsgi Apache module.

• HTML, CSS, JavaScript and jQuery for the web pages.

• Some C and Lisp are used in INVENIO as well, which requires the use of Makefiles and a 
make-install work-flow for each change to the Python source files as well.

It is interesting to note here as well that INVENIO uses a mostly procedural / imperative 
programming style and only rarely an object-oriented design. 

- 11 -

Illustration 1: The collections present in the CERN Document Server



Authority Control for INVENIO
EIA-FR / CERN, 2011-07-15

3.4.2 Overview of the present INVENIO modules

At the outset of this project, this is what the overview of the various INVENIO modules looked like 
(Illustration 2):

It was recommended to me by members of the CDS team to put only a minimal amount of code into 
a new BibAuthority module, while directly integrating most of it into the code of the existing 
modules. Future refactoring would be possible to migrate that code into the BibAuthority module at 
a later time. As it currently stands, there is an additional BibAuthority module containing only a 
bibauthority_config.py file as well as a bibauthority_engine.py file containing some purely 
authority-related functions. The rest of the code of this project lives in the respective modules that 
needed to be adapted for authority control to work: BibEdit for the AJAX calls and drop-down 
functionality, BibIndex for the Indexing of Data coming from linked authority records, BibFormat 
for the output formatting of authority records, and WebSearch for special authority-related search-
options.

3.4.3 Types of authority records

For this project, we will deal with only 4 types of authority records: Authors, Institutions, Journals 
and Subjects. However, these 4 types shall not be hard-coded into the system, but should rather be 
configurable variables so that further types can easily be added by system administrators in the 
future without any knowledge of Python.

- 12 -
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3.4.4 The editing and storage of authority records

Authority records need to be editable like any other MARC record in INVENIO. The advantage of 
using authority records is that they share the same basic MARC structure with the bibliographic 
records already stored and edited by INVENIO. This means that simple back-end uploading, 
storage and even editing of authority records will work out of the box for administrators of 
INVENIO. In a first stage, non-admin users will not need to upload or edit authority records.

3.4.5 Enriching the searches with data from authority records

When a user searches for publications e.g. of a particular author, he/she may not spell the author's 
name the same way it appeared in the publication. In order to return successful search results, the 
indexing needs to take into account all the variations of how to write an author's name. This can be 
done through the use of authority records, where the indexer not only indexes the author name as 
indicated in the bibliographic record, but also indexes alternative spellings or names as contained in 
the referenced authority record. In addition, the search needs to provide ways of disambiguating 
between identical search terms with different significance. Authority records can provide the search 
index with additional information about the searched term that will allow the user to pin down the 
exact thing he or she is searching for.

The way INVENIO's search function works, the indexes need to be updated whenever there is a 
change to one of the records. This requires some special care when we introduce authority records, 
since a change in an authority record requires not only updating the index for this individual record, 
but also all of the indexes for the bibliographic records that make use of this authority record.

3.4.6 Cross-referencing between MARC records

For authority records to be more than a simple collection of logically related data, we need a way 
for one MARC record to reference another. An example for this would be between a bibliographic 
record and an authority record, where the bibliographic record references the authority record. E.g., 
a bibliographic record could have a particular author working for a particular institution. In stead of 
(or in addition to) simply writing the name of this institution, we want the bibliographic record to 
contain some kind of reference to the actual authority record of the institution in question. Only in 
this way can we intelligently make use of the authority record data for the bibliographic record as 
well. MARC 21 has defined the $0 subfield for this purpose12. This subfield is called the “Authority 
record control number” or “standard number” and will in our case contain an alphanumeric string 
that will uniquely identify the referenced authority record. 

3.4.7 Validation of authority-controlled fields during the uploading process

When an admin uploads a new record to INVENIO, he/she needs to be able to choose whether or 
not the uploader should check for “broken links” within the references to authority records. If such 
broken links are found, the user needs to receive a feed-back explaining which records are affected. 
If the CLI is used directly for uploading new records, the feed-back will be in form of a message in 
the terminal. If the upload job is created dynamically by a python script (e.g. after the use of 
BibEdit or WebSubmit), then these messages will be written to the respective log files.

12 http://www.loc.gov/marc/bibliographic/ecbdcntf.html  
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3.4.8 Auto-suggestion and validation for authority controlled fields in the on-line 
editing process

In order to facilitate the use of authority records for the library catalogers, certain fields of the 
bibliographic records will offer auto-complete (called “auto-suggest” in INVENIO) functionalities 
through the use of drop-down menus, based on what the user types into the given field. These drop-
down field will offer the same search features that are available for the global INVENIO search as 
well. This means that the librarian can type in an alternative spelling for an authority (e.g. for an 
author), and the drop-down will show the main names for which this alternative writing is recorded 
in an authority file. In addition, the admin will have the choice whether to configure INVENIO to 
allow only values from authority records or whether he/she can also enter values manually, without 
a correspondence in the drop-down suggestions.

In case the drop-down contains multiple values with the same writing, additional data can be 
displayed in the drop-down to disambiguate, data that will not be carried over into the MARC 
subfield upon selection however.

Illustration 3 below shows an example of how such an auto-suggest drop-down list will look.

3.4.9 Periodic consistency checks for the already present data

The BibAuthority module needs a CLI command that allows checking for consistency in the 
references towards authority records. This means scanning through all the bibliographic MARC 
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fields that have been specified by the admin as being under authority control, and then verifying 
that the authority record control number in their $0 subfields corresponds to an existing authority 
record containing that same number as a standard identifier.

We need to make this check periodic with the scheduler that INVENIO offers.

3.4.10 New output formats for authority records

If a librarian or a regular user wishes to view an authority record, this should be possible with the 
same types of HTML formats available for bibliographic records.

- 15 -
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4 Design + Implementation

4.1 Introduction
The following section describes how the use cases described above will need to be built into new or 
existing functions for INVENIO. For this to be successful, it was necessary to plan the design of 
these functions in regard to the already existing INVENIO architecture. Since Design and 
Implementation cannot be as strictly separated in this project as in other projects, I have decided to 
put their description into the same section. Nevertheless, for each point I will focus first of all on the 
more conceptual aspect of the newly created functions, and only at the end of each chapter will I 
talk about the actual adaptations to the existing code that were necessary for the implementation.

4.2 The editing and storage of authority records
As mentioned in the previous section, MARC 21 authority records have the same internal structure 
as bibliographic records. From the point of view of INVENIO, both bibliographic as well as 
authority records are simply MARC. As long as it is valid MARC it can upload, store or delete any 
record presented to it and offers the same tools to the admin for editing the records as well. This 
turned out to be a very nice feature for the authority control project since it meant that much of 
INVENIO could simply be reused as is for the storage and editing of authority records. That said, it 
should be noted however that whereas INVENIO is agnostic about the type of MARC record it is 
presented on a pure MARC level, as soon as one gets into the functionalities of how INVENIO 
presents this data to the user in a more user-friendly form, the differences are in deed no longer 
negligible. This is primarily due to the fact that identical field numbers of an authority record can 
have quite a different meaning from the same field in a bibliographic record (cf. The chapter on 
MARC 21 in the Analysis section)

4.3 Enriching the searches with data from authority records

4.3.1 Introduction

In the previous section, we described how certain subfields from authority records can be used to 
enrich the indexed data of related subfields in bibliographic records. In this section, we will 
describe in detail how we must go about to do this for INVENIO.

There are two cases that need special attention for this feature when considering the links between 
bibliographic and authority records. The first case is relatively simple and requires the enriching of 
bibliographic data with data from authority records whenever a bibliographic record is being 
indexed. The second is a bit more complex, for it requires detecting which bibliographic records 
should be re-indexed, based on referenced authority records having been updated within a given 
date range.

4.3.2 Indexing by record ID, by modification date or by index type

First of all, we need to say something about how INVENIO let's the admin index the data. 
INVENIO's indexer (BibIndex) is always run as a task that is executed by INVENIO's scheduler 
(BibSched). Typically, this is done either by scheduling a bibindex task from the command line 
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(manually), or it is part of a periodic task (BibTask) run directly from BibSched, typically ever 5 
minutes. In case it is run manually, the user has the option of specifying certain record IDs to be re-
indexed,  e.g. by specifying ranges of IDs or collections to be re-indexed. In this case, the selected 
records are re-indexed whether or not there were any modifications to the data. Alternatively, the 
user can specify a date range, in which case the indexer will search all the record IDs that have been 
modified in the selected date range (by default, the date range would specify all IDs modified since 
the last time the indexer was run) and update the index only for those records. As a third option, the 
user can specify specific types of indexes. INVENIO lets you search by different criteria (e.g. 'any 
field', 'title', 'author', 'abstract', 'keyword', 'journal', 'year', 'fulltext', …), and each of these criteria 
corresponds to a separate index, indexing only the data from the relevant MARC subfields. 
Normally, the indexer would update all index types for any given record ID, but with this third 
option, the user can limit the re-indexing to only specific types of indexes if desired. 

Note: In reality, INVENIO creates not only 1 but 6 different indexes per index type. 3 are forward 
indexes (mapping words, pairs or phrases to record IDs), 3 are reverse indexes (mapping record IDs 
to words, pairs or phrases). The word, pair and phrase indexes are used for optimizing the searching 
speed depending on whether the user searches for words, sub-phrases or entire phrases. These 
details are however not relevant for BibAuthority. It simply finds the values to be indexed and 
passes them on to the indexer which indexes them as if it was data coming directly from the 
bibliographic record.

4.3.3 Enriching the index data – simple case

Once the indexer knows which record ID (and optionally, which index type) to re-index, including 
authority data is simply a question of checking whether the MARC subfields currently being 
indexed are under authority control (as specified in the BibAuthority configuration file). If they are, 
the indexer must follow the following (pseudo-)algorithm which will fetch the necessary data from 
the referenced authority records:

For each subfield and each record ID currently being re-indexed:

If the subfield is under authority control (→ config file):

Get the type of referenced authority record expected for this field

For each authority record control number found in the corresponding 
'XXX__0' subfields and matching the expected authority record type (control 
number prefix):

Find the authority record ID (MARC field '001' control number) 
corresponding to the authority record control number (as contained in 
MARC field '035' of the authority record)

For each authority record subfield marked as index relevant for the 
given $type (→ config file)

Add the values of these subfields to the list of values to be 
returned and used for enriching the indexed strings.

The strings collected with this algorithm are simply added to the strings already found by the 
indexer in the regular bibliographic record MARC data. Once all the strings are collected, the 
indexer goes on with the usual operation, parsing them 3 different times, once for phrases, once for 
word-pairs, once for words, which are used to populate the 6 forward and reverse index tables in the 
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database.

4.3.4 Updating the index by date range

When a bibindex task is created by date range, we are presented with a more tricky situation which 
requires a more complex treatment for it to work properly. As long as the bibindex task is 
configured to index by record ID, the simple algorithm described above is enough to properly index 
the authority data along with the data from bibliographic records. This is true also if we use the 
third option described above, specifying the particular index type to re-index with the bibindex task. 
However, if we launch a bibindex task based on a date range (by default the date range covers the 
time since the last time bibindex task was run on for each of the index types), bibindex would have 
no way to know that it must update the index for a specific bibliographic record if one of the 
authority records it references was modified in the specified date range. This would lead to 
incomplete indexes.

A first idea was to modify the time-stamp for any bibliographic records as soon as an authority 
record is modified. Every MARC record in INVENIO has a 'modification_date' time-stamp which 
indicates to the indexer when this record was last modified. If we search for dependent 
bibliographic records every time we modify an authority record, and if we then update the 
'modification_date' time-stamp for each of these dependent bibliographic records, then we can be 
sure that the indexer would find and re-index these bibliographic records as well when indexing by 
a specified date-range. The problem with this is a performance problem. If we update the time-
stamp for the bibliographic record, this record will be re-indexed for all of the mentioned index-
types ('author', 'abstract', 'fulltext', etc.), even though many of them may not cover MARC subfields 
that are under authority control, and hence re-indexing them because of a change in an authority 
record would be quite useless. In an INVENIO installation there would typically be 15-30 index-
types. Imagine if you make a change to a 'journal' authority record and only 1 out of the 20+ index-
types is for 'journal'. INVENIO would be re-indexing 20+ index types in stead of only the 1 index 
type which is relevant to the the type of the changed authority record. 

There are two approaches that could solve this problem equally well. The first approach would 
require checking – for each authority record ID which is to be re-indexed – whether there are any 
dependent bibliographic records that need to be re-indexed as well. If done in the right manner, this 
approach would only re-index the necessary index types that can contain information from 
referenced authority records, and the user could specify the index type to be re-indexed and the 
right bibliographic records would still be found. The second approach works the other way around. 
In stead of waiting until we find a recently modified authority record, and then looking for 
dependent bibliographic records, we directly launch a search for bibliographic records containing 
links to recently updated authority records and add the record IDs found in this way to the list of 
record IDs that need to be re-indexed. 

Of the two approaches, the second one was choses based solely upon considerations of integration 
into existing INVENIO code. As indexing in INVENIO currently works, it is more natural and 
easily readable to apply the second method than the first.

According to the second method, the pseudo-algorithm for finding the bibliographic record IDs that 
need to be updated based upon recently modified authority records in a given date range looks like 
this:

For each index-type to re-index:
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For each subfield concerned by the index-type:

If the subfield is under authority control (→ config file):

Get the type of authority record associated with this field

Get  all of the record IDs for authority records updated in the 
specified date range.

For each record ID

Get  the authority record control numbers of this record ID

For each authority record control number

Search for and add the record IDs of bibliographic 
records containing this control number (with type in the 
prefix) in the 'XXX__0' field of the current subfield to 
the list of record IDs to be returned to the caller to be 
marked as needing re-indexing.

The record IDs returned in this way are added to the record IDs that need to be re-indexed (by date 
range) and then the rest of the indexing can run as usual.

4.3.5 Implementation specifics

The pseudo-algorithms described above were used as described in this document, but were not each 
implemented in a single function. In order for parts of them to be reusable and also for the various 
parts to be properly integrated into existing python modules with similar functionality (e.g auxiliary 
search functions were added to INVENIO's search_engine.py code), the pseudo-algorithms were 
split up into multiple nested function calls and integrated where it seemed to best fit the existing 
code base of INVENIO. In the case of the pseudo-algorithm described in “Updating the index by 
date range”, the very choice of the algorithm had already depended on how to best integrate it into 
the existing code for date-range related indexing. It should be mentioned here as well, that the 
design and implementation of these functions was done in agreement with Tibor Simko, the head 
architect and developer, and therefore depends to a large degree also on his suggestions and 
preferences.

There are a few possible improvements that could be made to the current code, but these would 
require refactoring a substantial amount of the existing code, a task that I was explicitly not required 
to do during this project. One of them concerns the way the indexing by date-range first indexes the 
bibliographic records modified within the given date-range, then indexes the bibliographic records 
that have an authorID entry that was modified within that given date-range (a separate module not 
related to my project), and then finally those that have a referenced authority record modified within 
that given date-range. The advantage of this is that in the bibindex task logs, we see which 
bibliographic records were re-indexed for which of the 3 reasons (because they are treated 
separately). The disadvantage is, that the same bibliographic record might be re-indexed 2-3 times, 
depending on which of the 3 cases just described find that it needs to be re-indexed for the given 
date range.

In another place, I ended up refactoring the existing code, based on a recommendation by Tibor 
Simko for code clarity. However, as I realized during the refactoring process, these changes would 
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have undone an important MySQL query optimization (querying by range with “value BETWEEN 
x AND y” in stead of one query per value), and so a different solution needed to be found. We 
finally found a solution that was able to combine both readability and the preservation of the 
MySQL query optimization.

4.4 Cross-referencing between MARC records

In the previous section we saw the need for alphanumeric strings stored in the $0 subfields of fields 
with other, authority-controlled subfields. The format of these alphanumeric strings for INVENIO 
will in part be determined by the MARC standard itself, which states that:

Subfield $0 contains the system control number of the related authority 
record, or a standard identifier such as an International Standard Name 
Identifier (ISNI). The control number or identifier is preceded by the 
appropriate MARC Organization code (for a related authority record) or 
the Standard Identifier source code (for a standard identifier scheme), 
enclosed in parentheses. See MARC Code List for Organizations for a 
listing of organization codes and Standard Identifier Source Codes for 
code systems for standard identifiers. Subfield $0 is repeatable for 
different control numbers or identifiers.13

An example of such a string could be “(SzGeCERN)abc1234”, where “SzGeCERN” would be the 
MARC organization code14, and abc1234 would be the unique identifier for this authority record 
within the given organization.
Since it is possible for a single field (e.g. field '100') to have multiple $0 subfields for the same field 
entry, we need a way to specify which $0 subfield reference is associated with which other subfield 
of the same field entry.

For example, imagine that in bibliographic records both '700__a' ('other author' name) as well as 
'700__u' ('other author' affiliation) are under authority control. In this case we would have two 
'700__0' subfields. Of of them would reference the author authority record (for the name), the other 
one would reference an institution authority record (for the affiliation). INVENIO needs some way 
to know which $0 subfield is associated with the $a subfield and which one with the $u subfield.

We have chosen to solve this in the following way. Every $0 subfield value will not only contain the 
authority record control number, but in addition will be prefixed by the type of authority record (e.g. 
'AUTHOR', 'INSTITUTION', 'JOURNAL' or 'SUBJECT), separated from the control number by a 
':'. A possible $0 subfield value could therefore be: “author:(SzGeCERN)abc1234”. This will allow 
INVENIO to know that the $0 subfield containing “author:(SzGeCERN)abc1234” is associated 
with the $a subfield (author's name), containing e.g. “Ellis, John”, whereas the $0 subfield 
containing “institution:(SzGeCERN)xyz4321” is associated with the $u subfield (author's 
affiliation/institution) of the same field entry, containing e.g. “CERN”.

4.5 Upload validation and periodic consistency checks

What were mentioned as distinct tasks in the scope statement are in fact closely related. Both the 

13 http://www.loc.gov/marc/bibliographic/ecbdcntf.html   
14 cf. http://www.loc.gov/marc/organizations/org-search.php
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validation during the upload procedure as well as the consistency checks need to verify if authority 
record control numbers contained within $0 subfields of bibliographic records correspond to an 
existing authority record in INVENIO. In addition, this functionality can check for the authority 
record type at the same time, comparing the prefix of the $0 value with the '980' field values of the 
referenced authority record, making sure it is present. 

In order to unite the two uses for this functionality, a function will be created which can be called in 
both cases. This function receives the authority record control number prefixed with the authority 
record type (alphanumeric string) and returns a dictionary containing the relevant consistency 
information to be returned. The dictionary contains a key 'single_record_exists' and another key 
'has_right_type', both of which map to a boolean value that indicates whether a) a single authority 
record exists with the given authority record control number, and b) whether this authority record 
contains a '980__a' subfield with the given authority record type. Depending on whether a), b) or 
both are true, INVENIO will be able to tell the user some useful information about the validity of 
the MARC data being uploaded or about the consistency of the record database in general.

This function needs to be wrapped of course by other INVENIO functions / CLI commands. The 
upload validation requires a function that can be integrated into the existing BibUpload module, 
giving the user a warning if a broken reference to an authority record was found, whereas the 
periodic consistency check must be run as a part of a task that can be run by the scheduler 
(BibSched). For the latter, since there is currently no consistency checker available in the public 
INVENIO code, my project will offer a separate checker task as part of the BibAuthority module. 
There is currently a BibCheck module in development (written in Lisp), but it is not yet available do 
other developers. The code should be simple enough to easily be integrated into this BibCheck 
module, if one day it becomes an integrated part of INVENIO. 

4.6 Auto-suggestion and validation for authority controlled fields in the on-
line editing process

In the previous section we described how a librarian will be offered a drop-down with suggestions 
based upon the characters typed into an authority-controlled subfield of the web-based editing tool 
(BibEdit). In this section we will take a closer look at how BibEdit currently works, and which steps 
are necessary for INVENIO to integrate authority control into the current system.

4.6.1 Entering data

When the librarian starts typing data on the BibEdit web-interface into a MARC subfield that is 
under authority-control, there will be a JavaScript event-listener attached to this input field. This 
event-listener has the following behavior. The first 3 characters won't have any visible effect for the 
user. The auto-complete behavior only kicks in after the 4th character has been typed, allowing an 
additional timeout of a configurable time (typically between 100 and 250 ms) before the characters 
in the input field are sent via AJAX to the server.

4.6.2 AJAX request: back-end

Once a few characters have been sent to the server, the server will run a search based on this string 
and based on the index type to be used for this search, as defined in the BibAuthority configuration 
file (cf. Admin User Manual for details on how to configure BibAuthority for Indexing and 
Searching). Once the matching authority files have been found, both the authority record control 
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number as well as the actual value to be inserted into the field that triggered the AJAX request 
(again, with the help of the configuration file). In a final step, the value for the drop-down list needs 
to be calculated (cf. the next point on JSON formatting).

4.6.3 AJAX response: JSON format

Another thing to consider is the format of the data the server returns via AJAX to the browser, in 
order to populate the drop-down list. 

Example: The user types ‘Elli’. The AJAX call returns a JSON list of suggestions in the form of dict 
objects like this: 

[ 
{ 

‘show’        : ‘Ellis, John, 1946-, john.ellis@cern.ch’,
‘insert_here’ : ‘Ellis, John’, 
‘insert_0’    : ‘author:(SzGeCERN)abc123’,  

}, 
{ 

‘show’        : ‘Ellis, John, 1946-, author:(SLAC)xyz789’,
‘insert_here’ : ‘Ellis, John’,  
‘insert_0’    : ‘author:(SLAC)xyz789’,  

}, 
{ 

… some more auto-suggest data … 
},

]

The drop-down list would contain the 'show' values (“Ellis, John, 1946-, john.ellis@cern.ch” and 
“Ellis, John, 1946-, author:(SLAC)xyz789”). If the user chooses the first suggestion, INVENIO 
would insert ‘author:(SzGeCERN)abc123’ into the $0 subfield of the field currently being edited 
(e.g. '100__0'), and “Ellis, John” directly into the subfield currently being edited (e.g. '100__a'). 

The format of the 'show' value can be configured by the admin in bibauthority_config.py (cf. the 
document “Admin User manual”) In case multiple suggestions have have the same ‘insert_here’ 
value, but not all of the suggestions have data in the additional disambiguation fields, INVENIO 
will automatically add the authority record control number to the end of the 'show' value to 
guarantee a unique value for disambiguation purposes. In the case above, the author's date and the 
author's email were chosen by the admin as disambiguation fields, but because the dates were 
identical for two different authority records, and because the second one didn't have any e-mail 
data, the authority record control number ( “author:(SLAC)xyz789”) was used instead.

The algorithm used to create the 'show' string is written as pseudo-code below:

Create one show string per authority record, consisting initially of the value of each 
authority record's 'insert_here_field'. 

Create a list of similar authority records containing the same show string.

Create a list of remaining fields containing a copy the list of 'disambiguation_fields'.

While the list of similar authority records is not empty AND the list of remaining fields is 
not empty:
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For each authority record in the list of authority records:

Remove the next disambiguation field from remaining fields.

Get the disambiguation string value from the disambiguation field of the 
current authority record.

If the disambiguation string is empty:

Replace it with this authority record's the authority record control 
number.

Add the disambiguation string to the end of the show string for this authority  
record, separated by a comma.

Replace the list of similar authority records with a new list of similar authority  
records that have the same show string.

If the list of similar authority records is not empty:

Add the authority record's authority record control number to the end of the show 
string for each authority record in the list of similar authority records, separated by a 
comma.

4.6.4 Creating the drop-down list

Furthermore, we must consider is the drop-down list that appears when a librarian starts typing 
characters into an authority-controlled subfield. INVENIO tries to use jQuery and jQuery UI 
wherever possible. jQuery UI has an auto-complete plug-in which matches this use case very well. I 
can easily be made to work with the BibEdit pages. Furthermore, one of the INVENIO developers 
in the SLAC team at Stanford (Joe Blaylock), has already implemented a similar functionality for 
the INSPIRE site that uses INVENIO. His code and help was of great help in integrating this to 
INVENIO. 

4.6.5 Inserting all the data

The next question to be addresses is what happens when the user selects one of the entries from the 
drop-down list. If the user chooses e.g. the second one from the drop-down, the 100__a field will be 
filled with “Ellis, John” and the '100__0' field will be filled with “author:(SLAC)xyz789”. This 
way, the librarian can type the human readable form and the system will automatically complete the 
MARC data with the alphanumeric string referring to the authority record.

My meeting with Javier Martin Montull was helpful to get to know the existing JavaScript library in 
bibedit_engine.js which can to a great part be reused for the dynamic insertion of new fields. This 
way all of the AJAX calls to the server, the synchronization across multiple browsers (to prevent 
concurrent editing of the same file on multiple browsers) are kept in tact. 

4.7 New output formats for authority records

Creating new output formats for authority records required getting familiar with yet another 
INVENIO module, BibFormat. This module offers a special syntax (similar to HTML) for defining 
format templates, tied to simple python functions that construct the building blocks to be included 
in these files. Since authority records use the same basic MARC format, all of the MARC related 
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output formats that INVENIO offers like MARC and MARCXML worked out of the box. For more 
direct and human-readable access to the contents of these files however, we needed at least one 
“detailed” and one “brief” HTML output format for displaying in the browser. 

Illustration 4 shows the result of the newly created “detailed” HTML output format for authority 
records displaying a simple authority record containing only the various names as well as the dates 
of birth and death of “Marie Curie”.
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5 Tests
INVENIO uses 3 types of tests to help developers identify existing bugs as INVENIO evolves. 
These are Unit Tests, Regression Tests and Web Browser Tests. The first two are written in Python, 
the last type is created with “Selenium”, a web browser testing tool.

At the time of this report, unit tests are the only type of test created and run for the new 
BibAuthority code. The remaining weeks at CERN will allow the creation of full regression and 
web browser tests as well.

Authority record mock data was added to the miscutil/demobibdata.xml file to enable an easy and 
clean setup of INVENIO with demo data to test with.
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6 Possible Improvements 

6.1 General
Authority control was integrated and implemented for the core INVENIO modules, so that a solid 
base was available for other developers who wish to add authority related functionalities to their 
modules. Therefore most of the modules that haven't been touched by this bachelor project can still 
be updated to add authority-specific functionalities.

6.2 Syntax-error immune configuration file
Perhaps the one clearly unfinished task of this project is the format of the configuration file. The 
INVENIO admin will typically not be a Python programmer and should not have to use a Python 
specific syntax for configuring authority control in INVENIO. Furthermore, any syntax errors made 
in the bibauthority_config.py configuration file could potentially break the proper functioning of 
INVENIO all-together. This was simply a task that could not be finished by the hand-in date of this 
report. In the remaining time of the internship at CERN, this will be changed so that the admin can 
use a simpler notation syntax and syntax errors will fail gracefully. 
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7 Conclusion

7.1 General
This bachelor project was a unique experience for me. Besides diving into a new project, teaching 
me Python and advanced features of GIT, introducing me into the world of digital libraries, MARC 
and search engine indexing, it also granted me the chance to work at a large and renowned 
international organization in a region of Switzerland and France previously unknown to me. I am 
satisfied with the work I was able to do in the relatively short amount of time available. My work 
allowed me to meet the highly diverse and bright international personnel of CERN, many of them 
students like myself, as well as collaborating with users and contributers to INVENIO from German 
and California. I felt lucky to work in a very friendly team and office environment. In my free 
hours, I tried to discover as much of CERN as possible, without having any of the organized 
presentations normally offered to “summer students”.

7.2 Lessons learned

7.2.1 GIT

Although I had already worked with GIT on a previous project, my time at CERN made me realize 
that I had only scratched the surface of this powerful tool. INVENIO development usually follows a 
rather elaborate GIT Work-flow15 where developers never work on the master branch, but instead 
always work on branches dedicated to the specific feature they are working on, which is then 
pushed to their public repository as a branch. During  the work on a particular branch, recent 
changes to the public master branch (made by other developers) can be integrated into the local 
branch by a GIT function called “rebasing”, where the original master base of the branch is 
swapped for the new version of master. Also, before pushing a finished feature branch to the public 
repository, another feature of GIT, called “squashing”, is used to clean up the commit history, so 
that other developers will see the branch modifications as a single commit. The Head Developer 
then takes care of merging the new public branches back into the public master (or, in some cases, 
into public branches of previous versions of INVENIO or into the “next” branch for future public 
versions). For local development, GIT offers all of the usual functionalities of a versioning system 
like SVN, i.e. to switch quickly between branches, restore individual files from the commit history, 
browse the commit history, view the changes between individual commits, add additional changes 
to existing commits, etc. In brief, I learned to what extent GIT is a very flexible and powerful tool 
for collaborative editing and keeping track of numerous lines of development on multiple versions 
of the same software.

7.2.2 Python

Before coming to CERN I had never worked with Python. A previous CERN intern had told me that 
it was very similar to Java, so I didn't expect it to be a difficult transition. Although the transition 
was in deed not very difficult, I disagree with the simple comparison with Java. I found Python to 
be quite a bit different in many ways. Python does not offer all of the features typically associated 
with object-oriented programming (there is no encapsulation, e.g.). Contrary to Java, Python allows 

15 https://twiki.cern.ch/twiki/bin/view/CDS/GitWorkflow  
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not only object-oriented programming, but also procedural/imperative programming and to a certain 
degree even functional programming, all within the same code. Python is interpreted, not compiled, 
which means it can be used for rapid prototyping directly within a python interpreter (e.g. iPython).

7.3 Problems encountered

7.3.1 Debugging INVENIO

Despite the advantages of Python mentioned above, INVENIO also uses C and Lisp for 
performance, and because of this we loose many of the benefits of an interpreted language, since 
any change made to the actual INVENIO python files needs to be run through a “make install” 
process, which copies the python files to a second location from where they are run by apache. This 
made debugging INVENIO quite a bit slower than it could be with a regular step-through debugger. 
I met only one INVENIO developer (in another team) who followed neither the make-install nor the 
GIT work-flow officially suggested for INVENIO. This allowed him to run and debug the source 
files directly from within Eclipse. Due to the short duration of my project, however, I decided to 
stick with the work-flows used in my team, since I would find more support this way in case of 
encountered problems and wouldn't loose time creating a completely new setup of INVENIO.

7.3.2 Project management

Perhaps the most challenging aspect of my project was not of a technical nature, but rather one of 
project management and coordination with my superiors. As mentioned in the introduction, I didn't 
have a clear project description until the end of the 2nd week of my project. Any attempt to speed up 
the process was fruitless, and an explicit mention of the problem was encountered with an equally 
explicit statement that I would have to live with this. At the same time, an attempt to ask for a later 
hand-in date for my bachelor project report was turned down for nontransparent administrative 
reasons by the EIA-FR, despite the fact that my internship at CERN was in all relevant aspects fully 
identical with projects done “abroad” where the students can hand in their projects as much as 5 
weeks later than those done in Switzerland. Basically, I found myself “serving two masters” who 
were both unwilling to make concessions for the dead-lines and restrictions imposed by the other 
party. This left me with the task of trying to use my time as efficiently as possible so that I could 
implement and document a maximum of features by the end of the 7 weeks allowed by the EIA-FR. 
I hope this document, despite the short time at hand, manages to show the fruits of this effort.
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8 Illustration Index

Illustration Reference Page #

Illustration 1: The collections present in the
CERN Document Server

http://cdsweb.cern.ch/ 11

Illustration 2: Overview of the INVENIO
modules

http://invenio-
demo.cern.ch/help/hacking/modules-
overview 

12

Illustration 3: An example of the auto-suggest
feature for the author's name

Taken from the local, login-protected 
BibEdit web-interface

14

Illustration 4: A (detailed) HTML output format
for a simple authority record

Taken from the local, unprotected 
Record Page

24
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9 Glossary

Term Meaning

Admin The INVENIO administrator who installs and configures the INVENIO 
software for the librarian.

Authority record A record describing an authority (author, institution, journal, other heading, 
subject, ...)

Bibliographic record A record describing a publication (article, book, photo, video, …)

Bib* (e.g. BibEdit) For the meaning of the INVENIO modules, cf. http://invenio-
demo.cern.ch/help/hacking/modules-overview

CLI Command-line interface, Terminal

Library Cataloger The librarian who uses INVENIO to edit the catalog information for the 
digital library.

MARC Machine Readable Cataloging. A set of standards for the representation and 
communication of bibliographic and related information in machine-
readable form, and related documentation.

MARC 21 MARC 21 was designed to redefine the original MARC record format for 
the 21st century and to make it more accessible to the international 
community.

Web* (e.g. 
WebSearch)

For the meaning of the INVENIO modules, cf. http://invenio-
demo.cern.ch/help/hacking/modules-overview
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10 Contents of the CD-ROM
The following table lists the content of the CD-ROM delivered with the final report of this bachelor 
project.
Path Contents

/README.pdf Lists the contents of this CD

/code/ The INVENIO source code, including BibAuthority

/code/INSTALL The installation manual for INVENIO

/code/modules/ The INVENIO Python modules

/doc/ All the documentation of this project

/doc/final_report.pdf The final report of this project

/doc/flyer.pdf The flyer describing this bachelor project

/doc/manual_admin.pdf The User Manual for INVENIO Administrators

/doc/manual_librarian.pdf The User Manual for Librarians
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11 Appendices

11.1Librarian's User Manual
The librarian's user manual explains how to MARC authority records, how to create collections of 
authority records, and how to use authority record data within BibEdit to edit bibliographic records.

11.2Admin User Manual
The Administrator user manual explains to the INVENIO administrator how to configure INVENIO 
to work with authority records for search indexing and BibEdit auto-suggestion drop-down lists.

11.3Scope Statement 
The scope statement for this project has been appended to this report for reference.

11.4Planning
The planning for this project has been appended to the end of this document.

11.5List of meetings
There were quite a few meetings involved in this project in order to coordinate the work on 
BibAuthority with the various developers working on the various INVENIO modules, some of them 
in other countries (visiting Geneva during my internship), as well as with librarians and INVENIO 
admins who are interested in authority control for their own uses.

11.6Selected meeting notes
The meeting notes that seemed relevant for this report were appended to the end of this document.
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Admin User Manual 

Introduction

The INVENIO admin can configure the various ways in which authority control works for 
INVENIO by means of the bibauthority_config.py file. The location and full contents of this 
configuration file with a commented example configuration are shown at the end of this document. 
Their functionality is explained in the following chapters.

Enforcing types of authority records

INVENIO is originally agnostic about the types of authority records it contains. Everything it needs 
to know about authority records comes, on the one hand, from the authority record types that are 
contained within the '980__a' fields, and from the configurations related to these types on the other 
hand. Whereas the '980__a' values are usually edited by the librarians, the INVENIO configuration 
is the responsibility of the administrator. It is important for librarians and administrators to 
communicate the exact authority record types as well as the desired functionality relative to the 
types for the various INVENIO modules.

BibEdit

For examples authority control works in BibEdit from a user's perspective, cf. the “Librarian's  
User Manual for BibEdit”.

As admin of an INVENIO instance, you have the possibility of configuring which fields are under 
authority control. In the “Configuration File Overview” at the end of this document is an example 
of a configuration which will trigger an auto-complete functionality for the '100__a', '100__u', 
'110__a', '130__a', '150__a', '700__a' and '700__u' fields of a bibliographic record in BibEdit. The 
keys of the “CFG BIBAUTHORITY CONTROLLED FIELDS” dictionary indicate which 
bibliographic fields are under authority control. These fields will automatically propose an auto-
complete dropdown list in BibEdit, although the user can still enter values manually without use of 
the drop-down list. The values associated with each key of the dictionary indicate which kind of 
authority record is to be associated with this field. In the example given, the '100__a' field is 
associated with the authority record type 'AUTHOR'.

The “CFG BIBAUTHORITY AUTOSUGGEST OPTIONS” dictionary gives us the remaining 
configurations, specific only to the auto-suggest functionality. The value for the 'index' key 
determines which index type will be used find the authority records that will populate the drop-
down with a list of suggestions (cf. the following chapter on configuring the BibIndex for authority 
records). The value of the 'insert_here_field' determines which authority record field contains the 
value that should be used both for constructing the strings of the entries in the drop-down list as 
well as the value to be inserted directly into the edited subfield if the user clicks on one of the drop-
down entries. The value of the 'sort' key tells INVENIO how to sort the entries in the drop-down 
list. If a popularity sort is chosen, the drop-down entries will be sorted according to how often the 
associated authority record is referenced in this particular INVENIO instance. Finally, the value for 
the 'disambiguation_fields' key is an ordered list of authority record fields that are used, in the order 
in which they appear in the list, to disambiguate between authority records with exactly the same 
value in their 'insert_here_field'. 
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BibIndex

As an admin of INVENIO, you have the possibility of configuring how indexing works in regards 
to authority records that are referenced by bibliographic records. When a bibliographic record is 
indexed for a particular index type, and if that index type contains MARC fields which are under 
authority control in this particular INVENIO instance (as configured by the, “CFG 
BIBAUTHORITY CONTROLLED FIELDS” dictionary in the bibauthority_config.py 
configuration file, mentioned above), then the indexer will include authority record data from 
specific MARC fields of these authority records in the same index. Which authority record fields 
are to be used to enrich the indexes for bibliographic records can be configured by the “CFG 
BIBAUTHORITY AUTHORITY SUBFIELDS TO INDEX” dictionary. In the example below each 
of the 4 authority record types ('AUTHOR', 'INSTITUTION', 'JOURNAL' and 'SUBJECT') is given 
a list of authority record MARC fields which are to be scanned for data that is to be included in the 
indexed terms of the dependent bibliographic records. For the 'AUTHOR' authority records, the 
example specifies that the values of the fields '100__a', '100__d', '100__q', '400__a', '400__d', and 
'400__q' (i.e. name, alternative names, and year of birth) should all be included in the data to be 
indexed for any bibliographic records referencing these authority records in their authority-
controlled subfields.

Configuration File Overview

The configuration file for the BibAuthority module can be found at 
invenio/lib/python/invenio/bibauthority_config.py. Below is a commented example configuration to 
show how one would typically configure the parameters for BibAuthority. The details of how this 
works was already explained in the paragraphs above.

# THE FOLLOWING AUTHORITY RECORD TYPES ARE CURRENTLY IN USE 
# ... IN THIS INVENIO INSTALLATION:
#
#  'AUTHOR'
#  'INSTITUTION'
#  'JOURNAL'
#  'SUBJECT'
#
# IF YOU WISH TO ADD ANY OTHER TYPES, PLEASE ADD THEM HERE FOR REFERENCE 
#
# WARNING: These values shouldn't be changed on a running INVENIO 
installation 
# ... since the same values are hard coded into the MARC data, 
# ... including the 980__a subfields of all authority records 
# ... and the $0 subfields of the bibliographic fields under 
# ... authority control

# CFG_BIBAUTHORITY_RECORD_CONTROL_NUMBER_FIELD
# the authority record field containing the authority record control number
CFG_BIBAUTHORITY_RECORD_CONTROL_NUMBER_FIELD = '035__a'

# CFG_BIBAUTHORITY_CONTROLLED_FIELDS
# 1. tells us which bibliographic fields are under authority control
# 2. tells us which bibliographic fields refer to which type of 
# ... authority record
CFG_BIBAUTHORITY_CONTROLLED_FIELDS = {
    '100__a': 'AUTHOR',
    '100__u': 'INSTITUTION',
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    '110__a': 'INSTITUTION',
    '130__u': 'JOURNAL',
    '150__a': 'SUBJECT',
    '700__a': 'AUTHOR',
    '700__u': 'INSTITUTION',
}

# constants for CFG_BIBEDIT_AUTOSUGGEST_TAGS
# CFG_BIBAUTHORITY_AUTOSUGGEST_SORT_ALPHA for alphabetical sorting 
# ... of drop-down suggestions
# CFG_BIBAUTHORITY_AUTOSUGGEST_SORT_POPULAR for sorting of drop-down
# ... suggestions according to a popularity ranking
CFG_BIBAUTHORITY_AUTOSUGGEST_SORT_ALPHA = 'alphabetical'
CFG_BIBAUTHORITY_AUTOSUGGEST_SORT_POPULAR = 'by popularity'

# CFG_BIBAUTHORITY_AUTOSUGGEST_OPTIONS
# some additional configuration for auto-suggest drop-down
# 'index' : which index to use for this auto-suggest type
# 'insert_here_field' : which authority record field to use 
# ... for insertion into the auto-completed bibedit field
# 'disambiguation_fields': an ordered list of fields to use 
# ... in case multiple suggestions have the same 'insert_here_field' values
CFG_BIBAUTHORITY_AUTOSUGGEST_OPTIONS = {
    'AUTHOR': {
        'index': 'author',
        'insert_here_field': '100__a',
        'sort': CFG_BIBAUTHORITY_AUTOSUGGEST_SORT_POPULAR,
        'disambiguation_fields': ['100__d', '270__m'],
    },
    'INSTITUTION':{
        'index': 'institution',
        'insert_here_field': '110__a',
        'sort': CFG_BIBAUTHORITY_AUTOSUGGEST_SORT_ALPHA,
        'disambiguation_fields': ['270__b'],
    },
    'JOURNAL':{
        'index': 'journal',
        'insert_here_field': '130__a',
        'sort': CFG_BIBAUTHORITY_AUTOSUGGEST_SORT_POPULAR,
    },    

'SUBJECT':{
        'index': 'subject',
        'insert_here_field': '150__a',
        'sort': CFG_BIBAUTHORITY_AUTOSUGGEST_SORT_ALPHA,
    },
}

# list of authority record fields to index for each authority record type 
# R stands for 'repeatable'
# NR stands for 'non-repeatable'
CFG_BIBAUTHORITY_AUTHORITY_SUBFIELDS_TO_INDEX = {
    'AUTHOR': [
        '100__a', #Personal Name (NR, NR)
        '100__d', #Year of birth or other dates (NR, NR)
        '100__q', #Fuller form of name (NR, NR)
        '400__a', #(See From Tracing) (R, NR)
        '400__d', #(See From Tracing) (R, NR)
        '400__q', #(See From Tracing) (R, NR)
    ],
    'INSTITUTION': [
        '110__a', #(NR, NR)
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        '410__a', #(R, NR)
    ],
    'JOURNAL': [
        '130__a', #(NR, NR)
        '130__f', #(NR, NR)
        '130__l', #(NR, NR)
        '430__a', #(R, NR)
    ],
    'SUBJECT': [
        '150__a', #(NR, NR)
        '450__a', #(R, NR)
    ],
}
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Librarian's User Manual

How to MARC authority records

When adding an authority record to INVENIO, whether by uploading a MARC record manually or 
by adding a new record in BibEdit, it is important to add two separate '980' fields to the record. The 
first field will contain the value “AUTHORITY” in the $a subfield. This is to tell INVENIO that 
this is an authority record. The second '980' field will likewise contain a value in its $a subfield, 
only this time you must specify what kind of authority record it is. Typically an author authority 
record would contain the term “AUTHOR”, an institution would contain “INSTITUTION” etc. It is 
important to communicate these exact terms to the INVENIO admin who will configure how 
INVENIO handles each of these authority record types for the individual INVENIO modules.

Creating collections of authority record 

Once the authority records have been given the appropriate '980__a' values (cf. above), creating a 
collection of authority records is no different from creating any other collection in INVENIO. You 
can simply define a new collection defined by the usual collection query 'collection:AUTHOR' for 
author authority records, or 'collection:INSTITUTION' for institutions, etc. 

The recommended way of creating collections for authority records is to create a “virtual 
collection” for the main 'collection:AUTHORITY' collection and then add the individual authority 
record collections as regular children of this collection. This will allow you to browse and search 
within authority records without making this the default for all INVENIO searches.

How to use authority control in BibEdit

When using BibEdit to modify MARC meta-data of bibliographic records, certain fields may be 
configured (by the admin of your INVENIO installation) to offer you auto-complete functionality 
based upon the data contained in authority records for that field. For example, if MARC subfield 
100__ $a was configured to be under authority control, then typing the beginning of a word into this 
subfield will trigger a drop-down list, offering you a choice of values to choose from. When you 
click on one of the entries in the drop-down list, this will not only populate the immediate subfield 
you are editing, but it will also insert a reference into a new $0 subfield of the same MARC field 
you are editing. This reference tells the system that the author you are referring to is the author as 
contained in the 'author' authority record with the given authority record control number.

Illustration 1 below demonstrate how this works:
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Typing “Elli” into the 100__ $a subfield will present you with a list of authors that contain a word 
starting with “Elli” somewhere in their name. In case there are multiple authors with similar or 
identical names (as is the case in the example shown here), you will receive additional information 
about these authors to help you disambiguate. The fields to be used for disambiguation can be 
configured by your INVENIO administrator. If such fields have not been configured, or if they are 
not sufficient for disambiguation, the authority record control number will be used to assure a 
unique value for each entry in the drop-down list. In the example above, the first author can be 
uniquely identified by his email address, whereas for the latter we have only the authority record 
control number as uniquely identifying characteristic.

Illustration 1: Typing "Elli" into the 100__a field triggers an auto-complete dropdown
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If in the shown example you click on the first author from the list, this author's name will 
automatically be inserted into the 100__ $a subfield you were editing, while the authority type and 
the authority record control number “author:(SzGeCERN)abc123” , is inserted into a new $0 
subfield (cf. Illustration 2). This new subfield tells INVENIO that “Ellis, John” is associated with 
the 'author' authority record containing the authority record control number “(SzGeCERN)abc123”. 
In this example you can also see that the author's affiliation has been entered in the same way as 
well, using the auto-complete option for the 100__ $u subfield. In this case the author's affiliation is 
the “University of Oxford”, which is associated in this INVENIO installation with the 'institution' 
authority record containing the authority record control number “(SzGeCERN)inst0001”.

If INVENIO has no authority record data to match what you type into the authority-controlled 
subfield, you still have the possibility to enter a value manually.

Illustration 2: The authority record control number is automatically added as well


