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Abstract

A statistical combination of the low mass search channels for the Standard
Model (SM) Higgs boson at the ATLAS Experiment is presented. It is found
that with 1 fb−1 of ATLAS data, the SM Higgs can be excluded between 130
GeV and 190 GeV, at or above the 95% Confidence Level. In the presence
of signal, a 5σ observation is expected between 125 GeV and 185 GeV for
10 fb−1 of data. The effect of systematic uncertainties on the discovery and
exclusion sensitivities are presented.
The discovery potential of the tt̄H(H → bb̄) decay mode of the SM Higgs is
assessed and the discovery sensitivity is found to be 1.5σ for 30 fb−1. It is
shown that the use of a neural network can improve the exclusion potential
of the tt̄H search by a factor 3, increasing the SM cross-section excluded at
95% CL, with 1 fb−1 of expected ATLAS data, from 14.6σtt̄H to 4.6σtt̄H .
A study of ATLAS particle identification efficiencies is also presented. A tool
which applies these efficiencies to the output of the ATLAS fast simulation
tool, ATLFast, has been developed. It is shown for isolated electrons from
a tt̄ sample that application of the electron identification efficiency improves
the agreement between the fast and full simulation from ±10% to ±5%.
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Preface

The Large Hadron Collider (LHC) [1] at the European Organisation for Nu-

clear Research (CERN) became the world’s highest energy particle accelera-

tor and collider, producing collision data at 2.36 TeV on the 8th of December

2009. One of the main physics goals of the LHC and the ATLAS Experiment

[2] in particular, is to understand the mechanism of electroweak symmetry

breaking. The Standard Model (SM) Higgs boson is the scalar particle pre-

dicted in theory to be the quantisation of the field responsible for the mass

asymmetry observed in nature between the W±, Z0 and γ. Observation of

the Higgs particle, and hence confirmation of the theory, is one of the main

goals of the ATLAS Collaboration. This thesis presents a statistical analysis

of the tt̄H(H → bb̄) search mode for the SM Higgs, aimed at increasing the

discovery potential of this channel. A combined statistical analysis of the

other direct searches, including H → γγ, H → ττ , H → 4l and H → WW

is also presented and the discovery and exclusion potential of the ATLAS

Experiment to the SM Higgs boson is assessed.

The ATLAS Experiment faces an unprecedented challenge in the event envi-
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ronment produced from the pp collisions in the detector. The event rates will

be larger than has ever been observed and as such, the Monte Carlo data

needed to study the physics behind the data will also be very large. The

ATLAS fast simulation tool, ATLFast, was developed to help alleviate the

problem of large Monte Carlo dataset requirements. This thesis presents an

addition to the ATLFast software that improves the performance by applying

fully reconstructed particle identification efficiencies to the ATLFast output.

The Standard Model of Particle Physics is introduced in Chapter 1. Chap-

ter 2 introduces the statistical techniques used throughout this thesis, with

particular focus given to the Log-Likelihood Ratio analysis adopted in the

tt̄H and combined analyses. The LHC and the associated experiments are

introduced in Chapter 3. The ATLAS Detector is discussed in Chapter 4,

with relevant performance measures such as tracking and calorimeter resolu-

tion included. In Chapter 5, the software framework for ATLAS is described.

Chapter 6 provides an overview of the particle identification capabilities of

ATLAS for e, γ, µ, jets and τs. The contamination rates between these

particles is also presented. The tt̄H channel is studied in Chapter 7. The

analysis method is introduced and the discovery and exclusion potentials are

presented. An analysis using the output from a neural network is introduced,

and the effect of this on the exclusion confidence level achievable is discussed.

Finally, Chapter 8 presents the statistical combination of four other direct

search modes at ATLAS (H → γγ, H → ττ , H → 4l and H → WW ) using

a log-likelihood ratio technique. The combined, expected discovery sensi-



vi

tivity and exclusion potential of the ATLAS Experiment to the SM Higgs

boson is assessed and the effect of systematic uncertainties on the sensitivity

is discussed. A comparison of the results is made to those from the official

ATLAS combination.
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Chapter 1

The Standard Model

1.1 Introduction

The Standard Model [3, 4, 5] is the current theory describing the particles

and forces that exist in our universe. It is an example of a quantum field

theory based on a particular set of fields and gauge symmetries. The basis of

the Standard Model is in quantum mechanics and relativity, and by taking

values such as momentum and energy and replacing them with their quantum

mechanical operators, we arrive at Quantum Field Theory (QFT). In QFT

we think of the particles in the universe as fields and describe them as both

particles and wave functions. The wave function description is particularly

useful is writing down the mathematical conjectures that describe QFTs.

The quantisations of the fields that permeate the forces in the universe and

the particles on which these forces act are described in the following sections.
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The mechanism that gives rise to the spontaneous breaking of electroweak

symmetries and as such gives masses to vector bosons and to quarks is also

introduced. The Higgs Mechanism, the Higgs boson and searches for evi-

dence of this particle at the Tevatron [7] and the LHC are discussed briefly.

The interactions of particles with the Higgs boson and with each other are

discussed in the context of Quantum Electrodynamics (QED). A brief intro-

duction to theories beyond the Standard Model is also included.

1.2 Fundamental Forces and Particles

The Universe around us comprises largely of unidentified dark energy and

dark matter [6]. The < 5% percent we know about, we have gone some way

to identifying a structure within. We know there are particles responsible

for the forces we observe in nature, though we haven’t observed all of them

in experiments yet, and we know that the other particles that exist are the

building blocks for the material all around us. The next few paragraphs

introduce these particles and their intrinsic parameters.

1.2.1 Four Forces

There are four forces observed in the universe; the Strong Nuclear force, the

Weak Nuclear force, Electromagnetism and Gravity. Three of these forces can

be described as quantised field theories (QFT). This means we can describe

a matter particle’s interaction with the field as either a wave-function or as a
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the exchange of an intermediate, quantisation of the field, known as a force

carrying boson.

Each of the forces have different strengths acting over different distances. The

Strong Nuclear force is the strongest and binds quarks together in protons

and neutrons, and in turn holds them together to form a nucleus. It has the

curious property of growing stronger as the distance between two particles

upon which it acts is increased. This property, known as confinement, is

discussed further in section 1.2.3. The Strong force is mediated by bosons

called gluons, of which there are eight.

The Electromagnetic force, a unification of the Electrostatic and Magnetic

forces, is the force which holds electrons in atoms and atoms in molecules.

This force governs chemical and material physics, and follows the inverse

square law for the strength of the force, meaning that its potential energy is

proportional to 1
r
. The photon transmits this force.

The Weak Nuclear force is responsible for nuclear decay such as β-decay

which is responsible for the transmutation of a neutron into a proton. As it

governs nuclear decays, it is also responsible for the interactions that cause

the fusion process in a stellar core, such as the pp I branch, 3
2He + 3

2He →
4
2He + 21

1H + 12.86 MeV. There is an additional e−mr factor in the decay of

the potential energy of this force over a distance r, e−mr 1
r
, where m is the

mass of the boson which carries this force, either the W± or Z0 boson.

The final force is by far the weakest, and has little or no influence on the

subnuclear world. As yet unseen in experiment, the Einstein Field equations
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Force Boson Charge Spin Mass (GeV)

Strong g (gluon) 0 1 0
EM γ (photon) 0 1 0

Weak Z0,W+/− (Z,W boson) 0,+/-1 1 80,90
Gravity G (graviton) 0 2 0

Table 1.1: The gauge bosons of the Standard Model, the force they mediate
and their basic properties.

predict the existence of a spin-2 boson, the graviton, whose interactions cause

particles to experience the force of Gravity. There is no experimental evidence

of the graviton, and the theories which predict a QFT of Gravity are less

well established than the fundamental theories which make up the Standard

Model.

The details of each of the forces and the properties of the boson associated

with the relevant field are detailed in Table 1.1.
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1.2.2 Leptons and Quarks

The forces introduced above are responsible for mediating the interaction of

the matter particles which build the visible universe. Bosons are integral

spin particles. The matter particles, known as fermions are half-integer spin

particles, and unlike bosons (which obey Bose-Einstein Statistics), fermions

obey the Pauli Exclusion Principle and are most aptly described by Fermi-

Dirac Statistics. It is possible to apply some sense of order to the fermions

observed in nature and in high energy particle physics experiments.

We do this firstly by separating leptons from quarks. Leptons and quarks are

fundamental particles, i.e. they have no known smaller constituent parts. We

often talk about the helicity of particles, which describes the handedness of

the particle. For massless particles, helicity is a Lorentz invariant quantity,

however for massive particles, where it is possible to Lorentz boost into a

frame where the helicity (which is a projection of the spin onto the momen-

tum direction) is opposite, it is not Lorentz invariant. As such, for massive

particles, we also consider chirality. This is linked to helicity in the massless

case, where the two are equivalent. For massive particles, chirality defines

how the particles interact with fields. Most particles have a left and right

handed version. (The neutrino is the exception to this, as it has not been

shown experimentally that the right-handed neutrino exists.) As such, when

categorising fermions, we write them as either left-handed doublets or as
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right-handed singlets. For leptons we write;




eL

νe,L


 ,




µL

νµ,L


 ,




τL

ντ,L


 (1.1)

for the left-handed doublets and,

(
eR µR τR

)
(1.2)

for the right-handed singlets. We can do the same for quarks,




uL

dL


 ,




cL

sL


 ,




tL

bL


 (1.3)

for the left-handed doublets.

For the right handed quarks, we write them as the following singlets;

(
uR cR tR

)
(1.4)

and, (
dR sR bR.

)
(1.5)

Where the subscripts refer to the chirality of the particles in the doublets

and singlets. In Electroweak theory, only left-handed doublets (right-handed

anti-doublets) interact weakly, making Electroweak theory, a chiral theory.

The e, µ and τ lepton all have an associated neutrino. The neutrino is pro-
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duced in weak interactions, and for a long time was believed to be a massless

particle. Neutrino oscillation experiments have shown that the three neu-

trino flavours have a very small, non-zero mass difference, indicative that the

neutrino has mass. Neutrinos have no charge, and they interact only very

weakly with the matter around them. The neutrino remains one of the most

interesting of the fundamental particles, as there is still so much to under-

stand of its properties experimentally. The charge carrying leptons interact

under the EM and weak force and neither the leptons nor their associated

neutrino experience the strong force.

Quarks are also fundamental particles, and are the constituent parts of pro-

tons, neutrons and other more exotic hadrons. Quarks interact inside hadrons

by exchanging gluons, the carrier of the Strong force. They are subject to the

other three forces of nature. Quarks and gluons exhibit the interesting be-

haviour of confinement. The properties of the leptons and quarks introduced

above are detailed in Table 1.2 and Table 1.3.

Often, leptons and quarks are described as being in families. In this sense,

there are three generations of these families. The first family contains the

lightest of the quarks and leptons (e, νe, u, d), with the heaviest in the 3rd

family (τ, ντ , t, b), whilst in the second family we see (µ, νµ, s, c). There are

no experimentally verified theories explaining this apparent symmetry or the

observed mass hierarchy.
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Fermion Charge Spin Mass (GeV)

e -1 1
2

5.11× 10−4

µ -1 1
2

0.106

τ -1 1
2

1.78

νe 0 1
2

≤ 1.8× 10−8

νµ 0 1
2

≤ 2.5× 10−4

ντ 0 1
2

≤ 7.0× 10−2

Table 1.2: Details of mass, spin and charge of the leptonic fermion family.

Fermion Charge Spin Mass (GeV)

u 2
3

1
2

4× 10−3

d −1
3

1
2

7× 10−3

c 2
3

1
2

1.5

s −1
3

1
2

0.2

t 2
3

1
2

172

b −1
3

1
2

4.7

Table 1.3: Details of mass, spin and charge for quarks.
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Antiparticles

All particles have a corresponding antiparticle. Antiparticles have the same

mass as their corresponding particle but opposite charge. Particles and an-

tiparticles are created and annihilated in pairs, though this is at loggerheads

with the observed matter-antimatter asymmetry observed in the Universe.

The Z0, photon and gluon are their own antiparticle, and so are described

as Majorana particles. The other leptons and quarks are Dirac particles,

meaning the particle and its antiparticle are distinct. The remaining enigma

is the neutrino. It is unclear whether the neutrino is its own antiparticle or

not, and as yet there is no experimental evidence to support either case.

1.2.3 Hadrons and Colour

Quarks are contained inside hadrons in the configuration qq̄, a meson, or

qqq, a baryon (the most common of which are the proton (uud) and the

neutron (ddu)). Compositions with integer spin are bosons (qq̄ mesons).

Half-integer spin hadrons are fermions (qqq baryons). Quarks are contained

in hadrons by the exchange of the strong force mediator, the gluon. Both

quarks and gluons carry a charge associated to the strong force, much in the

same way leptons carry electric charge, known as colour charge. However,

unlike in QED, where the photon does not carry the charge it mediates,

gluons do carry colour charge, resulting in gluons having self interactions.

This has several consequences for quarks. Firstly, the gluon field surrounding
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a quark will produce virtual quark-antiquark and gluon-gluon pairs in the

vacuum. The gluon cloud around the bare colour-charge of the quark will

have (unlike in QED with the photon field around a bare electric charge) an

anti-screening effect, enhancing the observed colour charge of the bare quark

and making the coupling constant, αs of the strong force appear stronger at

longer distances (equivalent to lower energies). The description of this effect

won Gross, Politzer and Wilczek the Nobel Prize for Physics in 2004 [9, 10]

and is known as asymptotic freedom of the running couplings. Quarks carry

one of three distinct colour labels (anti-quarks carry anti-colour) and gluons

carry two colour labels, one colour, one anti-colour. It is the ‘double’ colour

charge of the gluons that cause the anti-screening effect.

As mentioned above, quarks cannot be observed directly in nature, only

colour singlets can be observed. A colour singlet state can be formed either

with one of all three colours, or a colour-anticolour state, i.e. a three quark

baryon, or a (qq̄) meson. This confinement of quarks in hadrons is also an

effect of the running of the strong force’s coupling. In trying to separate

quarks, the complicated system of gluon exchange inside a hadron ensures

the strength of the binding increases. As such, it eventually becomes more

favourable to create a new (qq̄) pair from the vacuum, rather than to continue

to try to overcome the binding energy of the gluons. The new quarks are

then incorporated into new hadrons, and again we fail to isolate a bare quark.

Known as hadronisation, this process ensures the confinement of quarks and

results in the jets of particles observed at particle accelerators.
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1.3 Gauge Theories and Symmetry

The Standard Model is a gauge theory describing the strong, weak and elec-

tromagnetic interactions. In the SM the Lagrangians, which describe the

equations of motion of a system, are invariant under local space-time trans-

formations, giving rise to the conserved quantities, such as charge conserva-

tion and lepton number. There are three distinct quantum field theories in

the SM, each describing one of the three fundamental forces of nature via

group symmetry.

In the following sections, the mathematical theories describing the Standard

Model are discussed, explaining the symmetries that exist and how the gauge

bosons observed in nature are predicted in theory.

1.3.1 Quantum Electrodynamics

Quantum Electrodynamics (QED) is the prototype of the Quantum Field

Theories that make up the Standard Model. Developed mostly in the 1940s

and 50s, the mathematical concept of QED gives rise to the electromagnetic

force carrier, the photon, by requiring the invariance of the Lagrangian which

describes EM interactions, under a local gauge transformation. Here we

outline how we arrive at the necessity of a gauge field, Aµ if we require

invariance, and how we interpret this field as the photon field, quantisations

of which are the photon.
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The Lagrangian density for a free Dirac field, ψ is

L = ψ̄
(
iγµδµ −m)ψ. (1.6)

In order for QED to be a gauge theory, this Lagrangian must be invariant

under a transformation, such as

ψ → eiQωψ, ψ̄ → eiQωψ̄, (1.7)

a phase transformation of the fermion field, where Q is the charge operator,

ψ̄ is the conjugate field and ω is a real constant, meaning it is independent

of x.

We describe QED as an Abelian gauge theory. A group is a mathematical

term used to describe a set which obeys three rules. Firstly, multiplication of

the elements is defined and must result in another member of the set. Second,

there must exist a 1 element, such that a× 1 = a, and lastly, an inverse for

each element of the set must exist, such that aa−1 = 1. For such a set to be

abelian, any two elements of the set must commute, i.e. a× b = b× a. The

set of numbers e−iω form the Abelian group called U(1). This means it is

the set of all Unitary 1× 1 matrices, where a unitary matrix satisfies:

U † = U−1 (1.8)
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where U † is the hermition conjugate matrix. This allows us to state the in-

variance of the Lagrangian under global U(1) transformations. However, for

QED to be a gauge field, it must be invariant under space-time dependent

(gauge) transformations, and the assertion above tells us that the transfor-

mation is global, that is, it is independent of x.

For the Lagrangian to be gauge invariant, we must write ω(x) i.e. ω is

dependent on x. Then the transformations of the fermion field look like

δψ(x) = iω(x)Qψ(x)

δψ̄(x) = iω(x)Qψ̄(x).

Under such local infinitesimal transformations, the Lagrangian is no longer

invariant.

The partial derivative interposed between ψ and ψ̄ will act on ω now that it

has a dependence on x, leaving the Lagrangian changed by

δL = −ψ̄(x)γµ
[
δµQω(x)

]
ψ(x). (1.9)

To restore the invariance of the Lagrangian, we can assume that the fermion

field interacts with a vector field, Aµ, which we call a gauge field. This

interaction is described by the additional term,

−eψ̄γµAµQψ (1.10)
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in the Lagrangian. Giving the Lagrangian the form

L = ψ̄
(
iγµ

(
δµ + ieQAµ

)−m
)
ψ. (1.11)

Additional to the transformation of the fermion field, the addition of an

interaction term with the vector field Aµ requires that the vector field also

transforms as

−eQAµ → −eQ(
Aµ + δAµ(x)

)
= −eQAµ +Qδµω(x). (1.12)

Including this interaction term in the Lagragian restores the invariance of the

Lagrangian under rotations in phase space, by cancelling out the terms in

equation 1.9. Equation 1.11 is the fermionic part of the Lagrangian density,

where e is the electric charge of the fermion, and Aµ is the photon field.

In order to ensure the photon field, Aµ can be expanded in order to produce

(destroy) photons from creation (annihilation) operators, we need to include

a kinetic term for the field in the Lagrangian. To ensure we do not ruin the

invariance of the Lagrangian in adding the kinetic term to it, we define the

field strength tensor, Fµν as,

Fµν = δµAν − δνAµ. (1.13)

With the field strength defined as such, we are able to add to the Lagrangian

any term which depends on Fµν and choose to add −1
4
FµνF

µν . With the
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kinematic term for the photon field included, the full QED Lagrangian can

now be written as

L = −1

4
FµνF

µν + ψ̄
(
iγµ

(
δµ + ieQAµ

)−m
)
ψ. (1.14)

A mass term for the photon would most likely take the form M2AµA
µ, how-

ever adding this to the Lagrangian would affect its invariance. As such, we

consider the masslessness of the photon to be a consequence of the invariance

of the Lagrangian under the gauge transformations. And so, by demanding

the invariance of the Lagrangian for a free Dirac field, ψ, under the phase

rotations of the Abelian gauge group, U(1) we have shown the need for a

photon field, Aµ, and with the addition of a kinetic term for the creation and

annihilation of the quantisation of the field, the photon and taken the field

from a free one, to an interacting one.

1.3.2 Electroweak Theory

Extending the theory above to the non-Abelian case, where group elements

do not commute, we aid ourselves by introducing the covariant derivative

Dµ ≡ δµ + ieAµ (1.15)
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and rewriting the Lagrangian as

L = −1

4
FµνF

µν + ψ̄
(
iγµDµ −m

)
ψ. (1.16)

Unlike in QED where we considered the free Dirac field for a spin-1
2

par-

ticle, we now consider an isodoublet undergoing an isospin transformation.

This type of transformation comprises the SU(2) symmetry group. The La-

grangian is now written

L = ψ̄i
(
iγµδµ −m

)
ψi. (1.17)

If we consider the transformation of the field ψi to be

ψi →
(
eiωaT a)j

i
ψi (1.18)

where a = 1 . . . 3 are the three parameters needed for an isospin transition

and T a are the generators of SU(2) represented by the Pauli spin matrices,

we see (as for QED) that requiring a space-time dependence on the transfor-

mation (ω → ω(x)) destroys the invariance of the Lagrangian. Much in the

same way, again, as QED, we remedy this by assuming the isospin doublet

interacts with a gauge field (or in this case, three gauge fields), Aa
µ, making

the Lagrangian

L = ψ̄i
(
iγµDµ −mI

)j

i
ψj. (1.19)
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where δµ is replaced by the covariant derivative, which is now the 2×2 matrix

Dµ = δµI + igT aAa
µ. (1.20)

We add a kinematic term, this time in the form

−1

4
F a

µνF
aµν . (1.21)

The difference here between U(1) and SU(2) is the appearance of the cross

terms in the derivative, indicating self-interaction of the SU(2) gauge bosons.

The above theory was the foundation of the U(1) × SU(2) Electroweak

Theory, developed by Glashow, Weinberg and Salam combining electromag-

netism and the weak sector.

The unification of the electromagnetic with the weak sector requires the in-

troduction of a new Abelian group, U(1)Y , with a gauge boson Bµ and gen-

erator, Y , known as the hyper-charge. This group is related to the U(1)em

group, as the photon field, Aµ, in U(1)em is a quantum superposition of Bµ

and the SU(2) gauge fields. Additionally, we recognise (from the left-handed

structure of charged current weak interactions) that SU(2) transformations

act on left-handed fermion fields only. 1 As such, we write SU(2)L and the

conserved quantity for this symmetry is weak isospin, T . In SU(2)L×U(1) we

incorporate charge, Q via the relation of the 3rd component of weak isospin,

1We write the left handed component of a fermion field as ΦL = 1
2

(
1− γ5

)
Φ.
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T3 and the hyper-charge, Y given as

Q = T3 +
1

2
Y. (1.22)

Left-handed doublets transform under both U(1)Y and SU(2)L, whereas

right-handed singlets transform under U(1)Y only. We now write the left-

handed covariant derivative for the isodoublet as,

Dµ = δµ + igT aW a
µ + igW tanθWY Bµ, (1.23)

where the three vector fields (previously Aa
µ) are now written as W a

µ . How-

ever, if we write the covariant derivative for a right-handed isosinglet,

Dµ = δµ + igW tanθWY Bµ, (1.24)

we see there is no interaction term for the field i.e. right-handed singlets do

not interact weakly. The relative strength of the SU(2)L and U(1)Y gauge

couplings (gW and g′W ) is written as

g′W = gW tanθW . (1.25)

Where θW is the weak mixing angle. The unification of the weak and elec-

tromagnetic sectors comes when we try to write down the superposition of

the fields W a
µ and Bµ that give us the gauge bosons observed in nature. The
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charged gauge bosons, W±, are written as

W± ≡ (W 1
µ ∓ iW 2

µ)/
√

2. (1.26)

And the neutral Z0 and γ are




Zµ

Aµ


 =




cos θW − sin θW

sin θW cos θW


 .




W 3
µ

Bµ


 (1.27)

The photon observed in nature, represented in U(1)em as Aµ is actually a

superposition of the W 3
µ and Bµ, SU(2) gauge fields.

The GWS Model of Electroweak Theory describes a locally invariant field

theory including the gauge bosons which mediate the forces. However, these

bosons are all massless. There are no fermion masses included in the theory

due to the mixing of the left and right handed states in the mass terms.

Adding mass terms by hand to the Lagrangian would once again destroy the

invariance necessitated by a gauge theory. Instead we turn to the mechanism

of spontaneous symmetry breaking and the introduction of a scalar doublet

field, which maintains invariance of SU(2)L × U(1) whilst giving mass to

the gauge bosons and producing a new scalar boson, interaction with which,

gives mass to the fermions.
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1.4 The Higgs Mechanism

The Standard Model was first formulated as a massless theory. It wasn’t

until Higgs [12, 13], amongst others [14], proposed the mechanism of spon-

taneous symmetry breaking, that the generation of massive gauge bosons

whilst maintaining invariance under local transformations was introduced to

the theory. The spontaneous breaking of SU(2) symmetry gives mass to the

W± and the Z0. The Yukawa Interactions of fermions with the Higgs bo-

son, a remnant of spontaneous symmetry breaking, gives mass to the quarks

and leptons, and hadrons acquire mass from both the intrinsic mass of the

quarks and from internal QCD interactions. Prior to the introduction of

spontaneous symmetry breaking, electroweak theory has four massless gauge

bosons. However, physically only the photon is massless. The W± and Z0

have mass of order 100 GeV. If one simply adds a mass term to the EW

Lagrangian, the space-time dependent invariance is destroyed. As such, the

renormalisability of the model is removed and the theory is no longer predic-

tive. Instead, we define the Higgs Mechanism of the Standard Model.

Spontaneous symmetry breaking occurs when the ground state of a system

does not maintain the invariance of the system’s Lagrangian. This mecha-

nism can be thought of more simply if one envisages a pencil balancing on its

tip. If the pencil is perfectly balanced, then the rotational symmetry of the

system is maintained. However, as soon as the force exerted along the rota-

tional axis of the system (down the pencil) is increased and the pencil falls,
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the symmetry is broken, and the system can no longer be invariant under

a rotational transformation. The pencil, in falling, has selected its ground

state, and has spontaneously broken the state’s symmetry.

To demonstrate this as a gauge theory we must introduce a complex scalar

field, Φ. We can represent this field simply as Φ = (Φ1 + iΦ2)/
√

2 and write

the Lagrangian as

L = (δµΦ)∗(δµΦ)︸ ︷︷ ︸
Kinetic, T(Φ)

− (µ2Φ∗Φ + λ(Φ∗Φ)2)︸ ︷︷ ︸
Potential, V(Φ)

. (1.28)

The shape of the potential, V (Φ) is defined by the sign of the variable µ2.

Figure 1.1 shows the potential of the field, assuming λ ≥ 0 (otherwise the

potential would be unbounded), for the cases where µ2 ≥ 0 and µ2 ≤ 0.

Provided µ2 is positive, the potential has a minimum at φ = 0. We call this

state the vacuum state, and in the language of QFT (where Φ is an operator)

we say that Φ has zero vacuum expectation value (vev). In this case, Φ has

a uniquely defined minima.

In the case where µ2 ≤ 0, the story is more interesting. It is in this case that

we are able to define spontaneous symmetry breaking. When µ2 ≤ 0, the

potential no longer has a minimum at Φ = 0. Instead, the potential adopts a

shape known as the ‘mexican hat’, with a maximum at Φ = 0. The minimum

of this potential occurs at all points on the projected circle (see Figure 1.1)
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Figure 1.1: The potential V(Φ) for a complex scalar field for the case where
λ ≥ 0 and (a) µ2 ≥ 0, (b) µ2 ≤ 0. Image reproduced from [15].
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with radius, ν in the φ1 − φ2 plane, such that

Φ2
1 + Φ2

2 = ν2, (1.29)

i.e. we have an infinite number of states all with the lowest energy (as with

the pencil). The solution for the location of the minima, Φmin is satisfied by

Φmin = eiθ

√
µ2

2λ
, (1.30)

where
(
0 ≤ θ ≤ 2π

)
, is the angle around the axis of the potential, V (Φ). In

selecting a value for θ we break the symmetry of the system, specifically the

U(1) invariance, since a transformation in U(1) takes us to a different lowest

energy state. In QFT, we say the expectation value of the vacuum in this

case is non-zero.

The standard choice for the minimum is at θ = 0, such that

Φmin =
ν√
2
. (1.31)

This is often also referred to as Φvac as we have selected the uniquely

defined value of Φ in the vacuum and in effect, selected the gauge for the

theory. As a result of selecting the gauge and identifying a unique minimum

for the potential, we are left with many ‘excitations’ with zero energy that

take us from the vacuum to one of the many states all with the same energy.

Only massless particles can have zero energy, therefore we expect a massless
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particle in our theory.

To observe massless particles in the theory, we must add fields with zero

expectation value. Such a field can be written as

Φ =
1√
2

( µ√
λ

+H + iφ
)
. (1.32)

Where both H and φ have zero vacuum expectation. In populating the

excited states, it is (quantum mechanically) these fields which are expanded

in terms of creation and annihilation operators of particles.

If we now insert this field into the potential in 1.28 we find

V = µ2H2 + µ
√
λ
(
H3 + φ2H

)
+
λ

4

(
H4 + φ4 + 2H2φ2

)
+
µ4

4λ
. (1.33)

The field H in the Eq 1.33 above, has a mass term, however there is no

corresponding term for the field φ. This represents the field of a massless

particle, called a Goldstone boson 2. The mechanism proposed by Higgs,

Englert, Brout and others in the 1960s, exposes a loophole in Goldstone’s

Theorem, arising when one considers a local symmetry transformation (a

gauge theory). In spontaneous symmetry breaking, the choice of the true

vacuum (traditionally at θ = 0) is effectively a choice of gauge. Given that

the Goldstone bosons can, in principle, transform the vacuum into one of the

2Goldstone’s Theorem is generalisable to spontaneous breaking of a general symmetry,
such that if we have an invariant theory under symmetry group G, with N generators and
an operator with non-zero vev that breaks the symmetry in a sub-group H of G with n
generators, then we can expect N − n massless particles in the theory i.e. one for each
broken generator in the group.
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other degenerate lowest energy states, we see that this would result in an

unphysical transformation into states not consistent with the original choice

of gauge. We say Goldstone bosons are therefore ‘unphysical’. However,

the degrees of freedom of these bosons prior to selection of the gauge, still

exist and are in fact utilised in the creation of the third degree of freedom

needed by the massless gauge bosons of SU(2) × U(1) to become massive.

The common language is to say that the Goldstone bosons are ‘eaten’ by the

gauge bosons. Though above we discuss only one Goldstone boson, in reality

there are four, since the complex scalar field φ is a doublet, written as

Φ =

√
1

2




Φ+

Φ0


 =




Φ3 + iΦ4

Φ1 + iΦ2


 . (1.34)

Three of the four extra degrees of freedom are given to the W± and the Z0

and the final one corresponds to a massive scalar boson (introduced via the

field H earlier), the Higgs boson. The photon retains its masslessness, as the

EW Lagrangian is still invariant under space-time dependent U(1)em trans-

formations.

Fermion masses are not implicit in the Lagrangian, due to the mixing of

left and right handed fermion states necessary in any mass term that could

be included. Instead we write the fermion mass terms in the Lagrangian

via Yukawa couplings, λf , of the left-handed doublets, right-handed singlets

and the complex scalar doublet, Φ (the Higgs boson). These Yukawa cou-

plings result in the masses of the fermions being proportional to the vacuum
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expectation value of the scalar Higgs field

mf = ν
λf√

2
. (1.35)

For the gauge bosons, the masses are also proportional to the Higgs field vev,

mZ0 = ν

√
g2+g′2

2

mW± = ν g√
2

mH0 = ν
√

2λ =
√

2µ,

where g and g′ are the gauge couplings, and λf are the couplings of the

fermions to the Higgs boson.

The mechanism of spontaneous symmetry breaking provides the simplest

description of how the gauge bosons observed in nature acquire mass. The

necessity of a massive scalar boson associated with the field also allows for

the masses of fermions to be described via Yukawa couplings with the same

boson. Discovering this scalar boson, most commonly called the Higgs boson,

is a key aim of the physics programme at collider experiments at the Tevatron

and the LHC. As yet, no fundamental scalar particle has been observed in

nature. The Standard Model predicts all of the properties of the Higgs boson

aside from its mass. The following section discusses the properties expected

to be observed if the Higgs boson is found, and discusses the constraints that

both theory and experimentation have placed upon the mass of the Higgs

boson.
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1.4.1 Searching for the Higgs boson

The Standard Model predicts all of the properties of the Higgs boson, except

one, the mass. This omission of the theory makes the search for the resonance

in a mass spectra difficult. However, we have not been left completely in the

dark. Both theory and previous experiments have provided limits on the

possible masses, making the range over which one must search significantly

narrower. The following section will discuss the expected cross-sections for

production of the Higgs boson, and the branching ratios for the various decay

modes of the Higgs, as a function of the mass. It will also detail the limits

on the mass of the Higgs boson, placed by previous experiments such as

LEP and the Tevatron, as well as briefly describing the theoretical limits

that suggest if the Higgs boson does exist, then the energy range the LHC

Experiments will enter will result in discovery.

Mass Constraints: Theory and Experiment

Unitarity In the Standard Model, vector bosons are predicted to have self-

interactions. Without the introduction of a scalar field to include mass in

the Standard Model, the scattering amplitude for the longitudinal W± is

divergent i.e. σWW→WW ≥ 1 which is unphysical. This occurs at around 1

TeV. The Higgs boson adds higher-order loop corrections to the amplitude

which for certain values of the Higgs mass removes the divergences. The

masses for which this is feasible are determined by the amplitude calculation,
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and is

m2
H0 ≤ 8π2ν2

2ln(Λ2)/ν2
. (1.36)

Triviality and Vacuum Stability Additional to the upper bound pro-

vided by the Unitarity argument, Triviality [16] also places an upper limit on

the Higgs mass. Triviality requires that the self-coupling (described by λ) of

the Higgs boson does not reach a Landau Pole (the energy scale where the

coupling constant becomes infinite), and by setting an upper bound on the

energy, λ to which the Standard Model is valid, one can place an upper limit

on the Higgs mass. A lower limit is derived by demanding the stability of the

Electroweak vacuum. Choosing λ equal to the Planck scale (∼ 1019 GeV),

the Higgs mass is in the range 130 ≤ mH ≤ 190 GeV. However, making the

cut-off scale much lower, around the electroweak scale (∼ 1 TeV), the limits

become much looser, with the mass constrained to the range 50 ≤ mH ≤ 800

GeV.

Precision Electroweak Tests Experimentally, the mass of the scalar bo-

son is also constrained. In particular, the most recent precision tests of

electroweak theory, from a combination of LEP and Tevatron data, have

constrained the mass to less than 157 GeV at 95%CL [17]. Measurements

of the mass of the W± and the top quark, allow limits to be placed on the

mass of the Higgs. At the time of writing, the best measurements of the

W± and top quark mass were, mW = 80413±34(stat)±34(sys)MeV/c2 and

mt = 170.9±1.8GeV/c2 and come from Tevatron Run II data [18]. The LEP
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experiments also placed limits on the Higgs mass via EW Precision Tests,

however Figure 1.2 shows the more recent results from the Tevatron. The

plot on the bottom in Figure 1.2 shows the ‘blue band’ plot, a minimum

χ2 distribution showing a best fit to all the EW precision test data. The

preferred value of the Higgs mass in this plot is mH = 80+36
−26. This plot is on

a log scale in the abscissa due to the loop corrections at higher order being

∝ ln(m2
H).

Direct Searches Additional to the measurements of electroweak data,

there are also direct searches for the Higgs boson. The LEP Experiment

placed a lower limit on the mass of the SM Higgs with successful exclusion at

95% confidence up to 114.4 GeV [19]. Prior to the closure of LEP, which was

an e+e− collider, the combined results from the LEP Experiments observed

a 2.4σ excess at 115 GeV. This is a tantalising suggestion in favour of a low

mass Higgs boson.

Recently, the D∅ and CDF experiments produced new combined limits on

the mass of the Higgs and excluded with 95% confidence the existence of a

SM Higgs boson between 163− 166 GeV, as seen on Figure 1.3.

The searches at both the Tevatron and LEP focused on the so called ‘Hig-

gsstrahlung’ production of the Higgs, e+e− → Z∗ → Z0H0 and pp̄ → Z∗ →
Z0H0 respectively, however at the Large Hadron Collider, focus is given to

higher cross-section production modes for pp collisions, such as direct gg

fusion or vector boson fusion (VBF). The following section will outline the
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Figure 1.2: Electroweak Precision Measurements for mW and mt from LEP
and Tevatron are shown in the top plot, with the best measurements of the
mt and mW shown in blue, with the elipse representing the 68% CL on the
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production and decay modes most feasible for discovery at the LHC, and the

possible advantages and pitfalls of each of the channels.

1.4.2 Production and Decay at the LHC

As discussed above, the current constraints on the mass of the SM Higgs

boson make a search range between 100 GeV and 1000 GeV the most appro-

priate for discovery. There is no single production mode which dominates at

the LHC, and in particular at ATLAS, as each of the processes studied have

both advantages and disadvantages, be they a high PT trigger or susceptibil-

ity to the massive QCD backgrounds experienced at the collider.

The four production modes for the Higgs at the Large Hadron Collider are:

• gluon-gluon fusion (gg)

• Vector Boson Fusion (VBF)

• Associated production with vector bosons (Higgsstrahlung)

• Associated production with tt̄

Figure 1.4 shows the Feynman diagrams for the four most probable pro-

duction modes at the LHC and Figure 1.5 shows the production cross-sections

for these modes as a function of the mass of the SM Higgs boson. The di-

rect production of the Higgs via a quark loop in the gluon-gluon process is

dominant across the whole mass range relevant for SM Higgs studies. At
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Figure 1.4: Higgs Production Feynman Diagrams for the LHC: (a) gluon-
gluon fusion, (b) vector boson fusion (VBF), (c) associated production with
tt̄ and (d) associated production with vector bosons. Image reproduced from
[21].
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Figure 1.5: Higgs Production cross-sections as a function of mH (top).
Branching ratios for the dominant decay modes of the Higgs, as a function
of mH (bottom). Images reproduced from [21].
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higher energies, the difference between gg-fusion and vector boson fusion be-

comes smaller, with the VBF process becoming important. For energies at

the lower end of the scale, associated production with either a W, Z or tt̄

provide an alternative approach to the Higgs searches, providing additional

triggers such as high PT leptons from the decay of the associated W, Z or tt̄.

The decay of the Higgs is also dependent on the mass of the boson, and Fig-

ure 1.5 also shows the branching ratios for the dominant decay modes. As

the Higgs coupling is proportional to mass, it decays primarily to the highest

mass particles energetically permitted. As such, at low energies (up to about

140 GeV) the preferred decay is to a bb̄ pair. Beyond this, in the medium

mass range, the WW decay switches on, dominating over the ZZ decay until

the Z becomes on-shell at 2mZ , at which point the ZZ and WW decay modes

are the most prevalent. At the tt̄ threshold, the tt̄ decay reaches a maximum

branching ratio of around 20%. Though mt ≥ mW,Z the branching ratio for

this decay is restricted due to leading WW and ZZ decay widths that grow

with the third power of the Higgs mass whereas the fermion-fermion decay

is proportional to the mH [22].

The varying production cross-sections and decay branching ratios for the

Higgs results in different approaches to a direct search for the Higgs at AT-

LAS, with three main search regions being identified, two of which are studied

in this thesis.
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mH ≤ 130 GeV In this low mass region, the predominant decay is bb̄ pro-

duced via gg-fusion. However, this channel suffers severely from the massive

QCD backgrounds experienced in ATLAS, which make extraction of the sig-

nal very difficult. By searching for this decay with an associated top-quark

pair, the issue of extracting the signal over the large background can be par-

tially overcome by requiring a high PT lepton from a decay of one of the

top quarks. Unfortunately, requiring associated production, and then lep-

tonic decay of at least one of the top quarks, results in a very low, overall

cross-section for these events. This, however, is a key channel at the very

low mass around the LEP limit and the possible observation from LEP at

115 GeV. Additional to the tt̄H channel, the H → γγ decay mode also adds

to the discovery potential in the low mass region. This decay is relatively

rare, and requires excellent energy and angular resolution from the detector

in order to observe its narrow mass peak above the large irreducible prompt

γγ background. The H → τ+τ− → ν̄τντ ν̄l
−νl+ decay mode (where l = e, µ)

produced via VBF, has two additional, high-PT forward jets, allowing effec-

tive discrimination against backgrounds in this mode by including a central

jet veto and is also important in this region. Figure 1.6 show achievable

discovery sensitivity results for these channels at 30 fb−1 and 100 fb−1, the

importance of tt̄H in the region around the LEP limit is evident from the

plot.
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130 ≤ mH ≤ 200 GeV The decays of interest are the WW and ZZ decays,

produced both directly and via VBF, in this kinematic region. In the decay

H → W+W− → l+νl−ν̄ plus two jets from the VBF production, the sig-

nificance for 30 fb−1 of integrated Luminosity is above 5σ for the full mass

range, as can be seen in Figure 1.6. It is also possible to observe an excess

of signal events in the transverse mass, MT , spectra for H → WW (∗) pro-

duced directly. The ZZ decay to four charged leptons is the so called ‘golden

channel’ at ATLAS, both in this range and at higher masses, due to the clear

signal, in particular in the decay to 4 muons.

mH ≥ 200 GeV The higher mass region is also studied at ATLAS. Here,

the key channel is H → ZZ → 4l, from direct production. In the region

between ∼ 180 ≤ mH ≤ 700 GeV the background for the channel, coming

predominantly from the continuum production of Z boson pairs, is smaller

than the rate of signal. Additionally, at these masses, the momenta of the

decay products are high, meaning the requirements on the detector are less

severe. With the accumulation of enough data, this channel provides a good

opportunity for discovery. Above about 800 GeV, the 4l channel rate becomes

problematically small, rendering the channel less useful. In order to make

any sort of measurement at a mass this high, one must also look at decays

containing neutrinos and jets, such as, H → ZZ → l+l−νν̄ andH → WW →
lνjj. As seen from Figure 1.5, at these high masses the VBF production rate

becomes comparable with gg-fusion and, due to the energetic forward jets
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and colour suppression in the central region, the combination of the above

decays and this production mode, allows for powerful central jet vetoes to

select the signal.

The overall Higgs width above 200 GeV, is given by

Γ(H0
total) =

3GF

16π
√

2
m3

H . (1.37)

At masses much higher than 1000 GeV the intrinsic width of the decay be-

comes comparable with the mass. As such, it becomes impossible to identify

any sort of resonance for the Higgs, making discovery more difficult.

Discovery Potential The main topic of this thesis is the development of

an alternative approach to calculating the overall combined sensitivity for

both discovery and exclusion of the Standard Model Higgs. Figure 1.6 show

similar results calculated for the ATLAS Technical Design Report (TDR)

[23]. The expected significances shown are for 30 fb−1 and 100 fb−1. 3 It

is evident from the plots that in the high mass region, the available inte-

grated luminosity will determine the significance achievable, however in the

low mass region, around the LEP limit, luminosity alone is insufficient and

innovative methods of analysis must be developed in order to overcome the

large backgrounds which dominate the channels of interest in this range.

3Results are calculated with the significance defined as in Eq 2.4 in Chapter 2.
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Figure 1.6: ATLAS sensitivity for the discovery of the Standard Model Higgs
boson at (a) 30 fb−1 and (b) 100 fb−1. Both plots are taken from the ATLAS
TDR [23] and show the individual significances for each channel at a range
of masses as well as the combined result.
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1.5 Beyond the Standard Model

The Standard Model (SM) has been extremely successful, agreeing with all

confirmed accelerator data and consistent with electroweak precision tests

from LEP and the Tevatron and, as such, one would be forgiven for thinking

the nut had been cracked. However, taking a closer look, we see that the

SM is not without its flaws. Any agreement with the LEP and Tevatron

electroweak data requires a light Higgs, of approximately < 180 GeV, which

is as yet undiscovered. The SM assumes that neutrinos are massless however

experimental data now indicates they are massive [11]. The most well-known

of the four forces, Gravity, is not included in the SM. There is nothing in

place to explain the mass hierarchy of quarks or whether the strong and elec-

troweak forces unify at some higher energy to form a Grand Unified Theory

(GUT). The asymmetry of matter and anti-matter in our universe remains

unexplained and cosmological observations indicate over 95% of the universe

is made up of matter and energy we do not understand. All of this leads

us to the conclusion that though the Standard Model provides an excellent

basis for theories about the most minute of building blocks in our world, it

does not give us the whole picture.

There are numerous theoretical extensions to the Standard Model, many of

which are motivated by the unification of the forces, known as Grand Unifi-

cation Theory (GUT). The objective of grand unification is to find a group

theory which encompasses the four forces. As such, it must include U(1),
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SU(2) and SU(3), the symmetries describing the electromagnetic, weak and

strong forces, as well as have the capacity to describe gravity. There are lots

of GUTs, the most common of which is Supersymmetry (SUSY). This ex-

tension to the Standard Model introduces the additional symmetry between

bosons and fermions, such that every fermion has a bosonic superpartner and

every boson has a fermionic superpartner. We tend to denote superpartners

of the SM particles with a ∼ i.e. the superpartner for leptonic particles, slep-

tons, would be denoted l̃. Supersymmetry has several forms: the Minimal

Supersymmetric Standard Model (MSSM) is one such form, within which

there are five Higgs bosons, the A, H0, H+, H−, and h. Also, in the MSSM

the addition of new particles naturally leads to unification through the run-

ning of the strong coupling [24].

1.6 Summary

The Standard Model has been reviewed with specific attention given to the

Electroweak sector, where the Higgs Mechanism may be responsible for the

breaking of the mass symmetry between the force carriers of this theory. A

description of the Higgs Mechanism indicates that for the theory to be corrob-

orated experimentally, evidence of the remnant Higgs boson must be found.

The numerous production and decay modes of the Standard Model Higgs

boson were introduced and the discovery potential in several mass regions

discussed. Finally, a very brief introduction to beyond the Standard Model



1.6: Summary 42

physics was given. One popular theory, Supersymmetry, was discussed, the

MSSM variant of which predicts five Higgs bosons. The lightest of these may

be found by Standard Model Higgs searches.



Chapter 2

Statistical Methods

2.1 Introduction

At the heart of statistics is the concept of probability. The mathematical

concept of probability has been around since about the 17th century, however

the notion itself (probably) much longer. In discerning an expected outcome,

the measurement of a variable which in some sense is unknown, probability

is key to allowing us to quantify what the likely outcome will be.

In defining statistical probability people tend to fall into one of two camps,

Frequentist or Bayesian. The majority of the work in this thesis is based

in the frequentist formalism, however in setting limits on expected results,

Bayesian statistical methods are adopted.

Probability is the likelihood that an outcome will occur. Following the defi-

nitions as laid out by Kolmogorov, we define a set S, and call it the sample
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space, with a number of elements, k. To each subset A of S, we assign a real

number, P (A), called the probability, defined by three axioms:

1. For every subset A in S, P (A) ≥ 0.

2. For any two subsets A and B that are disjoint the probability assigned

to the union of A and B is the sum of the two corresponding probabil-

ities, P
(
A

⋃
B

)
= P (A) + P (B).

3. The probability assigned to the sample space, S is one, P (S) = 1.

The axioms above lead to several further properties of probability, further

details of which can be seen in Chapter 1 of [25].

A variable whose value is different in each element of S, is said to be ran-

dom. Determination of a random variable is often dependent on other values,

known or unknown, and so to really assess the probability of A we must de-

fine the conditional probability, P (A|B) (probability of A given B), and in

doing so, arrive at a definition of probability,

P (A|B) =
P (B|A)P (A)

P (B)
, (2.1)

known as Bayes’ Theorem.

Taking Bayes’ Theorem as the mathematical definition of probability, the

question is now in the interpretation.

As a particle physicist, the general understanding of probability is as
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a relative frequency. This is the frequentist approach and requires the

repetition of an experiment in order to measure how often an outcome

occurs as a fraction of an infinite number of repetitions:

P (A) = lim
n→∞

number of occurrences of outcome A in n measurements

n

(2.2)

The repetition of collisions in the centre of the detector count as the repeated

measurement, and though one can never exactly measure the probability, a

good estimate can be reached given a reasonable amount of experimental

data, and a theory which predicts the probabilities (to which the experimen-

tal data can be compared).

The alternative approach to interpreting probability is to consider it as a

degree of belief. This is known as subjective or Bayesian probability, and de-

fines the elements of S, not as values of the random variable but as Boolean

statements of true or false, for a given hypothesis. Now we associate proba-

bility with a hypothesis, and say

P (A) = degree of belief that hypothesis A is true. (2.3)

To ensure this adheres to Kolmogorov’s axioms of probability, we have to

realise that, necessarily, one of the hypotheses in the sample space S must

be true i.e. P (S) = 1.

So far, we have simply tried to define probability, and already we see how
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important clear definitions of the techniques and language used are. There

are a large number of statistical tools employed by particle physicists in their

search for new particles or in the measurement of particle parameters. From

simple Gaussian fits to complex multivariate techniques, all are designed to

tease out a slightly higher significance or a slightly better precision. Statistics

and the adoption of complex statistical methods can be a minefield and as

such, one must endeavour to be very clear in the definition of terms and

techniques. Several statistical techniques have been adopted throughout this

thesis, and, as such, the following chapter details the methods used and the

possible results attainable with such techniques. We begin by introducing the

concept of significance, before moving on to the Likelihood Ratio and Profile

Likelihood techniques adopted in the Higgs analyses discussed in Chapter 8.

2.2 Sensitivity: Discovery and Exclusion

Statistics is based on the calculation of probabilities: a calculation that in

general depends on several other values, some of which are not known pre-

cisely. In particle physics, and many other scientific disciplines, all new

phenomena and measurements are subject to the scrutiny of peer review. As

such, it is important to have a well defined means of assessing the validity

of a measurement. Standard language is to talk about significance. We ask

the question,“how significant is that result?” or “to how many significant

figures?” and what we are really asking is “what is the probability we are
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wrong?”

It is this probability, the probability that we are wrong, that particle physi-

cists must calculate when searching for a new particle. For particle physics,

the probability that you are wrong is equivalent to the probability that the

signal believed to have been observed was actually a fluctuation of the back-

ground. Most high-energy physicists would estimate the probability as the

number of Gaussian standard deviations (Z) an observed signal, s, is above

expected background, b, fluctuations and would write,

Z =
s√
b
. (2.4)

Sticking with the Gaussian convention, more generally one should write

Z = Φ−1(1− p), (2.5)

where,

p =

∫ Z

−∞
G(u)du, (2.6)

and Φ is the cumulative distribution of G(u), a standard Gaussian of unit

width, and zero mean, p (often called a p-value) is the probability of a specific

outcome and in terms of the Gaussian distribution, is a measure of the area

under a Gaussian curve from −∞ to Z.

We can see, with G(u) described as such, that Eq 2.5 relates to the more
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widely recognised, s√
b
, via the integral limits in the definition of the p-value

in Eq 2.6.

The relation between the area under a Gaussian curve and the number of

sigma an observation corresponds to, enables the values in Table 2.1 to be

set.

p-value (2-sided) p-value (1-sided) Significance (Z)

0.34 0.17 1
0.05 0.025 2

0.0026 0.0013 3
0.0000634 0.0000317 4
0.00000057 0.000000285 5

Table 2.1: Two-sided and one-sided Gaussian convention showing the rela-
tionship between the number of sigma (significance) and the p-value mea-
sured.

Figure 2.1 shows the integrated areas of the Gaussian distribution equivalent

to a number of sigma and corresponding to the numbers in Table 2.1. A one-

sided convention requires only one side of the Gaussian be integrated to reach

the equivalent number of sigma, and the two sided convention is twice this,

requiring for example, that the integrated area of the Gaussian is 0.34 for a

1σ measurement (0.17 in either tail), as opposed to the one sided convention

which requires the integrated area under the Gaussian is 0.17, on one-side

only. The ATLAS Experiment adheres to the one-sided Gaussian convention,

and so too shall the work in this thesis. As such, the standard is that a 3σ

result is evidence of a possible discovery and a 5σ result is a discovery i.e.

to claim discovery of a particle, the probability that the observation claimed
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Figure 2.1: One sided Gaussian convention for the relationship between a
significance (a measured number of sigma) and a p-value, representing an
area under the curve, up to 3σ.

to be signal is a fluctuation of the background must be less than or equal to

2.85× 10−7. Measurement of this probability and the corresponding number

of sigmas, Z, is called the discovery sensitivity.

It is equally important to exclude the existence of a particle if it does not

exist (usually in a given mass range in order to narrow a search region which

at times can be large), and this too must only be done when the probability

of being wrong is suitably low. The convention here is to place a limit on the

probability that what is observed as background fluctuations only, is actually

an unseen signal. In particle physics, this is normally set at α = 5% i.e. no

more than 1 in every 20 observations claimed to be background only, can

contain signal. The exclusion confidence level is then defined as 1 − α i.e.
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we say we have excluded at the 95% Confidence Level when we measure the

probability of the data containing signal to be less than 5%.

2.3 Measuring the Probability

In stating a sensitivity, often it is simplest to bypass the measurement of a

p-value and instead use s√
b
. This is a quick way to access the sensitivity of a

result, where s is the measured number of signal events and b is the measured

number of background events such that
√
b represents the Poisson statistical

error on the background. The problem with this is two-fold. Firstly, there

is no mechanism in this approach to assess exclusion. Secondly, and more

importantly, there is no method to assess the effect of uncertainties that

are of a systematic nature. Measuring a p-value allows access to both these

important issues. So, in accepting that really one should measure a p-value

and use Eq 2.5 to convert it to a number of Gaussian sigma, we are left with

the question of how to measure the p-value.

Consider an experiment with an expected outcome, x. All the possible values

of x are contained in a sample space, S. Asking for the probability to observe

a value of x within an infinitesimal interval,
[
x, x + dx

]
is given by the

probability density function (p.d.f.), f(x),

probability to observe x in the interval
[
x, x+ dx

]
= f(x).dx. (2.7)
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The frequentist interpretation of this is that f(x)dx gives the fraction of times

x lies in the interval
[
x, x+ dx

]
in the limit that the number of observations

is very large. To ensure the axioms set out in section 2.1 are adhered to the

p.d.f. is normalised such that the total probability is one,

∫

S

f(x)dx = 1. (2.8)

Unfortunately, an infinite set of results cannot be attained, and instead, we

think of the p.d.f. as a histogram of binned data, or a continuous function

representing the shape of the histogram. A p-value is then represented by an

area measured under the p.d.f.

There are a number of ways to generate the p.d.f., but the Neyman-Pearson

Construct [26] tells us that the most robust method of measuring a p-value

from a p.d.f. is by constructing a likelihood. The following sections will de-

tail two approaches to constructing a likelihood. One is a non-parameterised

Log-Likelihood approach, where the p.d.f.s are binned distributions. The

second approach, used in [27]pp1480 is the Profile Likelihood, where the p.d.f.s

are represented by functions. This approach is an alternative to the ap-

proach adopted in this thesis, and is detailed as a comparison to the non-

parameterised approach.
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2.4 Binned Log-Likelihood Analysis

The likelihood function is a tool which can be employed in order to measure

the p-values relevant to discovery or exclusion of a new particle. Though the

likelihood is neither Bayesian or Frequentist, we return to Bayes’ Theorem

in order to define the Likelihood.

P (theory|data) ∝ P (data|theory) . P (theory) (2.9)

In Bayesian terms, P (theory) represents the prior probability and quantifies

the prior degree of belief in the theory, and P (data|theory) is the likelihood,

the probability, under the assumption of the theory, to observe the data. It

is the P (data|theory), we are interested in when constructing a likelihood

ratio.

The Likelihood Ratio is (as the name suggests) a ratio of likelihoods for two

opposing theories. In the case of the Higgs searches, the two theories (often

called hypotheses) are (a) no Higgs and (b) a Higgs exists. Additionally,

the tests are normally mass dependent (though it is possible to do a floating

mass search), such that the theories are now, for example, (a) no Higgs at

120 GeV and (b). a Higgs exists at 120 GeV). Constructing a likelihood ratio

Q =
P (data|theory1)

P (data|theory2)
(2.10)
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is the most effective way to test the two hypotheses, necessary if one wishes to

assess the probabilities relating to discovery and exclusion of a new particle.

There are a number of ways to construct a likelihood ratio as a test statistic,

and the approach presented here is designed to look specifically at the non-

parameterised invariant mass (mH) distributions for the background-only

hypothesis and the signal-plus-background hypothesis. As such, we define

the Likelihood Ratio as

Q =
L(data|ŝ(mH) + b̂)

L(data|ˆ̂b)
. (2.11)

The natural logarithm of the ratio (LLR) being

q = −2lnQ = −2ln

(
L(data|ŝ+ b̂)

L(data|ˆ̂b)

)
. (2.12)

We call this the test statistic. A value of the test statistic under the as-

sumption of each hypothesis can be calculated and in doing so many times

(for all possible values of x), a probability density function representing each

hypothesis can be built.

If we describe L(data|ŝ+ b̂) as follows

N∏
i=1

e−(si+bi)
(

si+bi

)ni

ni!



2.4: Binned Log-Likelihood Analysis 54

and L(data|ˆ̂b) as
N∏

i=1

e−bibni
i

ni!

i.e. as Poisson distributions, with N bins in a histogram and ni observed

events in the ith bin, then we can rewrite q as

q = −2lnQ = −2ΣN
i=1

(
si − niln

[
1 +

si

bi

])
. (2.13)

That is, the likelihood ratio of each bin in a histogram is calculated and

then summed with all the other bins to produce a single value of the test

statistic corresponding to a single set of data. All the possible values of the

test statistic are represented by their probability density function (a p.d.f.

as described in Section 2.2). If the output is not normalised, it is referred to

as a likelihood distribution.

This test statistic was adopted by Tom Junk in his statistical package

mclimits [28], which is used throughout this thesis. In [29] and [30] the

relationship of the test statistic, q to the χ2 test statistic is

q = −2lnQ = χ2(data|H1)− χ2(data|H0). (2.14)

And so to calculate the value of the test statistic, the minimisation of the χ2

is done for each hypothesis, H1 and H0, such that the maximum likelihood

corresponds to a minimum ∆χ2.
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Including Systematics in the χ2 The shape of the p.d.f. (or likelihood

distribution) is dictated by the statistical and systematic uncertainties con-

sidered in the calculation of the likelihood ratio. To produce a p.d.f., a

number of toy Monte Carlo pseudo-experiments must be carried out. In each

pseudoexperiment, a single set of pseudodata is produced from which a value

of the test statistic under the assumption of each hypothesis is calculated by

minimising the χ2 for each, over the set of uncertainties which affect the

observation. The p.d.f. distributions, corresponding to a given hypothesis

(e.g. the assumption that only background is observed), obtained1 can then

be used to calculate sensitivity.

Naturally, inclusion of the uncertainties has an effect on the χ2 and how it is

calculated. The test statistic shown in Eq 2.13 is for the simplest case where

there are no uncertainties to be considered. Of course this is not the general

case, and in fact, an analysis would be incomplete without some thought

being given to the effect of things such as the jet energy scale, energy resolu-

tion in the calorimeter, identification efficiencies, cross-section uncertainties

and so on. These variables are all important for the measurement of a signal

above a fluctuating background, however they are not the measurement one

wishes to make explicitly, and so are referred to as the nuisance parame-

ters. These nuisance parameters quantify the systematic uncertainty on the

signal and backgrounds for a channel, and in general, adversely affect the

sensitivity, since they detail how well (or not) the channel model is known.

1As shown in Figure 2.2
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Nuisance parameters deal with the systematic uncertainties. There are also

statistical uncertainties, which should be taken into account, though in the

minimisation of the χ2 this is more straightforward.

The χ2 calculator utilised in this thesis applies both symmetric and asym-

metric uncertainties to the discriminating variable distributions (a mass dis-

tribution or neural network output for example), depending on the input

from the user. Symmetric uncertainties are described by

rvaried
ij = rcentral

ij

(
K∏

k=1

(
1 + Skfkj

))
, (2.15)

where i is the bin number, j indexes the model component the uncertainty

is being applied to, and k indexes the nuisance parameters Sk (which are

described by Gaussian distributions centered around zero with unit width).

The quantities, fjk are the relative fractional uncertainties on the normali-

sation of the model component, j, due to the kth nuisance parameter. There

are many different approaches regarding the best way to approach the inclu-

sion of asymmetric uncertainties, see [31]. The work of this thesis utilises the

approach advocated in [30], which in turn was taken from [31] (Method 2).

Here, the effect of a Gaussian distributed nuisance parameter on a physical

parameter is parameterised with a quadratic function,

rvaried
ij = rcentral

ij

K∏

k=1

(
1 + Sk

(
f+

kj − f−kj

2

)
+ S2

k

(
f+

kj + f−kj

2

))
(2.16)
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where the same variable definitions as in Eq 2.15 stand and setting f+
kj = −f−kj

returns us to the symmetric case.

The χ2 function minimised to calculate the value of the test statistic including

symmetric errors is given by

χ2 =
I∑

i=1

[(
L∑

l=1

K∏

k=1

(
1 + f t

lkSk

)
+

J∑
j=1

ρji − ni

)

− niln

(∑L
l=1 tli

∏K
k=1

(
1 + f t

lkSk

)
+

∑J
j=1 ρji

ni

)

+
J∑

j=1

((
ρji

Fj

∏K
k=1

(
1 + fF

jkSk

) − bji

)
− bjiln

(
ρji

Fj

∏K
k=1

(
1 + fF

jkSk

)
bji

))]

+
K∑

k=1

S2
k . (2.17)

where

• I = number of bins, i = 1 . . . I.

• ni = number of events observed in the data in bin i.

• J = number of model prediction components subject to Poisson statis-

tics, j = 1 . . . J .

• L = number of model prediction components not subject to Poisson

statistics, l = 1 . . . L.

• K = number of independent sources of systematic uncertainty, k =



2.4: Binned Log-Likelihood Analysis 58

1 . . . K.

• Sk are the nuisance parameters, which are constrained by a Gaussian,

zero mean and unit width.

• tli = lth non-Poisson model component’s prediction in bin i.

• bji = jth Poisson model component’s prediction in bin i.

• Fjbji = central value of prediction for number of entries in bin i from

Poisson source, j 2.

• ρji = unknown, true value of the rate of Poisson component j in bin i.

• fF
jk is the relative uncertainty on Fj, due to systematic uncertainty, k.

• f t
lk is the relative uncertainty on tli, due to systematic uncertainty, k.

The fs are the fractional multiplicative uncertainties on the overall nor-

malisation of each component, meaning the uncertainty is applied via the

scale factors, Fj in the Poisson case and directly to the measurement tlk in

the non-Poisson case.

In this thesis, all distributions are assumed to be Poisson. As such, the χ2

2The event counts in j generally have to be scaled to compute the expected contribution
from the model to bin i and as such Fj is effectively the scaling factor.
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will take the form

χ2 = 2
I∑

i=1

[(
J∑

j=1

ρji − ni

)

− niln

(∑J
j=1 ρji

ni

)

+
J∑

j=1

((
ρji

Fj

∏K
k=1

(
1 + fF

jkSk

) − bji

)
− bjiln

(
ρji

Fj

∏K
k=1

(
1 + fF

jkSk

)
bji

))]

+
K∑

k=1

S2
k . (2.18)

since all tli = 0.

Alongside the uncertainties parameterised in the χ2 by the relative uncertain-

ties, f , there are also uncertainties on shape to consider. Shape uncertainties

are more difficult to include and there are a number of ways in which one

may choose to include them. In this thesis, the method set out in [30] is

followed, where the uncertainty on the shape of a distribution is included

by specifying alternative shape histograms for the tli and bji separately for

each nuisance parameter. The central value histogram of the discriminating

variable and the systematically varied template can be interpolated following

a method developed at LEP [32]. The shapes are constrained to vary within

the limits of the systematically varied histogram i.e. if one wishes to include

variations up to 3σ from the central value, then the systematically varied

histogram should represent a 3σ shift.

The value of the test statistic, i.e. the minimum χ2, is calculated first by
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solving Eq 2.18 for ρji, the bin-by-bin Poisson rates, setting

δχ2

δρji

= 0,∀j, i. (2.19)

Then one must solve J coupled quadratic equations, detailed in [30] for the

minimum χ2.

For real data, a single value of the test statistic will be calculated, qobs.

Regions of the p.d.f.s bounded by qobs are used to estimate p-values, and

using such, we can either reject or accept a hypothesis. Note that this is a

fixed mass, histogram based method, developed at LEP [33], [34] and also

used at CDF [7].

Discovery Confidence and 1− CLb

We can describe the p-value under the assumption of a background only

hypothesis as

pb ≡ 1− CLb =

∫ qobs

−∞
f(q|b)dq (2.20)

where f(q|b) is the p.d.f. for the log-likelihood ratio, q, under the assumption

of the Null (H0) hypothesis of background only.

Alternatively, we can write the p-value for the background-only hypothesis,

as

pb ≡ 1− CLb = PH0(q ≤ qobs) (2.21)
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Figure 2.2: Example Probability Distribution Function for the H0 and H1

hypotheses. Given the observation indicated in the Figure, the integral of
black shaded region is the discovery p value, 1 − CLb, used to measure dis-
covery sensitivity. The green shaded region is then the exclusion p-value,
CLs+b, used in the modified frequentist method (CLs) used to ascertain an
exclusion confidence level (CL) for the observation.
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Where pb is defined as in Eq (2.20). For discovery, this is equivalent to

a 5σ sensitivity in the counting experiment when the value of 1 − CLb is

≤ 2.85 × 10−7. As such, to accurately measure the value of 1 − CLb with-

out fitting f(q|b), requires at least 108 pseudo-experiments be carried out

using toy Monte Carlo simulations based on the expected background distri-

butions. Alternatively, if the p.d.f. is shown with a high number of pseudo-

experiments to be approximately Gaussian, it can be fitted and a value of

1−CLb is calculated from integrating the appropriate region of the fit. One

can also employ the λ function (see section 2.5) as a tool to assess the median

sensitivity when the assumption that the likelihood distribution is Gaussian

holds.

Exclusion Confidence and CLs

We can similarly use this language to define exclusion sensitivity. In AT-

LAS we will be simultaneously interested in both discovery and limit setting.

Using this method, we can do both within a single framework. This is an

advantage of this procedure.

As such, we define the p-value under the assumption of a signal-plus-

background hypothesis as,

ps+b ≡ CLs+b =

∫ ∞

qobs

f(q|s+ b)dq (2.22)
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where f(q|s + b) is the p.d.f. for this alternate (H1) hypothesis. As above,

we can write it as:

ps+b ≡ CLs+b = PH1(q ≥ qobs). (2.23)

Again, where ps+b is defined as in Eq (2.22). This is interpreted as a standard

frequentist confidence limit, such that, with CLs+b ≤ 0.05 we exclude the

signal-plus-background hypothesis at the 95% Confidence Level.

This standard frequentist definition of a confidence level is acceptable in most

cases, however, there is the possibility of a spurious downward fluctuation

of the background leading to an incorrect exclusion of a given Higgs mass,

i.e. it is feasible to imagine that one might succeed in achieving an exclusion

limit for a mass at which the experiment itself is not sensitive, simply due

to a downward background fluctuation. CLs+b alone does not reflect this

possibility. By considering CLs, defined below as the ratio of confidences,

CLs+b and CLb, we can think about the confidence we have in the signal

alone, rather than just the signal-plus-background. This method, used at

both LEP and CDF, defines CLs, the modified frequentist confidence level,

as:

CLs ≡ CLs+b

CLb

≡ ps+b

1− pb

. (2.24)
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We say we have excluded a given signal with a confidence level, CL, equal to

1− α when

CLs < α (2.25)

i.e. for a 95% exclusion, we require CLs less than α = 0.05.

The interpretation of this value as a confidence level is not quite accurate,

given that it is a ratio of confidences. The simplest way to interpret it,

given the definition of CLb as the exclusion potential of the experiment,

(in a median background experiment, for example, this is always 0.5) is

that the false exclusion probability (CLs+b) cannot be any greater than 5%

of the exclusion potential for the experiment. One point to note is that

though insensitive exclusion is avoided, compared to the standard frequentist

exclusion, CLs+b, we require a lower p-value for exclusion, meaning that in

the standard frequentist method, exclusion is found earlier (i.e. with less

data) than in the modified frequentist approach. This property is known as

over-coverage.

Setting Limits and assigning Credible Intervals

Aside from specifying a discovery sensitivity or an exclusion confidence level

for a specific mass point, one can also set limits, up to which the existence of

the new particle is excluded. These results exist at the moment for the Higgs
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boson, from LEP [19] and Tevatron [7]. ATLAS will also aim to produce

similar plots to those shown in Figures 1.2 and 1.3. The work in this thesis

uses a method developed by J. Heinrich to produce limits similar to those

studied at CDF and D∅, for the ATLAS Higgs channels, and the method

therein is briefly outlined below though the reader is referred to [35] for a

detailed discussion.

If we rewrite the Poisson probability of obtaining the observed results as

N∏

k=1

e(sεk+bk)(sεk + bk)
nk

nk!
,

for nk observed events in the kth bin, we can assume that, since s is the pa-

rameter of interest, εk and bk have uncertainties and are considered nuisance

parameters (εk here is an efficiency). Given that this is a Bayesian approach,

these nuisance parameters are assigned priors, which may well be correlated.

Following [35] we write the joint nuisance parameter prior as

π
(
ε1, b1, ε2, b2, . . . , εN , bN

)
dε1db1dε2db2 . . . dεNdbN (2.26)

and the integrated (also known as marginalised) posterior for s is proportional

to

π(s)

∫∫∫

2N

π
(
ε1, b1, ε2, b2, . . . , εN , bN

)[ N∏

k=1

e(sεk+bk)(sεk + bk)
nk

nk!

]

dε1db1dε2db2 . . . dεNdbN , (2.27)
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where 2N integrals are performed, marginalising over the 2N nuisance pa-

rameters. Rather than compute 2N integrals, the method used here produces

M random vectors (ε1, b1, ε2, b2, . . . , εN , bN) including correlations between

the εs and bs, and replaces the joint nuisance parameter prior (Eq 2.26) with

the array of 2M × N numbers. This results in a normalisation constant,

N , which must be computed in order for the limits to be calculated. This

normalisation factor takes the form

N =

∫ ∞

0

π(s)

M

M∑
i=1

[ N∏

k=1

e(sεk+bk)(sεk + bk)
nk

nk!

]
ds. (2.28)

The integration of the marginalised prior can be found in Section 4 of [35].

Following the convention of this note, we finally arrive at the solution for the

upper limit, su at a credibility level, β, found by solving

I(su) = (1− β)L(0). (2.29)

where su represents a number, times which, the Standard Model cross-section

is excluded at β credibility level. For an exclusion limit, one sets β equal to

0.95. In Bayesian terms, this will give a credibility level of 95%. One must

be careful in defining regions where this credibility level applies. It is not a

confidence interval, as would be estimated by the CLs calculation detailed

above (frequentist), which tells us that 95% of the time the measurement

of a random variable x will lie outside the excluded region. For a Bayesian
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analysis, such as used here for setting limits, a credible interval is defined.

A credible interval requires some prior knowledge about the ensemble and

necessitates 95% of the probability be in the interval, as defined by the p.d.f.

2.5 Statistical Significance in a Hurry

In order to ascertain whether the shape analysis is an improvement from the

classical counting experiment, it is necessary to compare the two approaches.

The following functions were introduced with this in mind. The λ function is

the separation between the H0 and H1 distributions counted as a number of

H0 widths. In the limit of very many pseudo-experiments, this tends to the

value of the sensitivity in a counting experiment. The κ function similarly

tends to an equation for the significance, though one that takes into account

the effect of the systematic uncertainties on the signal.

The λ Function The λ function is a construct designed to indicate the

achievable sensitivity from a given set of results for two hypotheses in a very

quick way. It is constructed as follows:

λ =
< −2lnQi >H0 − < −2lnQi >H1

σH0

. (2.30)



2.5: Statistical Significance in a Hurry 68

In the case where we are trying to prove the existence of a signal, one can

show that the λ function for all bins looks like, in the Poisson case:

λ =

∑I
i=1 2si − 2biln

(
1 + si

bi

)
−

(
2si − 2

(
si + bi

)
ln

(
1 + si

bi

))

∑I
i=1

√
4biln

(
1 + si

bi

)2 . (2.31)

If we define wi :

wi = ln

(
1 +

si

bi

)
, (2.32)

as the weight of the Likelihood Ratio, then we can rewrite λ as follows:

λ =

∑I
i=1 2si − 2biwi −

(
2si − 2

(
si + bi

)
wi

)
∑I

i=1

√
4biw2

i

. (2.33)

This then reduces to the simple form,

λ =

∑I
i=1 si∑I

i=1

√
bi
. (2.34)

In order to make this function comparable with previous results from count-

ing experiments, one can reduce it to limiting case of one bin, i.e. i = 1.

This results in

λ =
s√
b
. (2.35)

which is more commonly known as the counting experiment sensitivity, Z.

This is important as it provides us with a method to directly compare the
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results from a counting experiment with those from the non-parameterised

shape analysis and therefore, provides a means of indicating whether the

additional information provided by a shape analysis creates an improvement

in the results. In the limit of many pseudo-experiments, we should see that

the sensitivity equivalent to the p-value under the assumption of background-

only tends to the value of λ. λ is a quick and dirty way to estimate the

sensitivity of a channel, requiring only that enough pseudo-experiments be

run to confirm the Gaussian nature of the p.d.f.s.

The κ Function: By generating log-likelihood distributions, for two pro-

posed hypotheses, H1 and H0, it is possible to estimate the probability of

achieving a specific sensitivity, Zσ. This is often called the power of an anal-

ysis, and is equivalent to 1−α, where α is the p-value under the assumption

of signal-plus-background, or H1. As we know, both H1 and H0 distribu-

tions have a width, caused, in the case of the search for the Higgs boson at

LHC, not only by the statistical uncertainty but also the systematics on the

background and signal. Prior to now, we have ignored the uncertainty on

the signal, opting to suggest that it is not important as we are looking for

a deviation from the background only hypothesis, and including the signal

systematics in our estimates would add no new information. Here, we allow

the signal systematics to be considered by including the width of the signal

plus background peak in our calculation of probability of obtaining a signifi-

cance higher than Zσ, noted P (Zσ). We do this by introducing the variable
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κ which is defined as follows

κZ =
< −2lnQ >H1 − < −2lnQ >H0 −ZσH0

σH1

. (2.36)

To better understand this function, we consider the example case of the search

for a signal with Poisson statistics. In this example, κ takes the following

form

κZ =

∑I
i=1 siln

(
1 + si

bi

)
− Z

√
∑I

i=1 biln

(
1 + si

bi

)2

√
∑I

i=1(si + bi)ln

(
1 + si

bi

)2
. (2.37)

The probability P (Zσ), of obtaining a sensitivity higher than Zσ is

P (Zσ) = 1− CLs+b (2.38)

=

∫ qobs

−∞
f(q|s+ b)dq (2.39)

=

∫ κ

−∞
G(v)dv (2.40)

where G(v)dv is a Gaussian of width one, centered around zero, and f(q|s+b)
is as before, the p.d.f. for the H1 hypothesis.

Note that, in the 1-bin approximation, the sensitivity defined as

Z =
s√
b+ s

, (2.41)
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is equivalent to κ. i.e. it takes into account the systematics on the signal.

Including Systematic Uncertainty in a Counting Experiment

For a given analysis, it is possible to state an upper limit on the overall value

of the systematic uncertainties, for a desired sensitivity. Statistical uncer-

tainties, described as
√
N , where N is the number of events in a bin, are

generally always considered. Systematic uncertainties, which may enhance

the background in the signal region, must also be considered and here we

define them as uncertainties which, upon hypothetical repetition of the ex-

periment will have a fluctuating value described by a Gaussian. Despite the

difficulty involved in quantifying these uncertainties we are able to place limi-

tations on how large the total systematic uncertainty for a desired sensitivity

e.g. Z = 3σ can be, by constructing a fairly simple equation.

We construct this equation by considering s√
b
, and amend it to include not

only the statistical fluctuations on the large background, since this is not the

general case, but also those uncertainties we define as systematic. Following

the definition of systematic uncertainties above, we can write the system-

atic uncertainty quantitatively as a fraction, ε, of the expected number of

background events, b.

σb
sys = εb. (2.42)
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We can then write the total uncertainty (statistical plus systematic) as:

σtotal =
√
σ2

stat + σ2
sys =

√
b+ ε2b2. (2.43)

And then we extend s√
b

to include the effect of the unknown systematic

uncertainty εb:

Z =
s

σtotal

=
s√

b+ ε2b2
. (2.44)

Solving (2.44) for ( s
b
)−1

(
s

b
)−1 =

−1
s

+
√

1
s2 + 4 ε2

Z2

2ε2
, (2.45)

we have a form of the equation that we can use to assess the achievable

sensitivity at a specific s
b
, for a given systematic uncertainty, ε. This tool

allows one to represent the limitation placed on an analysis by its systematic

uncertainties.

Using this equation to quantify the limit at which such systematics kill

any chance of a significant result from a given channel is an important method

of accessing the usefulness of a channel as a discovery mode. The s
b

is mea-

surable from Monte Carlo, and by calculating a set of results for increasing

values of systematic uncertainty the limits placed on the achievable sensitiv-

ity by the systematics can be modelled. This provides another quick way to
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assess what is possible in a channel, and provides a guide with regard to both

the s
b

required and the sort of levels one must aim to contain the systematic

uncertainties below, if that 3σ or 5σ result is to be measured.

2.6 Combination

The extension of the binned Log-Likelihood Ratio method to several channels

is straightforward. The likelihood ratio is defined as

Q = ΠN
i=1

L(data|ŝ(mH) + b̂)

L(data|ˆ̂b)
(2.46)

Such that the test statistic for this method is

−2lnQ = −2ΣN
i=1

(
si − niln

[
1 +

si

bi

])
(2.47)

i.e. it is the same as before, only now the sum runs over all the bins in the

distribution of the discriminating variable, for all the channels included in

the combination. This is one of the methods used at CDF for combination

of results with D∅.

2.7 The Profile Likelihood

The Profile Likelihood (PL) method, as used at ATLAS, is detailed in

[27]pp1480. It is discussed here in terms of how it differs from the method
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implemented by the author, and discussed above. The Profile Likelihood

is a parameterised approach to hypothesis testing and combined discovery

sensitivity estimation. It is based on the concept of producing fit-functions

for the discriminating variable distributions and using these functions in the

likelihood. As such, the number of events in a bin, i, of the distribution of

the discriminating variable is

si = stot

∫

bin i

fs(x; θs)dx, (2.48)

and

bi = btot

∫

bin i

fb(x; θb)dx, (2.49)

for signal and background respectively. The fs and fb represent the p.d.f.s

for the signal distribution and background distribution of the discriminating

variable respectively.

The likelihood ratio for the PL method is

λ(µ) =
L(µ,

ˆ̂
θ)

L(µ̂, θ̂)
. (2.50)

Here we highlight a key difference, the parameter of interest. In the

Log-Likelihood described in section 2.4, the parameter of interest is s, the

number of signal events, or the signal cross-section, whereas in the Profile

Likelihood, the parameter of interest is µ, the strength parameter of the

signal. If µ = 0, there is no signal present, and if µ = 1, this represents the
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presence of a signal equivalent to the Standard Model prediction.

Systematic uncertainties are included in the PL via the nuisance parameters,

θs and θb from Eq 2.48 and Eq 2.49. These are effectively the shape parame-

ters from the fit to the discriminating variable (invariant mass distributions

in this case), and by allowing sufficient flexibility in the number and range

of the parameters in the fit, the true distribution should be represented at

some point in the parameter space. This is an alternative to the method

used in the LLR, which is to explicitly include in the minimisation of the

χ2 (maximum likelihood), the relative uncertainty on the normalisation and

shape bin-by-bin.

The PL establishes discovery by rejecting the hypothesis of µ = 0,

much in the same way that discovery sensitivity is measured in the LLR

(only the hypothesis s = 0 is rejected). Unlike the LLR approach however,

pseudo-experiments which represent the full range of possible outcomes of

the value of the test statistic are not run. Instead, Wilk’s Theorem, which

states that for a hypothesised value of µ, the p.d.f. of the test statistic,

−2lnλ(µ) approaches the χ2 p.d.f. for one degree of freedom, is utilised [36].

This means that rather than running pseudo-experiments, the expected

value of the variables in the fit are taken from a single fit to what is known

as Asimov Data (the Monte Carlo simulation produced for the analysis),

and the χ2 p.d.f. associated to the likelihood ratio for those variables is

produced. More details about this process can be found in Section 2 of
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[27]pp1480. The discovery p-value, as defined in Eq 2.20 is then estimated

from the χ2 p.d.f.3 as

pµ ≈ 1− Φ
√
qµ. (2.51)

The significance is then given by the formula

Z = Φ−1(1− pµ) ≈
√
−2lnλ(µ). (2.52)

Exclusion is established in much the same way, only the hypothesised value

of µ which is rejected for exclusion has some non-zero value (in the case of

excluding the SM, this would be µ = 1.) and the χ2 p.d.f. is produced from

this. In the LLR, exclusion is established when the ratio of p-values, CLs,

is ≥ 0.05. For the PL, the p-value defined in Eq 2.22 is measured from the

χ2 p.d.f. and must be ≤ 0.05 for exclusion at the standard 95% CL, i.e. the

standard frequentist (as opposed to the modified) method is utilised.

A comparison of the discovery potential and exclusion confidence has

been made in Chapter 8 between the results established by the Profile

Likelihood and those established using the LLR method.

3Note that the p.d.f. produced is actually 1
2χ2 due to the way the likelihood is con-

structed in the PL.
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2.8 Summary

The statistical methods which will be adopted throughout this thesis have

been introduced, with specific attention given to the log-likelihood ratio

(LLR) which is utilised throughout as a tool to assess the statistical sig-

nificance of a channel in the search for the Higgs boson, as well as to assess

the combined sensitivity of the ATLAS experiment to the Higgs at specific

Higgs masses. The Profile Likelihood (PL) is also discussed, in the context

of the differences that exist between it and the LLR method. The concepts

of probability and probability density functions where also defined, alongside

the introduction of the ‘λ function’, a tool for assessing in a speedy way, the

discovery sensitivity.



Chapter 3

The Large Hadron Collider

3.1 The LHC Complex

3.1.1 Current Status

The Large Hadron Collider (LHC) [1] is an accelerator complex at the Euro-

pean Organisation for Nuclear Research. This accelerator will provide TeV-

scale collisions at four points around the accelerator ring. On November

20th 2009, protons were injected and circulated around the LHC accelera-

tor complex, and passed through the ATLAS detector, providing the first

beam splash event in ATLAS since the restart of the machine. Figure 3.1

shows the very first beam which completed a full circuit of the LHC com-

plex in September 2008. The two bright spots in the figure showing where

the beam first started and then ended its circuit. Progress since the LHC

began accelerating protons again has been steady and after only a few days,
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collisions at
√
s = 900 GeV were achieved inside ATLAS. Initially designed

Figure 3.1: Image of the first complete circuit of the LHC complex. The
two beamspots indicate where the particle beam entered and left the LHC
circuit. Reproduced from [37].

to collide two 7 TeV proton beams, it is now most likely that in the initial

stages beams of 3.5 TeV will be collided, providing
√
s = 7 TeV collisions

and moving particle physics to a new energy regime. The LHC became the

world’s highest energy accelerator, having achieved 1.18 TeV per beam on

the 30th November 2009, and on the 8th December 2009, achieved collisions

at 2.36 TeV. These collision events were recorded by the ATLAS Experiment,

and one such event is shown in Figure 3.2. This exceeds the previous world

record of 0.98 TeV per beam, which had been held by the Tevatron collider

at Fermilab, since 2001. It is expected that in Spring 2010 the beam energy

will reach 3.5 TeV.
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Figure 3.2: Official images of the first collision events recorded in ATLAS.
The images are produced with the ATLANTIS event viewer and are available
in [38].
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3.1.2 The Large Hadron Collider

Installed in a tunnel 26.3 km long, that previously housed the LEP accelera-

tor, the LHC facility which straddles the Franco-Swiss border is a two-ring,

superconducting accelerator and collider. The facility lies between 45 and 170

meters below the surface, inclined at 1.4%. The LHC itself is the main ac-

celerator responsible for reaching the high energies necessary for the physics

regimes under study at the LHC experiments. However there is an entire

process prior to injection of the proton beams into the LHC accelerator. The

complex utilises accelerators built as far back as the 1950s. Figure 3.3 shows

the entire site at CERN, highlighting the path followed by various particles

in the complex. The path followed by the protons in the accelerator complex

is shown in Figure 3.3 in grey. The process begins in the linear accelera-

tor, the Proton Synchrotron Booster, which accelerates the protons to ∼ 1.4

GeV. From here, they are injected to the Proton Synchrotron (PS) and fur-

ther accelerated to ∼ 25 GeV. The PS then injects the protons into the final

ring before the LHC, known as the Super Proton Synchrotron (SPS) which

accelerates the protons to the 450 GeV required for injection to the LHC.

Once inside the LHC tunnel, the LHC’s magnets and radio frequency (RF)

cavities guide and accelerate the protons from their nominal 450 GeV to the

expected 3.5 TeV per beam for collisions. The LHC beam pipe is stored in

a cryostat, at a temperature of 1.9K, allowing for superconducting magnets

responsible for the 8.33T magnetic field needed to bend the beams around

the ring. The RF cavities, responsible for accelerating and maintaining the
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Figure 3.3: The accelerator complex at CERN. The path of the various
particle types is shown, with the path of protons to the LHC shown in grey.
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high energies for collisions are also superconducting. These also ensure that

the approximately 1011 protons in every bunch in the beam occur every 75 ns

during commissioning. The LHC will run initially at low luminosity, however

the design luminosity for the machine is 1034cm−2s−1. When the LHC reaches

design luminosity, there will be around 23 additional collisions in every bunch

crossing. The effect of having more than one collision per crossing is known

as pile-up, and makes the process of discovering new physics more complex.

There are four large experiments at the LHC, one of which will be interested

in heavy ion collisions as opposed to pp collisions. For each, the number of

interest is how many events per second will be observed, calculated as

Nevents = L× σevent, (3.1)

where σevent is the cross-section for the process being studied and L is the

instantaneous machine luminosity. The machine luminosity is a function of

the beam parameters only, and can be written

L =
N2

b nbfrevγr

4πεnβ∗
F. (3.2)

Where Nb is the number of particles per bunch (∼ 1011), nb is the number of

bunches per beam (∼ 2808), frev is the revolution frequency (40MHz), γr is

the relativistic gamma factor, εn the normalised transverse beam emmitance,

β∗ the beta function at the collision point, and F is the geometric luminosity

reduction factor due to the crossing angle at the interaction point (IP).
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The final variable of interest is the integrated luminosity, used to determine

how much luminosity (or equivalently, events) has been collected over a pe-

riod of time, dt. Written simply this is

L =

∫
L.dt. (3.3)

3.2 The LHC Experiments

Aside from the ATLAS Detector1 , the LHC brings together and collides

proton beams in three other parts of the LHC Ring. These experiments

focus on a wide variety of physics, from the general purpose detector, CMS,

which is in direct competition with ATLAS to discover the Higgs, to ALICE,

a detector designed to investigate the heavy ion collisions the LHC will also

produce, and finally to LHCb, a detector built specifically to study b-physics.

CMS The Compact Muon Solenoid (CMS) [40] is a general purpose de-

tector, situated at Point 5 on the LHC Ring, built to both compliment and

compete with ATLAS. The CMS collaboration is the largest at the LHC with

over 3000 scientists and engineers aiming to study pp collisions particularly

at high luminosity (1034cm−2s−1). Aside from the Higgs boson, physicists on

CMS will also look for evidence of a wide range of phenomenon including ex-

tra dimensions, SUSY and micro-black holes. The CMS detector is unique in

that the electromagnetic calorimeter is made of lead-tungstate crystals, ideal

1See Chapter 4 for details.
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for the high precision measurements needed in the H → γγ decay mode. For

more details about the CMS Experiment, the detector and the collaborations

physics goals, see [41].

LHCb The Large Hadron Collider Beauty Experiment [42] is designed to

run at a luminosity of L = 2 × 1032cm−2s−1, and will use b-quarks to study

new physics in quantum loops. Studying virtual particles allows LHCb to

study new physics at higher mass scales than can be directly produced. LHCb

hopes to unravel the mystery surrounding the matter-antimatter asymmetry

observed in the universe, since roughly a second after the Big Bang. With

a detector designed specifically for this purpose, LHCb is a layered detector,

built quite unlike the ‘onion’-style of ATLAS and CMS, with the subdetectors

‘stacked’ one behind the other. Although a collider experiment, this structure

is similar to that used in fixed-target experiments. The detector is designed

to measure specific characteristics about the decay of the B-mesons produced

in the pp collisions. For more detail see [43].

ALICE ALICE is an acronym for A Large Ion Collider Experiment [44],

and refers to the collaboration and detector, designed to study ion collisions

at the LHC. For a few weeks a year, the LHC will accelerate and collide

lead ions, at a nominal peak luminosity of L = 1027cm−2s−1. The main aim

of the ALICE Collaboration is to study the quark-gluon plasma induced in

such collisions due to the extremely high temperatures reached, and believed

to have been evident at the start of the universe. By studying this plasma,
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physicists in the ALICE Collaboration hope to shed some light on issues

such as whether quarks and gluons in some state, can be effectively free.

Additional information about the ALICE Experiment can be found in [45].

TOTEM The TOTal Elastic and diffractive cross-section Measurement

(TOTEM) Experiment is designed to detect protons from elastic scattering

at small angles, and will operate at a peak luminosity of L = 2×1029cm−2s−1.

Among a range of studies, it will infer the size of the proton at high energies

and also monitor to with ±5% the LHC’s luminosity. Though an indepen-

dent experiment, results from TOTEM will compliment those of the other

experiments. CMS in particular will benefit from TOTEM results, as the Ro-

man Pots detectors are positioned in pairs at four locations near the collision

point of CMS. For further information about TOTEM, refer to [46].
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The ATLAS Detector

4.1 The ATLAS Detector

The ATLAS (A Toroidal LHC ApparatuS) Detector, shown in Figure 4.1, is

one of two general purpose detectors at the LHC. Constructed 100m beneath

the ground at Point 1 on the LHC ring, it is designed to record the data from

the collisions in the LHC Ring, that will take place nominally every 75 ns,

and after commissioning, every 25 ns. The requirements placed on every part

of this machine are extreme. From the high track density in the Inner De-

tector, to high resolution transverse momentum measurements needed in the

Muon Chambers at the very extremity of the machine, the requirements are

exacting. The physics is fundamental to our understanding of the Universe,

and the elements which build the world around us. The TeV-scale collisions

at the LHC will bring into existence a glimpse of the Universe a nanosecond
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after the Big Bang, and it is the job of ATLAS to record events as electrical

signals and timings, which physicists can then reconstruct. Detecting rem-

nants of the TeV-scale proton-proton (pp) collisions that will take place at the

LHC, ATLAS is 42m long and 22m in diameter and took 15 years to build.

Data-taking began in September 2008, but due to a fault with the acceler-

ator complex, collisions were postponed until November 2009. The ATLAS

experiment aims to probe TeV-scale physics, that will allow never before seen

regions of the electroweak spectrum to be observed. In particular, the search

will focus on the Higgs boson and evidence of physics beyond the Standard

Model. With over 40 million collisions per second, reconstruction of the in-

teractions that take place at the collision point requires several sub-detectors

and trigger systems to be working in tandem. The following sections discuss

each of the sub-detector systems and the data they are designed to record.
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4.1.1 Detector Co-ordinate System

The detector co-ordinate system is defined in polar co-ordinates (R, θ, φ).

The angle θ is important as it gives rise to the Lorentz invariant measure of

position in the detector, η. Measurements of position allow a detailed three

dimensional image of events in the detector to be built and provide exper-

imentalists with a large number of variables from which to find differences

between the signal they are searching for and the large backgrounds expected

at the LHC.

The interaction point is defined as the origin of the coordinate system for

the detector. The beam-axis defines the z-direction and the x − y plane

which is perpendicular to the beam-axis. Positive x points from the origin

to the centre of the accelerator ring and the positive y-direction points up-

wards. The detector is split in two at the origin, with the positive z-direction

called side-A and the negative z-direction called side-C. In polar coordinates,

(R, θ, φ), the angle θ is defined as the angle as measured from the beam-axis

in the x− z plane and the angle φ is measured in the x− y plane around the

beam-axis.

The rapidity is defined as

y =
1

2
ln

[(
E + pz

)]
[(
E − pz

)] . (4.1)
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In the limit E À m, this reduces to

η = − ln tan
(θ
2

)
(4.2)

known as pseudorapidity, η, a Lorentz invariant measure of the coordinate

system.

The transverse energy ET , momentum PT and missing transverse energy

Emiss
T are all defined, generally, in the x− y plane.

It also often useful to consider the distance between objects in the detector

in the η − φ plane. This is denoted ∆R and is defined as

∆R =
√

∆η2 + ∆φ2. (4.3)

Other variables can be considered important depending on the type of physics

being considered. B-physics, in particular, utilises further positional mea-

sures such as the impact parameter, d0, of any secondary vertices in an

event.

4.1.2 Inner Detector

The Inner Detector (ID) consists of three sub-detectors and is designed to

perform tracking, providing precision measurements of particle momentum

for charged tracks with transverse momentum above the 0.5 GeV thresh-

old. With interactions at 14 TeV, there will be approximately 1000 tracks
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traversing the detector every 25 ns, within an |η| ≤ 2.5. As such, excellent

pattern recognition in order to identify ionising particle trails, is a necessity.

This is provided by the precision tracking detectors (Silicon Pixel Detector

and Silicon Microstrip (SCT) Tracker) and the Transition Radiation Tracker

(TRT) at larger radii. These can seen in Figure 4.2, which shows a cut-away

view of the Inner Detector.

Figure 4.2: Cut-away view of the ATLAS Inner Detector

These three detectors provide coverage up to |η| ≤ 2.5 and are encom-

passed within a 2T magnetic field (see section 4.1.6) produced by the central

solenoid and extending over a radius 1.25m, and length 5.3m. See Figure 4.3

for a plan view of the ID, which shows the positions of the three parts of the
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Inner Detector.

Figure 4.3: Plan view of one quarter of the ATLAS Inner Detector.

Silicon Pixel Detector This detector is at the lowest radii (see Figure 4.2)

and has the highest granularity, with minimum pixel size of 400x50µm2. Each

track, as it passes the through the pixel detector will cross approximately

three pixel layers, segmented in R − φ and Z space. This provides three

unique space points for reconstruction of the charged track at the innermost

radii of the detector. The first layer of the pixel detector, at a radius 51mm, is

called the vertexing layer. The main task of the pixels is to resolve secondary

vertices from particles that travel a small distance in the detector before

decaying. Operating between −5 ◦C and −10 ◦C, the Pixel Detector has over

80M readout channels.
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Silicon Microstrip Tracker In addition to the pixel detector at small

radii, the Silicon Microstrip Tracker (SCT) records track data for reconstruc-

tion. The double cylindrical layers of the barrel SCT have one axial layer

and the other at a stereo angle of 40µrad, providing four space points per

track for reconstruction. From data recorded in the SCT, one can measure

the impact parameter (see section 4.1.1) and with the inclusion of vertexing,

b and τ jets can be identified. In the end-cap region, the strips are arranged

radially, with the stereo strips also at an angle of 40µrad. The total number

of readout channels for the SCT is around 6.3M.

The precision tracking detectors are both arranged in concentric cylinders

around the beam axis, in the barrel region of the detector. In the endcap,

they are arranged on disks perpendicular to the beam axis which can be seen

in Figure 4.2.

Transition Radiation Tracker At the outer radii of the ID, the Tran-

sition Radiation Tracker (TRT) provides ∼ 30 hits per track, allowing for

continuous tracking [27]pp18. This enhances the pattern recognition, and

allows for better track momentum resolution up to |η| ≤ 2.0. The 4mm

diameter straw tubes are positioned parallel to the beam axis in the barrel

region of the detector and radially in wheels in the end-cap. The TRT en-

hances electron identification as transition radiation photons can be detected

in the Xenon based gas in the tubes, thus complimenting the EM calorimeter

based electron ID (see section 4.1.3). The TRT contributes a further 351,000
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readout channels to the detector. The overall performance of the tracking

can be encompassed in the resolution function for the tracking

σPT

PT

= 0.05%PT ⊕ 1%. (4.4)

The first term (the stochastic term) represents the sampling resolution, and

the constant term is representative of the noise.

4.1.3 Calorimeters

Calorimetry is a key tool in particle detectors. Using alternating layers of

material and detectors, the particles traversing the calorimeter create show-

ers and deposit energy to be read-out. In general, the number of radiation

lengths, X0 is sufficient to ensure containment and so complete energy de-

position is assumed. Information such as the width of the shower versus its

depth in the detector is then used to determine for example whether the

passing particle was a jet or a lepton. To make this decision easier, the AT-

LAS calorimeters are separated into an Electromagnetic (EM) Calorimeter

and a Hadronic Calorimeter (HCAL). Figure 4.4 shows a cut-away view of

the ATLAS calorimeter. Between them, they cover the range, |η| ≤ 4.9. The

materials selected in each have been chosen to ensure the stringent require-

ments imposed by the physics measurements planned at the LHC are met.

A brief discussion of each of the calorimeters is set out below.
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Figure 4.4: Cut-away view of the ATLAS Calorimeter system.
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Electromagnetic Calorimeter The Electromagnetic Calorimeter is sep-

arated into 3 sections, each housed in their own cryostat: the barrel region,

covering |η| ≤ 1.475, and two endcap regions covering 1.375 ≤ |η| ≤ 3.2.

The active material in the electromagnetic calorimeter is liquid argon (LAr),

with Lead (Pb) acting as the absorber. The LAr EM calorimeter has an

Figure 4.5: Sketch of a barrel module, showing the different layers of the
calorimeter. The granularity in η and φ of each layer is also shown, as in the
text.

accordion geometry which can be seen in Figure 4.5 that allows for consis-

tent coverage in the φ-plane, meaning there are no azimuthal cracks. The

EM Calorimeter is over 22 radiation lengths (X0) in the barrel and 24X0 in

the end cap, and is split into three sampling regions, labelled 1 to 3, in Fig-
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ure 4.5. The granularity for each sampling region is different. In Sampling

1, the material is arranged in strips, parallel to the beam, with granularity

∆η × ∆φ = 0.003125 × 0.098. In Sampling 2, where electron and photon

identification in the calorimeter begins by measuring energy deposition in

a number of cells, the granularity is 0.025 × 0.025. The final layer of the

EM Calorimeter has the least fine granularity (0.050× 0.025). A presampler

detector is used at |η| ≤ 1.8 to correct for any energy lost by the particle

prior to reaching the electromagnetic calorimeter. Having traversed the Inner

Detector, electromagnetic particles then shower and break apart in the EM

Calorimeter. However, the wealth of information they leave behind makes

it possible to reconstruct the energy of the particles, and by matching to a

track from the ID, to decide whether the particle was an electron or a photon.

The overall performance of the EM calorimeter can be encompassed in the

resolution function

σE

E
=

10%√
E
⊕ 0.7%, (4.5)

with the sampling term representing the resolution, and the second term

representing the noise.

Hadronic Calorimeter The Hadronic Calorimeter (HCAL) is designed

to record the energy deposition of hadronic particles such as pions. In the

barrel region, the HCAL active material is scintillating tiles, and steel is

the absorber material. As such, the barrel hadronic calorimeter is often

referred to as the Tile Calorimeter. It is separated into three regions, the
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barrel region extending to |η| ≤ 1.0, and two extended barrel regions covering

0.8 < |η| ≤ 1.7 and like the EM CAL is also a sampling calorimeter. Each

of the barrels are separated, azimuthally into 64 modules, and longitudinally

into 3 layers. The output of the barrel HCAL, are readout by wavelength

shifting fibres into two Photomultiplier Tubes.

Unlike in the barrel, the Hadronic Endcap Calorimeter (HEC) has LAr as

the active material and copper as the absorber. There are two independent

wheels in each end-cap, and each wheel is constructed with 32 identical wedge

shaped modules. The end caps are constructed with four layers, in two

longitudinal segments.

All of this aids the identification of hadronic decays of particles like the

τ -lepton. Though the granularity of the Hadronic calorimeter is broader than

the EM Calorimeter (|∆η|× |∆φ| = 0.1×0.1 in the HCAL), it is sufficient to

identify the various shower shapes synonymous with specific decays e.g. the

τ -jet is identified over the large jet background (from QCD) by its narrow

shower shape. As with the EM Calorimeter, the tracking is also important in

making decisions about the type of particle being observed in the HCAL, e.g.

τ -jets have only a few tracks pointing to them in the calorimeters whereas a

QCD jet may have many more. The overall performance of the HCAL can

be encompassed in the resolution function in the barrel and end-cap

σE

E
=

50%√
E
⊕ 3% (4.6)



4.1: The ATLAS Detector 100

and in the forward region (discussed below)

σE

E
=

100%√
E

⊕ 10%. (4.7)

The first term represents the sampling resolution and the second term is the

noise.

Forward Calorimeters Finally, the Forward Calorimeters (FCAL) pro-

vide some measure of the energy deposited by particles in the very forward

region of the detector, 3.1 ≤ |η| ≤ 4.9. The FCAL provides electromagnetic

coverage at these high pseudorapidities and is integrated into the end-cap

cryostat. It is separated into three modules, the first is a copper and LAr

module for electromagnetic measurements. The second and third modules

are LAr and tungsten, and produce predominantly hadronic measurements.

It is clear that the expectation of the performance of the ATLAS

calorimeter system is high. For measurements of the top and W mass, a jet

energy scale (JES) uncertainty of less than 1% is the aim, which is smaller

than any previous experiment has achieved.

4.1.4 Muon Spectrometer

The muon detectors are an important part of the ATLAS detector, and

will be instrumental in the search for the Higgs boson, via for example, the
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H → ZZ → 4µ channel. The ATLAS Detector has been constructed such

that measurements of muon characteristics can be performed well up to ∼ 1

TeV. The path of the muons in the detector are deflected in the magnetic

field of the superconducting air-core toroid magnets and detected in the muon

chambers. In the barrel region of the muon detectors, at |η| ≤ 1.4, the bend-

ing is provided by the barrel toroid, and the chambers are arranged in 3

cylindrical layers around the beam axis. These barrel toroids provide 1.5-5.5

Tm of bending power. In the endcap region, (1.4 ≤ |η| ≤ 2.7), the bending

power is between 1 - 7.5 Tm, provided by two smaller magnets, housed in the

barrel toroid cryostat, and aligned with the central solenoid. The chambers

in the endcap are also arranged in three layers, and are perpendicular to the

beam direction. In the region, 1.4 ≤ |η| ≤ 1.6, the magnets overlap, and this

is known as the Transition Region. Both the barrel and endcap fields provide

the deflection in this region, and so the bending power is far less.

There are two types of muon detector recording the data from the muon’s

deflected path; the Monitored Drift Chambers (MDTs) and the Cathode

Strip Chambers (CSCs). The MDTs provide coverage over most of the η

range of the muon detectors, and provide precision measurement of track

coordinates from the mechanically isolated sense wires in the detector. The

CSCs, at large |η| are responsible for the measurement of the |η| positions

of the muons, in the first layer of the muon spectrometer. The multiwire

proportional chambers, with cathodes segmented into strips, provide high

granularity for tracking, and also withstand the demanding rates and back-
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grounds experienced in the muon chambers.

The muon chambers have an independent trigger system, covering the range,

|η| ≤ 2.4. Resistive Plate Chambers (RPCs) are used in the barrel region

for triggering, whilst in the endcap, one relies on Thin Gap Chambers to

provide muon co-ordinate measurements (in the frame perpendicular to that

measured in the precision tracking chambers), well-defined PT thresholds and

bunch-crossing identification.

Finally, it is important in the Muon Spectrometer, that the system be well-

aligned, ensuring that the magnetic field is accurately measurable in the

detector. The position must be known to within 30µm, and necessitates over

10,000 precision mounted alignment sensors to monitor the MDT alone. It

is also important to observe and reconstruct the magnetic field accurately,

so that correcting for magnetic perturbations in the field induced by the tile

calorimeter and other metallic structures is possible.

The overall performance of the MS can be encompassed in the resolution

σPT

PT

= 10% at PT = 1 TeV. (4.8)

4.1.5 Forward Detectors

There are three additional detectors in the forward region of the ATLAS

detector. Two of these systems are designed to determine the luminosity

delivered to ATLAS. The first of these forward detectors is LUCID (LU-

minosity measurement using Cherenkov Integrating Detector). At ±17 m,
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LUCID detects inelastic pp scattering in the forward direction and is the

main online luminosity monitor for ATLAS.

The second system for determining the luminosity delivered to ATLAS is

ALFA (Absolute Luminosity For ATLAS) and is located at ±240 m from the

interaction point. The detector is a scintillating fibre tracker, inside Roman

Pots, and can approach as close as 1 mm to the beam.

The final system is the Zero Degree Calorimeter (ZDC) and determines the

centrality of heavy-ion collisions, at ±140 m from the interaction point. Neu-

tral particles at |η| ≥ 8.2 can be measured by the alternating layers of quartz

rods and tungsten layers in the ZDC.

4.1.6 Magnet System

The magnet system in ATLAS is a complex system of 1 solenoid and 3 toroid

superconducting magnets. They provide the magnetic field which bends the

trajectory of charged particles in the Inner Detector and the Muon Spec-

trometer. There is around 1.6 GJ of stored energy in the system, providing

a field over a volume of approximately 12, 000 m3.

The central solenoid provides a 2 T magnetic field to the ID and the B-field

is aligned with the beam axis. The barrel toroid provides the bending power

to the barrel region of the Muon Spectrometer, with a magnetic field of ∼ 0.5

T. Finally, the two endcap toroids provide a 1 T magnetic field to the Muon

Spectrometer, and optimise the bending power in the endcap.



4.1: The ATLAS Detector 104

4.1.7 Triggers and Data Acquisition (TDAQ)

At early running design luminosity (1033 cm−2s−1), there will be collisions

every 25 ns (after commissioning, during which collisions will occur every 75

ns). This will result in unprecedented amounts of data being produced. It

is not possible to record the data from all events in the detector, and so a

complex triggering system along with an advanced data acquisition process

has been developed to ensure that data from interesting events are stored for

analysis. The TDAQ (Triggering and Data Acquisition) is partitioned into

sub-systems, typically associated with a sub-detector. The trigger system at

ATLAS is split into three levels; Level 1 (L1), High Level and Event Filter

(EF). The second and third levels are often referred to as Level 2 (L2). Each

level of the trigger reduces the recorded event rate, from 75kHz at L1, to

200Hz after the event filter. At each level, specific, pre-defined decisions

about the event are made depending on the data from certain parts of the

detector.

Level 1 At Level 1, the trigger uses part of the detector information to

decide whether to keep the event. This decision is made in 25µs. In partic-

ular, L1 searches for high transverse momentum muons, electrons, photons,

jets and tau-leptons decaying to hadrons. Additionally, the trigger considers

missing ET and total ET for the event. The sub-detectors used for the L1

trigger decision include:
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- barrel and endcap chambers in the muon spectrometer for muon ID.

- low granularity calorimeter selection.

Results from the spectrometer and calorimeter triggering are processed

by the central trigger processor. This implements any L1 trigger menus

and allows for any prescaling to take place (if required). Events that pass

the level 1 trigger are then transferred to the DAQ via point-to-point links.

Additionally, L1 defines Regions of Interest (RoIs) for the Level 2 trigger to

access. RoIs indentify areas of the detector with an interesting feature.

Level 2 Decisions at L2 are seeded by the L1 RoIs. All the information

recorded at L1 for a given RoI is passed to the L2 trigger in order for it to

make a decision, which it does in 40ms. The L2 menus reduce the trigger

rate to 3.5KHz.

Event Filter The final stage of triggering is the Event Filter (EF). This is

an off-line trigger, and the decision time for this stage is of the order 4s. The

EF reduces the trigger rate to its final level of 200Hz. One event is roughly

1.3MB.

Data Acquisition The triggers need to have some mechanism by which to

read data from the detector or pass data onto the next trigger level for further

analysis. This is done by the DAQ, (Data Acquisition) and RODs (Read-

out Drivers). Readout Drivers are the mechanism by which the detectors
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communicate with the outside world and are responsible for gathering infor-

mation from the front-end datastreams in the detector. Each sub-detector

uses specific front-end electronics and readouts. For the DAQ, the important

detail is that within the front-end electronics for each sub-detector, there are

several functional components which complete tasks pertinent to the acqui-

sition of data for triggering and analysis. In particular, the L1 buffer retains

data for enough time to accommodate the latency of the L1 trigger and the

derandomising buffer stores data corresponding to the L1 accept prior to

passing it to the next level. At this stage, L1 data is then passed to L2 and

finally, EF. The DAQ handles the passage of data from L1 to L2, and L2 to

EF, by transferring event data from L2 to the event-building system, which

then transfers the results to the EF for final selection. DAQ also handles the

final storage of events which pass the EF level trigger, at the CERN Com-

puting Center. Aside from handling the passage of data between triggering

and then to final storage, the DAQ system also provides configuration, con-

trol and monitoring of hardware and software components which provide the

data-taking functionality.

Detector Control System The rest of the detector systems are controlled

by the Detector Control System (DCS), which is responsible for monitoring

the detector’s hardware. It has homogeneous access to all the detector sub-

systems and by monitoring and archiving operational parameters is able to

flag any unusual behaviour in the detectors and in some instances apply au-
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tomatic corrective actions. The DCS also handles communication with the

LHC accelerator, the CERN technology services, ATLAS Magnets and the

detector safety system.

4.2 Summary

The ATLAS detector is a complex detector designed to give access to a

regime of electroweak physics never before observed in particle accelerator

experiments. A review of each detector component has been given and, where

relevant, the expected performance resolution has been stated. By ensuring

all the subsystems in the detector work to the highest specification, physicists

are able to take the output from the Trigger and Data Acquisition System

and reconstruct only the most interesting of the physics events taking place

inside the detector. The following chapter goes on to review how the data is

reconstructed, and the process in place for generating Monte Carlo simulated

data.



Chapter 5

ATLAS Computing Model

5.1 ATLAS Software Framework

The ATLAS computing framework, Athena [47], is designed to take the user

from event generation to reconstruction in several steps. It is built on GAUDI

[49, 50], the package built originally for LHCb as a flexible framework to

support many applications via base classes and common functionality [48].

Athena uses PYTHON as the object oriented scripting and interpreter tool

for the C++ based algorithms and objects code. The standard CLHEP com-

mon libraries are also utilised in Athena. As the ATLAS software develops,

new releases of Athena are produced containing the updates. This modular

approach allows the user to have a reasonable grasp of the utilities available

in the release they are using, and also means developers can aim to make

improvements following a defined release schedule.
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The Athena package is separated into projects depending on functionality

and this allows further flexibility in the package, as projects can be frozen

for development and built separately e.g. the generation and simulation (see

section 5.2) process is contained within a single project, so if there are changes

being made to the simulation code, only this project needs to be rebuilt. In

general when there is such an occurrence, a cache for the release is produced.

Every few months a full new release of Athena is made, containing many

updates, and a new release number is attributed to the release. At the time

of writing, the current Athena release was 15.X.Y where the X and Y refer

to development (Y) and production (X) branches of Athena.

An Athena job itself consists of three stages. The first is the initialisation

stage, where services and algorithms required for the job are loaded using

dynamic library loading. Only those requested within the PYTHON script

(often refered to as a job-option) used to control the job are loaded. The

use of a python script to control the input to the job means that a user who

wishes to run a vanilla ATLAS job (i.e. without any changes to the code)

doesn’t need to compile anything. The second phase is the Event Loop.

Here the algorithms requested in the job-option are run sequentially on each

of the events. In the final stage, the algorithms are finalised and objects

are deleted. Algorithms that monitor, for example, CPU consumption per

job, output their final statistics. Athena makes use of the POOL (Pool Of

persistent Objects for LHC) [51] file handling and persistency framework.

As such output from Athena can be studied in ROOT [52]. Athena has over
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2, 000, 000 lines of code, but the tools in place to help manage that code al-

low for a relatively straightforward modelling of the physics from the ATLAS

detector via the Full Simulation Process. The work in this thesis was carried

out with data produced in Athena release 12.0.6 or higher1.

5.2 Full Simulation

Athena provides a framework in which the Monte Carlo simulation and data

reconstruction can be carried out. For Monte Carlo, the Full Simulation

process is a four step one which includes: event generation, simulation, digi-

tization and reconstruction. These steps are detailed below, with particular

interest given to simulation, where there are several methods of varying com-

plexity employed by ATLAS.

Event Generation There are many event generators available for use in

particle physics, each designed differently, some for general tasks and others

designed for more specific tasks such as including NLO diagrams in the cross-

section calculation for a process. ATLAS uses the HepMC event record [53],

a set of C++ classes which holds the full event produced by the generator.

The standard procedure is that particles considered stable, are passed to

the simulation stage (see the following paragraph). An event generator will

produce both stable and unstable particles, and occasionally other objects,

depending on the generator.

1Aside from one result, estimated in 11.0.4 only, see Chapter 6 for details.
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The most common event generators used within the ATLAS experiment are

PYTHIA [54] and HERWIG [55, 56, 57], both of which are general purpose,

leading order generators. For more specific purposes, such as generating

events at NLO (next-to-leading order) to include higher order diagrams in

the cross-section calculation, or for generating processes with lots of jets in

the final state, specialised generators such as ALPGEN [58], AcerMC [59]

and MCatNLO [60] exist. There are even more specific generators such as

PHOTOS [61], which handles electromagnetic radiation, or TAUOLA [62]

for studying τ decays, which are also used within ATLAS.

Given the many decay and production modes of the Higgs boson, there are

several generators currently being used within ATLAS to model the predicted

observables distributions for the mass ranges over which the Higgs boson may

be discovered. Chapters 7 and 8 details which event generators are used.

Simulation The generators are responsible for the decay of particles with

proper lifetimes cτ < 10mm, as these particles are unstable enough that

they will decay before they reach the detector material. Particles outwith this

category are tracked through the detector by the GEANT simulation tool [63,

64]. In general, initial decay and hadronisation takes place before the detector

material, so the particles being tracked through the detector are photons,

electrons, muons and jets (light jets and b-jets). Perhaps unsurprisingly, given

the size of ATLAS, tracking stable particles as they traverse and interact

with the different material of the various sub-detectors within ATLAS is a
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detailed process, and the simulation stage of the full chain can take up to

several minutes of CPU time per event, depending on the event type. It is

this costly characteristic that led ATLAS to develop two further simulation

tools, ATLFast-I and ATLFast-II.

On average, due to the CPU usage, only 50 events per run are processed

at this stage, compared to the generation stage, where in some cases several

million events can be produced at a time. In general, simulation is run on the

Computing Grid, with one generator file being split into several simulation

jobs, all run on different nodes at a grid site.

Digitisation This is the stage in the full simulation which takes objects

with four-momenta from GEANT and turns them into hits in the detector.

The particles produced by a generator and walked through the detector by

GEANT are transformed into electrical signals and timings, in order to look

like the real data that will be read out from the detector. In the Monte Carlo

simulation phase, digitisation is the step which makes fake data look like real

readout data from the detector. A more detailed introduction to digitisation

can be found in [48].

Reconstruction This is the final stage in the full simulation prior to anal-

ysis and produces ESD (Event Summary Data) and AOD (Analysis Object

Data). The ESD is produced first, providing information about calorimeter

clusters, tracks in the ID and Muon Spectrometer etc, and allows for a more

detailed analysis of detector objects. The AOD is made from the objects
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in the ESD, and rather than clusters and tracks contains particles and their

associated directions and 4-momenta. Analysis is designed to be done on

the AOD, though this can be a time consuming process, especially when an

analysis is being constantly updated and altered. Instead, often a user will

write a piece of source code that will produce Athena-Aware Ntuples (AANs)

which can be manipulated in ROOT more easily and quickly.

5.3 The Fast Simulation

Within ATLAS, there are two approaches to the fast simulation, ATLFast

I and ATLFast-II. Chapter 6 of this thesis is concerned with improvements

to ATLFast-I. The following will detail the salient aspects of ATLFast I and

briefly discuss ATLFast-II.

5.3.1 ATLFast-I

As the name suggests, ATLFast is a fast approximation to the ATLAS full

simulation, designed to produce the basic distributions from the full simu-

lation of the detector much more quickly. To achieve this aim, the software

does not simulate the effects of particles passing through the matter of the

detector, i.e. energy loss, multiple scattering or showering in the calorimeters,

but does infer these effects by including a parameterisation of the response

of the detector. ATLFast relies heavily on the input from event generators

like Pythia [54], and is a simpler process than that of the full simulation,
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with only one basic step - the smearing of particle observables. The detector

response varies depending on the particle type, and so we see different smear-

ing processes for each of the particles considered in ATLFast. The smearing

parameters are discussed below.

Smearing Parameters

Within ATLFast, the effects of the various detector systems are parame-

terised, based on resolution limits of those systems, such as calorimetry and

tracking. The parameterisations are also particle species dependent, i.e. the

energy of an electron in the electromagnetic calorimeter may be smeared dif-

ferently than that of a jet. An example of the smearing process for photons

is shown below.

Photons The smearing for photons is dependent on the (η,θ) position of the

particle, where η is pseudorapidity. As mentioned, the smearing is designed

to reflect the energy resolution of the calorimeters at high and low |η|

σ

E
=

a√
E

+ b+
c

E
. (5.1)

Eq 5.1 is the standard format for the resolution of the ATLAS calorimeters.

The actual values are quoted in Eq 4.5 for the EM Calorimeter and Eq 4.6

and 4.7 for the Hadronic and Forward Calorimeters, respectively.

Eq 5.1 represents the working limit of the calorimeters, accounting for res-

olution in term a (the ‘sampling’ term), calibration uncertainty, radiation
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damage and uniformity in the constant term, b and electronic noise in term

c. As such it is reasonable that this is the basis from which one defines the

smearing of the four momenta for each of the particles passing through the

calorimeter. The smearing of photon four momenta for |η| < 1.4 is given by

the following

σ

E
=

(
a× 0.10√

E

)
+

(
b× 0.245

Pt

)
+ (c× 0.007). (5.2)

And at 1.4 ≤ |η| ≤ 2.5

σ

E
=

(
a× 0.10√

E

)
+

(
b× 0.306× ((2.4− | η |) + 0.228)

E

)
+(c× 0.007). (5.3)

The terms, a and b in the equations above are random Gaussian numbers

generated for each particle, with mean zero, and a width of one. By allowing

a Gaussian range in the smearing value, the implication is that the correct

energy will be reconstructed accurately the majority of the time, whilst ac-

cepting the likelihood, perhaps due to position in the detector, there will be

particles reconstructed very badly. The final constant term, (c/0.007) is sim-

ply the standard constant term considered in the estimation of the resolution.

Additional to the energy resolution of the calorimeters, the direction of

the photon is also smeared.
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For η < |0.8|
σ(θ) =

(
a× 65 mrad√

E

)
. (5.4)

For 0.8 < |η| < 1.4

σ(θ) =
(
a× 50 mrad√

E

)
. (5.5)

And finally, for 1.4 ≤ |η|

σ(θ) =
(
a× 40 mrad√

E

)
. (5.6)

Electrons The electron smearing follows a similar pattern to the photon

smearing, with the resolution parameters taking the same form for both.

Note the main difference is in the sampling term for the resolution function,

where 10% is used for photons, but due to energy loss from bremsstrahlung

for electrons, a higher value of 12% is estimated.

Muons The original muon smearing was carried out according to a resolu-

tion dependent on Pt, η and φ. One can also specify the sub-detector in use,

either the Muon System, the Inner Detector or both. A detailed discussion

of the parameterisation can be found in [65] and the details of the updated

resolutions can be found in [66].

Jets Jets are considered in ATLFast last, and are composed of calorimeter

clusters, left after electrons and photons have been reconstructed, which have

an energy higher than a pre-defined threshold, usually set to 10 GeV. If there
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are any muon candidates within a given ∆R of the jet’s cluster, then the muon

is considered part of the jet, and the jet energy is altered appropriately. This

energy is then smeared following the resolution function.

For |η| ≤ 3.2

σ

E
=

(
a× 0.50√

E

)
+ 0.03. (5.7)

And for 3.2 ≤ |η| ≤ 4.9

σ

E
=

(
a× 1.00√

E

)
+ 0.07. (5.8)

Note that for jets, any out-of-cone energy corrections need to be done in an

independent step.

Taus, bjets, and Missing Transverse Momentum These candidates

were previously dealt with within ATLFast, by the ATLFast-B package. This

package held efficiency information for b-jets, c-jets and taus, and after smear-

ing had been applied to jet candidates, they could be passed through the

ATLFast-B package where they were ‘tagged’, depending on the relative effi-

ciencies and rejections of each, as either a b, c or τ jet. Importantly, no jets

were removed or added to the samples, with the ATLFast-B package designed

solely to tag the jets so that the user might have more information regarding

the probability that their sample contained a given number of b-jets, for ex-

ample. Note that in the case of taus, only the hadronic decay is considered.

Currently, a similar process is followed, however the ATLFast-B package no
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longer carries out the process. Details of how missing ET is calculated in

ATLFast can be found in [65].

5.3.2 ATLFast-II

ATLFast was subject to review in 2007, and alongside improvements to the

original ATLFast, a new package, ATLFast-II was developed. This new pack-

age took the original ATLFast and improved the accuracy of the package by

removing (for some particles) the smearing functions and replacing them

with full simulation reconstruction tools, manipulated to fit inside the fast

simulation. ATLFast-II contains:

- Fully simulated Inner Detector.

- Calorimeter simulation using FastCaloSim [66].

- Fully simulated Muon Spectrometer and ID, OR

- ATLFast I muons, with efficiency and resolution as functions of η, φ

and PT applied.

- Trigger simulation, including standard muon triggers and an adaptation

of L1 calorimeter triggers. No High Level Trigger is included.

The inclusion of so many full simulation tools in the fast simulation amounts

to a much slower (though more detailed) tool. The timings for the full

simulation, ATLFast-I and ATLFast-II are given in Table 5.1, taken from

[48].
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Sample Full Sim ATLFast-I ATLFast-II
5 GeV µ± 0.879 0.0011 1.28
50 GeV µ± 1.63 0.0011 2.71
500 GeV µ± 12.0 0.0011 11.8
1 GeV e± 3.62 0.0011 0.825
5 GeV e± 17.8 0.0011 1.00
50 GeV e± 179. 0.0013 1.25
1 GeV π± 2.40 0.0011 0.701
5 GeV π± 10.4 0.0011 0.811
50 GeV π± 94.7 0.0011 1.04

Table 5.1: Simulation times per event, in kSI2K seconds, for single particles
generated with |η| < 3.0 and with the same PT . The timings are averaged
over 500 events. This table is transcribed here for illustrative purposes and
was published in [48].

Aside from muon reconstruction, both ATLFast-I and ATLFast-II perform

significantly better than the full simulation in terms of kSI2K seconds per

event. It is worth noting that ATLFast-II provides a significant improvement

on timings for electrons and pions, where FastCaloSim is utilised and still

provides considerable detail about the event. The reason for the poor per-

formance of ATLFast-II in reconstructing muons is because the complete full

simulation of the Muon Spectrometer and ID is carried out. For ATLFast-I,

the timings are consistently better. In some cases, ATLFast is over 105 times

faster than the full simulation and 5×102 times faster than ATLFast-II. The

significant timing difference for ATLFast-I is an advantage of the package.

Chapter 6 proposes some additions to ATLFast-I, which make little difference

to the ATLFast performance in terms of time per event to run.
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5.4 Summary

The ATLAS software framework has been described with particular emphasis

given to the simulation process, which is the most CPU intensive of the

four stages that comprise the framework. There are several tools available

for event generation, and the reconstruction at ATLAS is constantly being

updated and made to better reflect the status of the detector. Excellent

particle identification is a key element of any successful physics study, and

making improvements to this, in the context of the fast simulation tool,

ATLFast-I, is the context of the following chapter.



Chapter 6

Particle Identification in

ATLAS

6.1 Introduction

The ATLAS procedure for fully reconstructing detector output is a four part

process, and in its second stage, simulation, tracks the passage of a particle

through the detector material. Given the complexity of the ATLAS Detector

simulating this journey is lengthy and complex. The CPU usage for this

stage of the full reconstruction is considerable and can impact on the size

of samples produced for physics studies. For example, it would be virtually

impossible to generate sufficient statistics to study the massive backgrounds

from QCD jets at ATLAS with the full reconstruction, however this is a

background that has to be understood prior to discovery of any new physics.
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In a bid to avoid the CPU consumption of the full reconstruction but still

produce reliable simulation data, a fast parameterisation of the detector ef-

fects on particle observables was developed, called ATLFast. This software

is discussed in Chapter 5, and generally reproduces the output of the full

reconstruction to within ∼ 10%. ATLFast tends to observe a higher number

of particles per event than the full reconstruction, due to the inability of

standard, ‘vanilla’ ATLFast to reflect detector or reconstruction losses such

as particle conversion, bremsstrahlung, or losses due to inactive material in

the detector. Originally, to compensate for such reconstruction and detector

effects, a flat 90% efficiency could be added to the ATLFast distributions.

The work in this chapter proposes the use of fully reconstructed particle

identification efficiencies in ATLFast, to improve the comparison between

the full and fast simulations. Particle identification and contamination rates

are presented for ATLAS Monte Carlo data produced from 2008 onwards1.

These efficiencies are now part of a package within ATLFast which applies

user requested efficiencies and cross-species contamination rates to Analy-

sis Object Data (AOD). The efficiencies for e, γ, µ, jets and τ -leptons are

calculated as functions of particle transverse momentum, PT and pseudora-

pidity, η. A detailed consideration of how particles are identified at ATLAS

is also included and the implications of such identification algorithms on the

observed identification efficiencies is discussed.

1Some data, specifically that used for τ -lepton efficiencies is from 2006-2007.
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6.2 Particle Identification in ATLAS

Being able to reconstruct accurately the particles which traverse the detector

is key to any successful physics study. If particles are identified wrongly, or

not at all, then physics results could be invalidated or worse, new physics

could be missed. As such, ATLAS places considerable importance on the ac-

curate reconstruction of the electrical signals and timings read out from the

detector. At the time of writing, the state-of-the-art in particle identification

using the full chain, was to be found in release 14 of the ATLAS software,

dating from 2008-09. For photons, electrons and jets, the move from previous

releases to release 14 constituted a significant move forward in the abilities

of the ATLAS full chain. For muons and tau-leptons, the move represented

only a small change and so the results shown here for muons are from release

12 (2007-08) and for taus, from release 11 (2006-07). All other results (for

γ, e and jets) were completed using software and data from a release of the

ATLAS software developed during 2008-09. Table 6.1 summarises this in-

formation alongside information regarding the samples used to produce the

efficiencies presented.

6.2.1 Electrons and Photons

Many of the key ATLAS physics studies, including the search for the Stan-

dard Model Higgs boson, require excellent identification of photons and elec-

trons. The Higgs decay to four leptons, for example, suffers from large back-
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grounds and, given its relatively small cross-section, relies on proficient par-

ticle identification to observe a signal. The most promising physics channels

will produce electrons with PT between a few GeV and 5 TeV, meaning

there is a wide range over which good identification must be available. The

studies presented here look mainly in the low-to-medium PT range between

5 − 100 GeV, corresponding to the bulk of particles relevent for Standard

Model searches. Beyond PT = 100 GeV, it is assumed the efficiencies ap-

proach an asymptotic value. Particle identification is complex and for most

particles, more than one identification algorithm is available. The following

paragraphs detail for e, γ, µ, j and τ , the identification algorithm utilised for

each efficiency study.

Electron Identification

For electron identification, ATLAS supports two algorithms. The standard

algorithm is a cluster-based algorithm, which is seeded from the electromag-

netic (EM) calorimeters and builds the identification variables using informa-

tion from the EM clusters and the inner detector. The second algorithm is

seeded from the Inner Detector (ID) tracks2. The identification of electrons

requires a seed electromagnetic tower passes several cuts:

- ET > 3 GeV.

- track to cluster match within a ∆η ×∆φ window of 0.05× 0.10.

2This algorithm is optomised for electrons with low PT .
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- E
p
< 10.

Clusters and matched tracks which pass these cuts are then identified as

either loose, medium or tight (ISOL)3, with each category having specific uses

depending on the type of electrons required for a study. For example, in an

analysis that needs good statistics but the quality of the electron candidate

is less important a user might elect to use loose electrons, however if the

quality of the electrons is important (for example, for reconstruction of a

broad mass peak), then it would be more appropriate to use medium or tight

(ISOL) electrons. It is important to balance both efficiency and purity in

the selection. In the studies included in this thesis, loose, medium and tight

(ISOL) electrons are included. These definitions are introduced below.

Loose Electrons is the broadest category, encompassing all electrons

within |η| ≤ 2.47 which pass Hadronic Leakage cuts on the ratio of ET

in the first sampling of the calorimeter to the ET of the EM cluster. For an

electron to be defined as loose, it must also pass cuts applied to the second

layer of the EM calorimeter. There is also a cut on the lateral shower width,

defined in the middle layer of the EM Calorimeter.

Medium Electrons include the cuts defined on loose electrons, alongside

cuts on variables defined in the first layer of the calorimeter, and on track

quality. The calorimeter cuts are made on the following variables:

3Electrons can also be identified as tight (TRT) electrons.
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• ∆ES - difference between energy associated with the second largest en-

ergy deposit and the energy associated with the minimal value between

the first and second maxima.

• Rmax2 - second largest energy deposit normalised to the cluster energy.

• wstot - total shower width.

• ws3 - shower width for three strips around the maximum strip.

• Fside - fraction of energy outside core of three central strips but within

seven strips.

The track quality cuts look specifically for electrons with at least one hit in

the pixel detector and at least nine hits in the pixels and SCT. There is an

additional cut on the transverse impact parameter, requiring the modulus be

< 1 mm.

Tight (ISOL) Electrons include those cuts defined to identify medium

electrons, along with an isolation cut, a vertexing cut (requiring at least one

hit in the vertexing layer), additional tracking cuts and finally cuts applied

to variables calculated using data from the TRT. These cuts include an E
p

cut

at the track matching stage, requiring that the ratio of EM cluster energy

to track momentum be less than E
P

= 4 alongside matching the position of

the track to cluster; |∆η| between the cluster and the track must be < 0.005

and the |∆φ| must be < 0.02. The isolation criteria for a tight electron is an
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additional energy isolation cut, applied to the cluster, using all cell energies

within a cone of ∆R < 0.2 around the electron candidate. All the cuts

applied in the definition of electrons are reviewed in [27]pp75.

Photon Identification

Like electrons, a photon is an isolated cluster of energy in the EM compart-

ment of the calorimeter. Unlike electrons, in most cases we don’t expect to

see any tracks pointing to the isolated cluster. Photon identification can be

done in one of three ways; a cut-based method, a log-likelihood method, and

a covariance-matrix-based method known as H-matrix. Photons identified

from the cut-based method are used throughout this analysis. For a detailed

description of photon ID, see [27]pp96.

Cut-Based photon identification is the standard method for identifying

photons in ATLAS and utilises a range of variables, similar to those used in

the identification of electrons. Photons are identified based on cuts defined

on variables calculated from Hadronic Leakage, the first and second com-

partments in the EM Calorimeter, and tracking. Calorimeter cuts go a long

way to removing fake photons from jets (from charged hadrons), and the

cuts on ∆Es significantly reduce the background from π0 → γγ decays by

looking specifically in ∆η ×∆φ windows around the cells in the calorimeter

for second maxima. High PT π0 mesons with low track multiplicity add to

the jet-photon contamination however the track isolation cuts included in
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the identification, minimise their effect.

6.2.2 Muons

Muons are detected in the Muon Spectrometer, and can be reconstructed

precisely between 3 GeV and 1 TeV in the range |η| < 2.7. The spectrometer

consists of three subsystems, which work in tandem with the Inner Detector

(ID) to reconstruct muons between 30 − 200 GeV. Below 30 GeV, the ID

gives the best performance for muon identification, whereas above 200 GeV,

the spectrometer provides the best identification performance.

There are two main algorithms used within the ATLAS Collaboration for

identification of muons, and as for photons and electrons, each of them have

their advantages and are optomised for specific energy regimes or detector re-

gions. The muon algorithms are STACO and MUID. Each of these algorithms

are employed when following any of the three muon identification strategies

that exist; standalone, combined and tagged. The standalone strategy finds

tracks in the muon spectrometer and then extrapolates these tracks to the

beam line. Combined muons are those standalone muons which are matched

to nearby ID tracks, and their observables are calculated from the combi-

nation of the two systems. The tagged strategy extrapolates tracks from

the ID to the spectrometer by looking for nearby hits. This thesis looks at

combined MUID muons as opposed to STACO muons, though in recent pub-
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lications STACO is now the ATLAS default4. The main difference in these

algorithms comes from the combined strategy approach where for STACO,

a full statistical combination of the tracks from the ID and spectrometer is

completed compared to a partial refit in MUID. MUID does not directly use

the measurements from the ID tracks, but instead utilises the ID track vector

and covariance matrix. For more details about the many alternative muon

identification tools, please refer to [27]pp165.

6.2.3 Jets

A significant portion of the physics at ATLAS relies upon the identification

of jets. Due to the broad range of requirements for jet reconstruction, there

are many jet reconstruction algorithms in use in ATLAS, some widely used

and validated and some, less so. Further reading on jet algorithms and

comparisons of such can be found in [67, 68, 69, 70]. Additionally, several

of the algorithms adopted for ATLAS studies have already been proven to

work well in a hadronic environment at Fermilab [71, 72]. The large volume of

literature which exists illustrates this is a complex topic. The work included

in this chapter considers only cone jets, produced from towers and so the

discussion here will focus on the algorithm responsible for reconstructing

these jets.

A jet is simply a definition. It needs to be infrared safe with respect to

4The reasons for this choice are historical, as at the time the work began there was no
clear ATLAS default. The differences are small, < 1%.
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collinear divergences in perturbative QCD calculations, as well as amenable

to experiment with associated uncertainties on the jet energy scale. A jet in

ATLAS is a spray of electromagnetic and hadronic particles resulting from

a QCD cascade process. They are born from gluons or quarks and play an

important role in all the physics at the LHC, whether they represent your

signal or your overwhelming background (the jet cross-section in ATLAS

is of the order µb). So, it is important that jet reconstruction at ATLAS is

optimised. In some studies the jet energy scale (JES) requirements are tighter

than has ever been achievable in previous experiments (better than 1% in

some cases). The key detector component for jet finding is the calorimeter.

The calorimeter information is used in one of two ways in the initial stages

of jet finding.

Calorimeter Jets are reconstructed from the over 200,000 cells in the

ATLAS calorimetry. Two notions of calorimeter jets exist; signal towers and

topological cell clusters.

The signal tower method is a 2 dimensional approach to jet finding, which

projects calorimeter cells onto a grid in ∆η × ∆φ with a ‘tower bin’ of size

0.1×0.1 in (η, φ). There are 6, 400 tower bins in total across the full calorime-

ter (|η| < 5). Cells are projected onto the grid, and those that fit completely

within a tower bin contribute their full signal to the tower. Cells which are

larger than the tower bin or are not projected to the grid, contribute only

part of their signal to the tower, depending on the fraction of the cell over-



6.2: Particle Identification in ATLAS 132

lapping with the tower bin. The tower signal is then a sum of weighted (in

the case of overlap) cell signals.

Topological cell clusters are 3D objects (where the third dimension is the

lateral profile), representing the shower developed in the calorimeter by the

passing particle as a ‘blob’ of energy in the calorimeter. A seed cell is identi-

fied, (subject to a signal-to-noise ratio cut) and then neighbouring cells are

included in the cluster. The ‘neighbours of neighbours’ are only included in

the cluster if they too pass a less strict signal-to-noise ratio cut. Finally, a

ring of cells with signal-to-noise ratio > 0 are included around the cluster.

In this approach there will be significant overlap of cells in various clusters

and so a ‘splitting algorithm’ is then run over the clusters, identifying local

maxima and splitting the clusters between the maxima found.

Before the clusters or towers can be turned into jets, they have to have a

four-momentum, and so they are defined as massless pseudo-particles with

four-momenta defined as:

E = |~(p)| =
√
p2

x + p2
y + p2

z,

px = p.
cosφ

coshη
,

py = p.
sinφ

coshη
,

pz = p.tanhη. (6.1)
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The directions of the towers and clusters are fixed from the tower bin centre

or are reconstructed from the energy-weighted barycentre of the cluster, re-

spectively.

Having defined the clusters or towers from which the jets are built, it is now

the job of the jet finder to reconstruct the jet and its properties. Two of

the most common jet finders; the fixed cone jet finder and the sequential

recombination algorithm, are discussed below.

The ATLAS cone algorithm is one implementation of the fixed cone

algorithm, and works by ordering clusters or towers in decreasing PT and

then sequentially building jets from this ordered list. The highest PT object

passing the threshold cut for a seed (PT > 1 GeV) from the list is selected

first and all objects within a fixed ∆R < RCONE are combined with the seed.

Then, a new direction for the jet is calculated from the four-momenta inside

the cone, and objects within a new cone centered on the new jet direction

are then combined with the original object and the direction is recalculated.

This iterative process is continued until the direction becomes stable and the

jet is defined. At which point the second highest PT object from the ordered

list is selected and the process is followed again. This process continues

until all seeds are gone. This process can lead to jets sharing constituent

parts. Also, objects that were originally part of the jet may fall out of the

cone at the direction recalculation stage. As such, this algorithm is not
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completely infra-red safe5 though this is partially handled by the ‘split and

merge’ step invoked after jet formation. Split and merge deals with jets

that share a given fraction, fSM , of their constituent parts. If the fraction

shared is greater than fSM , the two jets are merged, lower and the shared

constituents are split between the two jets. At ATLAS, fSM = 0.5. Note

that RCONE = 0.4 for narrow jets and 0.7 for broad jets such as those from

QCD events.

The KT algorithm is a sequential recombination jet finder and is an

alternative to the ATLAS cone algorithm. The KT algorithm groups objects

into pairs and analyses each pair, ij with respect to their relative P 2
T (dij)

6

and the P 2
T of object i relative to the beam (di). Upon calculation of dij

and di for all i, j, the minimum, dmin is found. If dmin = dij the objects

i and j are combined to form a new object, k which is added to the list,

whilst i and j are removed. If dmin = di then i is defined as a jet and is

removed completely from the list. The process is repeated until such time

as all objects have been defined as jets or part thereof.

The ATLAS Cone algorithm and the KT algorithm are the default jet

finders in ATLAS at the time of writing, however many other jet finders

5Soft particles between particles in jets (or lack thereof) should not affect the number
of jets reconstructed. If an algorithm is affected by these soft particles, then it is not
infrared safe. IR safety is one of the theoretical guidelines laid out for ATLAS [27]pp264.

6Defined by dij = min(P 2
T,i, P

2
T,j).

∆R2
ij

R2 , where R ≡ RCONE in the fixed cone method.
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are available within the ATLAS computing framework at the analysis

stage. The following work (in this chapter) makes use of the ATLAS Cone

algorithm, with RCONE = 0.4 and with the calorimeter jet objects defined

by the signal tower method.

6.2.4 Tau Leptons

τ -leptons will be important in the search for new physics, in particular a

low mass Standard Model Higgs boson, or an MSSM Higgs boson. Though

the tau decays both leptonically and hadronically, the efficiency studies here

consider only hadronic decays, and at ATLAS, though there is motivation

to also study leptonic decays (particularly in Higgs searches), the focus is

primarily on hadronic decays. Table 6.2 shows the branching ratios of τs to

1 and 3 pronged decays.

Decay Product Branching Fraction (%)

e− + ν̄e + ντ (17.84± 0.05)
µ− + ν̄µ + ντ (17.36± 0.05)
1π+nπ0 + ντ 49.2
3π+nπ0 + ντ 14.6

Table 6.2: The main τ -lepton decays. For hadronic decays, 1-prong domi-
nates.

Given the range of physics in which decays of tau-leptons are interesting,

there is a wide energy range over which taus must be identified (between

10 − 500 GeV). The main algorithm for τ reconstruction is TauRec. This
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is the default algorithm for the ATLAS Collaboration and is used in the

studies which follow. It is a calorimeter seeded algorithm which looks for

narrow calorimeter clusters in the ECAL and HCAL and then extrapolates

back to the tracker, searching for a close track (or a small number of tracks

in a narrow cone).
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6.3 Particle Identification: Efficiency and

Contamination Matrix

Before estimating particle identification efficiencies, the definition of effi-

ciency must be stated. For the studies which follow, particle identification

efficiency and contamination are defined as

ε =
1

2N

∫

η

∫

PT

∑M
m=1 r

′
ij∑N

n=1 gi

(6.2)

where r′ij is a particle of species i, matched to a particle reconstructed as

species j, gi is the generated particle (species, i) in the event, and N is the

total number of generated particles in the sample (after fiducial cuts are

applied). Eq 6.2 represents the integrated (or global) efficiency of a given

physics sample over the selected variables (η and PT ) if i = j. For i 6= j, this

represents the integrated (or global) contamination in a sample for species i

to species j. These are the definitions adopted in this thesis.
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We can then define the efficiency matrix, containing all the results for

each species as: 


εee εγe εµe εjete ετe

εeγ εγγ εµγ εjetγ ετγ

εeµ εγµ εµµ εjetµ ετµ

εejet εγjet εµjet εjetjet ετjet

εeτ εγτ εµτ εjetτ εττ




Table 6.3: Format of the efficiency matrix, with truth particles represented
in the columns, and reconstructed particles represented in rows. As such, the
diagonals are the efficiencies and the off-diagonals are the contaminations.

Purity is also an important variable, and usually, in selecting particles,

one aims to keep efficiency high, without sacrificing the purity of the sample.

Purity is defined as

pij =
No. of events generated, reconstructed and matched

No. of events reconstructed
.

Or in the terms introduced above

pij =
1

2N

∫

η

∫

PT

∑N
n=1 g

′
ij∑M

m=1 rj

. (6.3)

for i = j, and with the definitions almost as above, only rj is no longer a

matched quantity and simply represents the number of reconstructed parti-

cles of species j and g′ij is now the matched quantity, representing the number
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of generated particles matched to the correct species, j.

In general, the definition of efficiency would have the additional qualification

that each particle be generated and reconstructed within a histogram ‘bin’.

By selecting the binning of the histograms used to define the efficiencies

appropriately the problem of migration7 can be reduced, making the qualifi-

cation that each particle be generated in the same bin as it is reconstructed,

less important. The bin sizes used throughout for PT distributions is 10 GeV,

and for η is 0.1, which given the resolution (in PT , the resolution is ∼ 4 GeV,

and in η, is < 0.1 ) is reasonable.

Matching criteria also add a bias to the definition of efficiency above. The

criteria for deciding when (for example) a generated electron is matched to a

reconstructed electron, can (and in fact does) have an effect on the efficiency.

Clearly very loose matching criteria would result in artificially high efficien-

cies, and similarly extremely stringent criteria would result in artificially low

efficiency results.

The matching criteria selected for this study was a ∆R cut, where ∆R is

defined as

∆R =
√

(∆η)2 + (∆φ)2, (6.4)

i.e. it is the distance between the generated particle and reconstructed par-

7Migration is the term used to describe the motion of particles in and out of bins i.e.
a particle that is generated in a bin 0-5 GeV but reconstructed with an energy of 6 GeV
and therefore appears in the 5-10 GeV bin is said to have migrated.
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ticle in (η, φ) space. One can also choose to include a ∆E cut, defined by:

∆E =
Ei − Ej

Ei

< a, (6.5)

where i, j are defined as in Eq 6.2 and a is a constant to be defined.

Alongside the matching criteria, there is a geometrical cut on the position of

both the generated and reconstructed particle, |η| < 2.5 and no secondary

particles, produced by the GEANT4 software, are included in the matching

i.e. only particles from the hard-scatter event are considered.

In keeping with the ATLAS Experiment standard, no ∆E cut was applied

by default. ∆R < 0.2 was selected for e, γ and µ, and ∆R < 0.4 for jets and

τs.

Overlap Removal

Defining contamination can be done in one of two ways; including, or not,

overlap removal. We define an overlap as an instance where a particle is

identified as more than one object. For example, it is very common for an

electron to be identified as both an electron and a jet. Overlap removal is the

process of making a decision about the definition of the object i.e. deciding

the object defined as both an electron and a jet is really an electron and

so removing it from any jet collections. For photons, electrons, muons and

jets, overlap removal has been included in the calculation of the amount of

cross contamination observed in a sample. Including overlap removal in the
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definition of contamination requires an order of precedence be set. Setting

an order of precedence is often physics dependent, and can affect the level

of contamination, as we will see below. For the baseline efficiencies and

contaminations the orders of precedence are set as in Table 6.4.

Particle, i 1st 2nd 3rd 4th

electron electron photon muon jet
photon photon electron muon jet
muon muon electron photon jet
jet jet electron photon muon

Table 6.4: For a particle of type i, the order of precedence set for the base-line
efficiency results shown below.

Inclusion of overlap removal should mean

J∑
j=1

εij = 1. (6.6)

For τ -leptons, there is no overlap removal in the work that follows8.

8The work on taus was completed prior to coding improvements that allowed for overlap
removal.
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6.4 Efficiency and Contamination Results

Having defined efficiency and contamination, and selected a method of

matching, we look at the distributions. Percentage efficiencies and contam-

inations for e, γ, µ, jets and τ -leptons have been considered as functions of

PT and η. Note that all errors are binomial, estimated with

δε =

√
ε(1− ε)

N
(6.7)

where N is the number of events in the bin.




87.79± 0.09 10.88± 0.10 0.225± 0.009 0.35± 0.02 31.80± 0.34

10.51± 0.08 85.10± 0.12 0.188± 0.007 0.22± 0.01 24.03± 0.24

0.00± 0.00 0.003± 0.002 96.03± 0.03 0.055± 0.005 2.39± 0.08

1.32± 0.03 0.62± 0.026 1.69± 0.02 75.75± 0.10 96.78± 0.09

0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00 73.58± 0.25




Table 6.5: Global (integrated) efficiency and contamination (as a percentage)
for e, γ, µ, jets and τs, calculated for Monte Carlo samples detailed in Table
6.1. The results here are for loose electrons. The diagonals represent the
efficiencies and the off-diagonals represent the contaminations (elements are
as described in Figure 6.3).
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81.31± 0.11 0.78± 0.103 0.225± 0.009 0.032± 0.005 31.80± 0.34

11.35± 0.09 85.10± 0.12 0.188± 0.007 0.22± 0.01 24.03± 0.24

0.00± 0.00 0.003± 0.002 96.03± 0.03 0.055± 0.005 2.39± 0.08

6.89± 0.07 0.62± 0.026 1.69± 0.02 75.75± 0.10 96.78± 0.09

0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00 73.58± 0.25




Table 6.6: Global (integrated) efficiency and contamination (as a percentage)
for e, γ, µ, jets and τs, calculated for Monte Carlo samples detailed in Table
6.1. The results here are for medium electrons. The diagonals represent the
efficiencies and the off-diagonals represent the contaminations.




73.59± 0.12 0.28± 0.02 0.225± 0.009 0.003± 0.001 31.80± 0.34

11.89± 0.08 85.10± 0.12 0.188± 0.007 0.22± 0.01 24.03± 0.24

0.00± 0.00 0.003± 0.002 96.03± 0.03 0.055± 0.005 2.39± 0.08

14.02± 0.12 0.62± 0.026 1.69± 0.02 75.75± 0.10 96.78± 0.09

0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00 73.58± 0.25




Table 6.7: Global (integrated) efficiency and contamination (as a percentage)
for e, γ, µ, jets and τs, calculated for Monte Carlo samples detailed in Table
6.1. The results here are for tight electrons. The diagonals represent the
efficiencies and the off-diagonals represent the contaminations.
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Displaying the efficiencies as a matrix is a simple and useful way both

to include the efficiencies in ATLFast, and to display them simply and

effectively. The diagonal elements represent the efficiencies and the off-

diagonals represent the contaminations given that in the rows we have the

reconstructed particles and in the columns, the truth particles.

For electrons the efficiency and contaminations shown are for elec-

trons passing the loose, medium and tight electron cuts, in Tables 6.5, 6.6

and 6.7 respectively. The global efficiencies for loose, medium and tight are

shown in Table 6.8.

e− Defn Z → ee (%)

loose 87.78 ± 0.09
medium 81.31 ± 0.11

tight 73.59 ± 0.12

Table 6.8: Reconstruction efficiencies for electrons passing the loose, medium
and tight definitions for electrons from a Z → ee sample.

Excellent reconstruction of electrons is paramount for many physics studies

at ATLAS. For loose electrons, the global efficiency is ∼ 90%. At first glance,

given the high expectations for electron finding, this may seem low, however

this figure represents the integrated efficiency over the full |η| region where

electron finding is valid (|η| < 2.5). Looking at the εee element in Figure

6.2, we see a significant drop off in the efficiency from roughly 90% to less

than 80%. This drop off is mimicked in tracking efficiencies for electrons
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Figure 6.1: Efficiency and contamination results as a function of PT , for elec-
trons, photons, muons, jets and τ -leptons. The shaded elements in the fifth
column correspond to the τ -lepton contaminations which have been produced
without the inclusion of overlap removal. Those shaded in the bottom row,
represent the contamination into τs which have not been calculated here, as
discussed in the text. Electron efficiencies and contaminations are shown for
Loose electrons.
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Figure 6.2: Efficiency and contamination results as a function of η, for elec-
trons, photons, muons, jets and τ -leptons. The shaded elements in the fifth
column correspond to the τ -lepton contaminations which have been produced
without the inclusion of overlap removal. Those shaded in the bottom row,
represent the contamination into τs which have not been calculated here, as
discussed in the text. Electron efficiencies and contaminations are shown for
Loose electrons.
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Figure 6.3: Efficiency and contamination results as a function of PT , for elec-
trons, photons, muons, jets and τ -leptons. The shaded elements in the fifth
column correspond to the τ -lepton contaminations which have been produced
without the inclusion of overlap removal. Those shaded in the bottom row,
represent the contamination into τs which have not been calculated here, as
discussed in the text. Electron efficiencies and contaminations are shown for
Medium electrons.
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Figure 6.4: Efficiency and contamination results as a function of η, for elec-
trons, photons, muons, jets and τ -leptons. The shaded elements in the fifth
column correspond to the τ -lepton contaminations which have been produced
without the inclusion of overlap removal. Those shaded in the bottom row,
represent the contamination into τs which have not been calculated here, as
discussed in the text. Electron efficiencies and contaminations are shown for
Medium electrons.
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Figure 6.5: Efficiency and contamination results as a function of PT , for elec-
trons, photons, muons, jets and τ -leptons. The shaded elements in the fifth
column correspond to the τ -lepton contaminations which have been produced
without the inclusion of overlap removal. Those shaded in the bottom row,
represent the contamination into τs which have not been calculated here, as
discussed in the text. Electron efficiencies and contaminations are shown for
Tight electrons.
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Figure 6.6: Efficiency and contamination results as a function of η, for elec-
trons, photons, muons, jets and τ -leptons. The shaded elements in the fifth
column correspond to the τ -lepton contaminations which have been produced
without the inclusion of overlap removal. Those shaded in the bottom row,
represent the contamination into τs which have not been calculated here, as
discussed in the text. Electron efficiencies and contaminations are shown for
Tight electrons.
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with PT = 1, 5 and 100 GeV, where the efficiency drops over thirty percent,

shown in [27]pp16. This drop in tracking efficiency is attributed to the extra

material in the detector at higher η, and has the knock on effect of reducing

the efficiency of electron reconstruction which relies heavily on tracking. For

electrons, the best reconstruction efficiency is found in the PT region above

10 GeV, for |η| < 1.35, where the efficiency for loose electrons is 93%.

The contamination for loose electrons is shown in the ‘truth’ electron column.

With the order of precedence set as in Table 6.4, the photon contamination

is very large, almost 20% in the high |η| region, corresponding to the drop

in electron efficiency caused by the poor tracking in this region. The poor

tracking leads to many of the electrons being wrongly reconstructed as pho-

tons, when a poor track is disregarded and the cluster which might have been

associated to the track is considered to be a photon. In the lower η region,

below 1.35, the electron-photon contamination is much lower, at less than

5%. The contamination shape as a function of PT is fairly uniform, with a

slight increase at low PT , which could suggest the lower transverse momen-

tum particles being misidentified as photons are predominantly appearing in

the high pseudorapidity region of the detector, i.e. are particles which are not

directly involved in the hard scatter event. The electron-jet contamination

in this instance is low, with an integrated value of εej = (1.32± 0.03)%.

We see however, in Table 6.9 that the contamination from electrons into the

photon and jet collections is highly dependent on the order of precedence

selected for overlap removal. Though choosing the standard order of
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Precedence εeγ(%) εej(%)

Loose
eγj 10.51 ± 0.08 1.32 ± 0.03
ejγ 0.036 ± 0.005 11.79 ± 0.09
Med
eγj 11.35 ± 0.09 6.89 ± 0.07
ejγ 0.037 ± 0.006 18.21 ± 0.11

Tight
eγj 11.89 ± 0.09 14.02 ± 0.12
ejγ 0.038 ± 0.006 25.88 ± 0.12

Table 6.9: Dependence of Electron contamination (εex) into Jet and Photon
collections, for electrons from a Z → ee sample, on the order of precedence
defined for overlap removal. Results are shown for loose, medium and tight
electrons, firstly when the order of precedence is ‘eγj’ and secondly when it
is ‘ejγ’.

precedence, (eγµj) results in a very high εeγ of ∼ 10%, if the order of

precedence is altered to ejµγ this effect is reversed and a reasonably small

εeγ of (0.338± 0.005)% is observed. This is at the expense of a much larger

εej = (10.53 ± 0.08)%. This is an interesting and potentially important

effect, depending on the analysis being completed. Selecting an order of

precedence is a balancing act between efficiency and purity of the signal.

Overall, the LHC jet cross-section, σj is of the order 0.1µb, which is orders

of magnitude higher than σγ/e. If we normalised the contamination rates to

the jet cross-section, the electron-jet contamination (as a number) would

be far less significant than the electron-photon contamination. As such,

it may actually be preferable to select the ejµγ order, even though this

maximises the contamination into jets from electrons, since 10% of elec-
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trons amounts to a relatively small proportion of the overall jet cross-section.

As well as the order of precedence having an impact on the results

for the electron contamination, the definition of the electron also has an

effect on both efficiency and contamination. As we see in Figure 6.7, there

is a significant effect on the efficiency as a function of both PT and η, with

a drop in efficiency of 6.5% for Loose to Medium electrons and of 7.7% from

Medium to Tight, equating to an overall drop of 14.3% from the most loose

definition of an electron, to the tightest. Electrons passing the tight cuts are

deemed higher quality electrons than those only passing the loose cuts, so it

is again dependent on the type of physics being completed which definition

is selected. Physics analyses requiring a high number of electrons would

perhaps select loose electrons, but an analysis where the quality of the

electrons is a necessity (such as in the H → ZZ → 4e− analysis) electrons

passing the tight cuts would be selected.

It is also important to select an electron definition that whilst having a high

efficiency, has low contamination levels, and as we have seen in Tables 6.9

and 6.10, both the contamination into and out of the electron collection is

dependent on the quality of reconstructed electron selected. For the case

of contamination out of the electron collection, i.e. εex where x = γ, jet, µ,

the contamination in the case of photon and jets increases as one moves

from the loose to the tight definition. For εeγ the increases are small, of the

order half a percent, however, for εej, the increases are much larger, with
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Figure 6.7: Comparison of electron reconstruction efficiency (εee) for loose
(green), medium (red) and tight (blue) electrons.
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the contamination jumping by 5.57% in the move from Loose to Medium

electrons, and by a further 7.13% from Medium to Tight. The suggestion

here is that electrons failing the medium and tight cuts also fail photon

identification cuts and so tend to be reconstructed as jets.

Contamination into the electron collection from other particle species is also

affected by the definition of the electron. In this case, unlike above where

consistently tighter cuts on electron definition results in more and more

failed electrons being available for reconstruction as a different particle, the

contamination into the electron collection drops as the cuts on the electron

definition are made stricter. The contamination of photons into the electron

collection is notably high for loose electrons, at (10.88 ± 0.10)%. This is

likely due to the lack of track quality cuts in the definition of loose electrons,

where the only track requirements are those imposed on the original EM

calorimeter cluster; that a track be pointing at the cluster within a ∆η×∆φ

window of 0.05 × 0.10 and the E
p

for the track to cluster match be < 10.

Inclusion of some track quality cuts, such as the cuts requiring at least nine

hits in the TRT and pixel detector greatly reduce the contamination from

photons, to 0.78% in the case of Medium electrons and 0.28% for Tight

electrons (where even tighter tracking and E
p

cuts are applied).

For jet-electron contamination, the value (for the order of precedence,

jeγµ) is (0.349 ± 0.019)% for Loose electrons, reducing to 0.032% and

0.003% for Medium and Tight electrons respectively. Given the large jet

cross-section at ATLAS, it is preferable to keep the contamination from jets



6.4: Efficiency and Contamination Results 156

to a minimum. There will be around 103 jets per second from the LHC

at nominal luminosity, which with a contamination rate of even 0.003%

amounts to roughly 3 fake electrons every 10 seconds, which is significant,

given we expect around 0.15 Z → ee events every 10 seconds.

Given these results, and those shown for the efficiency as a function

of PT and η, the best option for selecting efficient electrons, whilst keeping

the contamination into the sample (and out of) as low as possible is to

choose Medium electrons in the η range between 0 − 1.35 with PT > 10

GeV. Here, εmed
ee = 85%, whilst contaminations into the sample remain at

less 1% for both photons and jets. The contamination from the electron

collection into other collections is still high for medium electrons, but this

is a problem across the board, regardless of the electron definition. Table

6.10 shows the contamination into the electron collection from photons and

jets for Loose, Medium and Tight electrons, concisely showing that selecting

Medium electrons will keep fakes from both photons and jets to a minimum,

whilst allowing the efficiency to remain high.
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e− Defn εee(%) εγe(%) εje(%)

loose 87.78 ± 0.09 10.88 ± 0.10 0.349 ± 0.019
medium 81.31 ± 0.11 0.78 ± 0.03 0.032 ± 0.005

tight 73.59 ± 0.12 0.28 ± 0.02 0.003 ± 0.001

Table 6.10: The electron efficiency (εee) is dependent on the reconstructed
electron definition, as are the contaminations into the electron collection
from photons and jets. This table details for the Loose, Medium and Tight
definitions introduced above how εxe varies (where x = e, γ, j).

Photon efficiencies and contaminations are represented in the matrix in

Figures 6.1 and 6.2, in the second column. The first element in the column

shows εloose
γe = 10.88±0.10% which, as discussed above, seems high. However

given the lack of tracking cuts on the loose electron definition, this is less

surprising. Again, as mentioned above, by considering medium or tight

electrons, this contamination is drastically reduced (to less than one percent

in both cases).

The second diagonal element in the matrix shows the photon recon-

struction efficiency, εγγ for photons identified using the ‘cut-based photon

identification’. As for electrons, a high photon efficiency is important for

many physics analyses, such as exotic studies searching for graviton decay

to photons. The integrated efficiency is (85.1± 0.12)%.

There is a noticable drop in the photon efficiency in the η-region,

1.35 ≤ |η| ≤ 1.55, known as the crack region. This region of the detector

contains significantly more material and provides space for services and

cabling needed to read-out data from the detector. The sharp decrease in
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photon efficiency can be attributed to the higher number of tracks likely

to be present in this region of the detector. The increased number of

tracks leads to an increased likelihood that a cluster in the EM calorimeter

created by a photon will pass the ∆η × ∆φ and E
p

cuts applied to electron

identification, causing the photon to be identified as an electron. This

is reflected in the increase in photon-electron contamination in the same

η-region.

Changing the order of precedence for the photon efficiency, from γeµj to

γjµe results in εγj of ∼ 10% and a much smaller εγe. This is because, in the

photon sample used to produce the efficiencies, a particle identified as an

electron is generally also identified as jet.
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The muon reconstruction efficiency (the third diagonal element in

Figures 6.1 and 6.2) is very high. If one excludes the crack region, the global

efficiency is almost 99%. There is virtually no contamination of the muons

from any other particle, and muons themselves are rarely reconstructed

incorrectly, with only a small percentage being reconstructed as jets (< 2%).

The integrated efficiency for jets reconstructed in the full PT and η

range is (75.75± 0.10)%. This low efficiency is due to the significant turn-on

curve observed for jets. For PT > 35 GeV, the jet efficiency approaches

100%. In |η|, across the range considered, (0 ≤ |η| ≤ 2.5), the efficiency

seems consistently low, with a small dip in the crack region, however

removing the low PT jets which are not reconstructed well would increase

this efficiency across the full range. It is worth stating here that jets are

in fact reconstructed up to |η| < 4.9, however in these studies, efficiencies

are only valid up to |η| < 2.5. The contamination from jets is mainly to

electrons, with εje = 0.35 ± 0.02% (for loose electrons). For tight electrons,

this drops to εje = (0.003 ± 0.001)%, a value which is consistent with that

quoted centrally by the ATLAS Experiment, of 0.01% [27]pp15.

The τ -lepton efficiency studies shown here are from 2006, and were

produced prior to substantial code updates which allowed for the inclusion of

overlap removal. As such, the contamination values shown in Figures 6.1 and

6.2 have been shaded to highlight that these results are different than those

for electrons, muons, photons and jets. Additionally, the contamination
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into the tau-lepton collection has not been calculated for any other particle

species, meaning in the fifth row of the matrix, only the final element, (the

fifth diagonal) εττ is valid. The plots in the fifth column, representing ετx for

x = e, γ, µ, j are valid, but with the caveat that there is no overlap removal.

In this case,
∑J

j=1 ετj 6= 1, and if overlap removal was included, the levels of

contamination would be significantly reduced.

The efficiency, εττ is calculated for τ -leptons which have decayed hadroni-

cally, (τ → π0ντ or τ → π0π±π±π±ντ ). With a long turn-on curve, similar

to that for jets, the global efficiency for τ -leptons is (73.58 ± 0.25)%. This

is a very high efficiency, given the complex nature of the final state for

a τ decay9, which includes Emiss
t . It takes almost to PT = 100 GeV for

the efficiency to reach an asymptote at approximately 95%. Although the

contamination of τ -leptons into electron, photon, muon and jet samples

shown here do not include overlap removal, they do provide some interesting

insight into the way taus are reconstructed in comparison the other particle

species considered.

For example, electron and photon fakes from taus, at first glance seem large,

however given some thought, this is not surprising. Like ordinary jets, the

key components of an electron and tau-jet (and to a lesser extent, photons)

are the same; a cluster in the calorimeter, and a track (or lack thereof).

For hadronic tau decays, the remnants are normally pions (charged and/or

9The efficiency assumes a triggering efficiency has already been accounted for. τ trigger
rates can be less than 10%.
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neutral, depending on whether it is a 1 or 3 prong decay) which themselves

leave distinctive patterns in the detector. Neutral pions decay to photons,

which can then end up reconstructed in the detector as such, hence the

large ετγ = (24.03 ± 0.24)% and the decay of charged pions often mimic

either a jet or an electron in the detector, depending on how much of the

charged pion energy made it to the hadronic compartent of the calorimeter.

The discriminating variable for identifying taus from electrons is the lateral

shower shape in the EM calorimeter. The shower shape of the τ is narrower,

and analyses in ATLAS have shown that cuts on this variable will reduce

the tau-electron overlap significantly.

Displaying the efficiencies and contaminations in a single matrix, as

functions of transverse momentum and pseudorapidity provides an overview

of how good particle identification at ATLAS is, prior to tuning with data.

Across the board, after fiducial cuts, the identification efficiencies are high,

and though for some particles there are quite high contamination rates,

there are additional cuts which can be applied at the analysis level to further

remove fakes from a data sample. This will be particularly important for

electron-photon and photon-electron contamination, both of which reach, in

some detector regions, over 10%.

Prior to including these efficiencies and contaminations in ATLFast, a single

study to consider the physics independence of this approach was conducted

and the results of this are discussed below, prior to a brief outline of how
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these efficiencies where included in ATLFast, and some validation results,

showing the electron efficiencies applied to a tt̄ sample.

6.5 Physics Dependence: Electron Efficiency

Study

By recalculating the set of efficiencies and contaminations with a different

physics sample, the physics independence of the results can be verified. This

is done here for electrons from a tt̄ sample compared to the results shown

above, which were calculated using a Z → ee sample.

The tt̄ sample used is a semi-leptonic sample (tt̄→ jjblνb) i.e. one W -boson

from the decay of the top quark decays to jets whilst the other decays lepton-

ically to a neutrino and a lepton. Only events where the lepton in the decay

is an electron are selected, meaning only hard scatter electrons are utilised

for the efficiency calculation (as was the case for the Z → ee study). The dis-

tributions in Figure 6.8 show how the electron reconstruction efficiency varies

as function of PT and η for electrons reconstructed from a Z → ee sample and

from a tt̄ sample. For electrons passing the Loose cuts, the tt̄ and Z → ee

efficiencies are similar, only varying by a few percent. The integrated effi-

ciencies are shown in Table 6.11, for the Loose, Medium and Tight electrons.

As shown in the plots in Figure 6.8, εZ→ee
ee = 87.78% and εtt̄ee = 88.27%, i.e.

there is < 1% difference in the integrated efficiency for one sample to the

other. This is a positive result, indicative of physics-independence of εee at
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Figure 6.8: Comparison of Z → ee and tt̄ efficiency plots for three electron
definitions (Loose, Medium and Tight from left to right) and as a function
of both PT and η. Z → ee efficiencies are shown in red, and tt̄, in blue.
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this level. For Medium and Tight electrons, the efficiencies are less similar,

with the Z → ee efficiency higher than tt̄ by 2.5% and 3.5% respectively,

overall.

The numbers in Table 6.11 suggest overall that the efficiencies and contami-

nations for electrons from these two samples agree to within less than ±5%.

It seems reasonable to state that given the largest discrepancy between the

Z → ee and tt̄ results is of the order 4.5% (for εt,jej . i.e. electron-jet contami-

nation for the ejµγ order of precedence, with tight electrons), the results can

be, for the purposes of inclusion in ATLFast, described as physics indepen-

dent to this accuaracy. This is a good confirmation that such an approach is

broadly applicable to ATLAS physics analyses.

6.6 ATLFast

The particle identification studies described above, have been carried out in

order that the results be included in the ATLFast software, within a tool

called ATLFast-Correctors. This tool is designed to work within the already

defined ATLFast framework, discussed in Chapter 5, and allows one to apply

the efficiencies defined above (as physics independent) to samples produced

by ATLFast.
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Z → ee (%) tt̄ (%) ∆Z→ee−tt̄ (%)
εlee 87.78 ± 0.09 88.27 ± 0.12 -0.49 ± 0.15
εmee 81.31 ± 0.11 78.98 ± 0.15 2.33 ± 0.19
εtee 73.59 ± 0.12 70.03 ± 0.17 3.56 ± 0.21

εl,γeγ 10.51 ± 0.08 8.57 ± 0.10 1.94 ± 0.13
εm,γ
eγ 11.35 ± 0.09 9.99 ± 0.11 1.36 ± 0.14
εt,γeγ 11.89 ± 0.09 10.59 ± 0.11 1.30 ± 0.14

εl,jeγ 0.0361 ± 0.0053 0.077 ± 0.010 -0.04 ± 0.01
εm,j
eγ 0.0368 ± 0.0064 0.093 ± 0.011 -0.06 ± 0.01
εt,jeγ 0.0376 ± 0.0057 0.093 ± 0.011 -0.06 ± 0.01

εl,γej 1.32 ± 0.03 2.61 ± 0.06 -1.29 ± 0.07
εm,γ
ej 6.89 ± 0.07 10.28 ± 0.11 -3.39 ± 0.13

εt,γej 14.02 ± 0.12 18.54 ± 0.14 -4.52 ± 0.18

εl,jej 11.79 ± 0.09 11.16 ± 0.12 0.63 ± 0.15

εm,j
ej 18.21 ± 0.11 20.32 ± 0.15 -2.11 ± 0.19

εt,jej 25.88 ± 0.12 29.19 ± 0.17 -3.31 ± 0.21

εeµ 0.00 ± 0.00 0.003 ± 0.002 0.00 ± 0.00

Table 6.11: Comparison of the dependence of electron contamination (εex)
into jet and photon collections, for electrons from a Z → ee and tt̄ sample,
on the order of precedence defined for overlap removal. Given how low the
muon contamination is, this is given only for the default ordering, where
all electrons are defined first. Column three shows the absolute difference
between Z → ee and tt̄, along with the error on this difference. The absolute
difference can be considered as a measure of the physics independence.
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6.6.1 ATLFast-Correctors

The inclusion of a matrix of efficiencies in ATLFast is a quick and relatively

simple way to make the output resemble more closely that from the full sim-

ulation. In particular, any loss of particles due to reconstruction or detector

effects can be modelled in this framework. The ATLFast efficiency matrix

would take the form shown in Eq 6.3, where each element would be repre-

sented by two histograms, one describing the efficiency as a function of PT

(Figure 6.1) and the other, as a function of η (Figure 6.2). As above, the rows

(j) of the matrix represent reconstructed particles, whilst the columns (i) de-

note the generated particles. Under this definition, εee for example, represents

the fraction of electrons generated and reconstructed as electrons, whereas

εeγ , represents the fraction of electrons generated but reconstructed as pho-

tons (a contamination). The diagonals represent efficiency and off-diagonals

represent contamination. This is true given the definitions of efficiency and

contamination set out in Eq 6.2.

By including fully reconstructed particle efficiencies and contaminations in

ATLFast, we can go some way to reflecting particle losses in the fast sim-

ulation. The study presented here is an approach for improving the fast

simulation. The majority of the implementation of this software within the

ATLAS Athena framework was completed by S. Allwood-Spiers [75] and C.

Collins-Tooth [76].

Generally ATLFast produces distributions that are within approximately

10% of the full simulation, however the main inadequacy of the software



6.6: ATLFast 167

is the full reconstruction software capabilities are not included. The full re-

construction is constantly adapting to reflect any alteration in the detector

layout, unlike the fast simulation which is stable. Though this stability may

be considered useful in an environment where there is constant change else-

where, the inclusion of an algorithm that will constantly update ATLFast

output to reflect the state of the detector and the current full reconstruction

status can also be considered useful. Taking the original ATLFast output,

ATLFast-Correctors produces a new set of collections at the AOD stage which

have had particles removed or added depending on the likelihood that they

would have been identified correctly by the full reconstruction. These col-

lections, along with the original collections, are returned to ATLFast and

provided as output to the user for analysis.

Given the requirements placed upon ATLFast at its conception, the inclu-

sion of a matrix to represent detector effects and reconstruction capabilities,

seemed an obvious choice for improving the output from ATLFast whilst

maintaining the original software’s speed. The timing studies shown in Chap-

ter 5 show the amount of CPU used by ATLFast-I is orders of magnitude

less than full simulation, and the improvements implemented here do not

affect these timings significantly. The implementation of a matrix of efficien-

cies and contaminations, allows the user to both destroy and create particles

within collections. By adding the efficiency, it is no longer simply removing

particles from the distribution that are outwith the geometrical or kinemati-

cal range for detection, but also adding in a measure of the likelihood that a
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particle will be reconstructed correctly, wrongly or not at all. The ATLFast-

Correctors algorithm effectively takes particle collections output from vanilla

ATLFast and produces a new set of particle collections, the contents of which,

will have passed the cuts defined by the values in the matrix.

To ascertain whether the particle would be detected, a random number in the

range [0, 1] is generated per event, representative of each diagonal element

in the matrix. By comparing this uniform random number to the expected

ε(η, PT ) for a particle in the same η and PT bin, a decision can be made based

on the criteria that if the random number is lower than the efficiency at that

PT and η then the particle is kept, otherwise, it is thrown away (into a re-

mainder collection). A framework is in place that would see these remainder

particles used as input to the contamination stage, such that each particle

is only used once in the process, ensuring that particles cannot be both an

efficient particle and a contamination.
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6.7 Validation: Electron Efficiency

The photon and jet corrections have been validated elsewhere and are not

the subject of this thesis. Instead here, the electron efficiency correction

only is validated. The electron efficiency is applied to a sample of tt̄

events generated by the AcerMC [59] Monte Carlo generator. Given the

discussion above regarding the electron definitions, the efficiency applied

is the medium electron efficiency, shown in Figure 6.9. For the sample of

fully reconstructed tt̄ events, medium electrons are considered too, so that

the comparison is like-for-like. Over 395, 000 tt̄ events at 10 TeV were

analysed (see Table 6.1 for details.). The AcerMC generator was selected

for several reasons. Firstly, a large sample of tt̄ events existed using this

generator, and secondly, all weights in AcerMC, unlike MCatNL0 [60] or

Alpgen [58] are 1, avoiding any potential bias this has on distribution shapes.

ATLFast produces two electron collections and the Correctors can be

applied to either. The validation work completed here looks at the applica-

tion of the efficiency to both collections. The two samples are: all electrons,

and the isolated electron subset of this, which must have less than 10 GeV

in a ∆R = 0.2 around the EM cluster in the electromagnetic calorimeter.

The results of applying the ATLFast-Correctors electron efficiency to

the electrons from the tt̄ sample are shown in Figure 6.10. Application of
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the same εee to the isolated electron collection in the tt̄ sample results in

the distributions shown in Figure 6.11. There is a significant difference in
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Figure 6.11: Selected isolated electron variables for FULL (blue), FAST (red)
and CORRECTED FAST (green).

the results for isolated and all electrons. The comparison looks at several

variables of interest, in particular, the electron PT and η and the leading

(highest PT ) electron PT and η. Also, the leading electron energy (E) is

compared, as is the φ-distribution for all electrons in the sample.
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For the electron results shown in Figure 6.10 the global difference

between full and fast, is +42.3% prior to correction, and +25.1% after

correction. This a significant improvement but does suggest the medium

efficiency, εmed
ee = (81.31 ± 0.09)%, is too high to fully correct for the effects

of the full reconstruction in this sample.

Though it is most physical to apply the medium electron efficiency to the

ATLFast sample when attempting to mimic a fully reconstructed sample of

medium electrons, this does not give the best result. Though the shape, for

example, of the η and ηleading distributions from ATLFast are consistent with

those from full, the corrected ATLFast output is still roughly 20% higher in

the central region than the full distribution. The PT , P leading
T and Eleading

distributions show in the low PT and E region the efficiencies applied are

not sufficient to bring the fast simulation in line with the full. Given the

turn-on seen in the efficiency as a function of PT , this is surprising. Overall,

the indication here is that a lower efficiency (such as the tight electron

efficiency) is needed to produce more similar results between full and fast.

The global difference between isolated electrons from ATLFast and

those from full, is 8.72%, significantly smaller than the 43% difference

observed for all electrons. After correction, the difference between the full

and fast is −5.32%. The effect of the correction here is the opposite of that

for all electrons and is most obvious in the η, ηleading and φ distributions.

In either case, after corrections, the ATLFast distributions are globally closer
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to those of the full. For non-isolated, the absolute difference is improved by

12% and in the isolated case, is improved by 3.3%.

6.8 Current Status of ATLFast-Correctors

The overall aim is to produce a general tool, providing users with the option

to switch on the ATLFast-Correctors tools. The Correctors can be switched

on and run as part of ATLFast or an AOD-to-AOD correction can be ap-

plied. This second option reads in the standard ATLFast output from an

already made AOD file, and applies the corrector options selected to samples

identified by the user.

For now, efficiencies as shown above are applied to electrons and muons, as

produced with samples detailed in Table 6.1. Photons and jets are dealt with

differently. Photons are parameterised as converted or unconverted, and a

separate efficiency is applied depending on whether the photon is tagged as

converted or not. The work involved in this study was completed by N.

Cooper-Smith [74] and is the topic of his PhD thesis.

For jets, a detailed correction, not discussed here, is applied. This correction

includes an energy correction based on the jet energy scale corrections nec-

essary when a jet is reconstructed. The corrections applied are dependent

on the energy of the original jet and the results thus far, are positive. Given

the correction is software specific, it is likely it will need to be re-calculated

for each new release of the ATLAS software, and no studies have yet been
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completed to ensure the physics independence of the work. This work was

completed by C. Collins-Tooth [76].

Contaminations are not applied at all at this point. It is envisaged that only

particles which do not satisfy the efficiency criteria would be available to be

considered as contaminations. At the time of writing, this has not yet been

implemented in ATLFast-Correctors.

6.9 Summary and Conclusions

The comprehensive study shown here presents efficiencies and contaminations

for electrons, photons, muons, jets and tau-leptons. The most important

results include:

• Measurement of εee, εγγ, εµµ, εjj and εττ in fully simulated Monte Carlo.

• εeγ, εγe ≈ 10%.

• εje = 0.003%, consistent with results from other ATLAS studies, of

0.01%.

• Order of precedence can have large effect on εje, going from 0.003% to

∼ 10% when precedence is given to jets over photons (eγµj to ejµγ).

The ATLFast-Correctors package, which makes use of these efficiencies

and contaminations, is a new and innovative approach to including the de-

tector and reconstruction effects in the fast simulation. The work in section
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6.7 shows that the inclusion of electron efficiencies can bring the difference

between full and fast to within ±5%. Typically, users of ATLFast expect

agreement of ±10%.

Thus far, only the electron efficiencies have been validated, however photon,

muon and jet efficiencies are also included in ATLFast-Correctors.



Chapter 7

tt̄H(H → bb̄) - Likelihood

Analysis

7.1 Introduction

Discovery of the Standard Model Higgs boson is one of the key goals of the

ATLAS Collaboration. Particle identification is a key tool for discovery of

new physics, and the studies discussed earlier in this thesis show that AT-

LAS, in fiducial regions of the detector, has identification efficiencies upward

of ninety percent for electrons, photons, jets and muons in specific detector

regions. This is important for searches for any new physics, and not least

the search for the low-mass Standard Model (SM) Higgs boson. Equally im-

portant will be the ability to understand backgrounds from processes such

as gg → qq (QCD jets), which could shroud any new signal in a large back-
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ground.

One way to improve ATLAS’ ability to detect new physics, is to develop

new and innovative approaches to analysis. The tt̄H(H → bb̄) channel is one

example of a complex decay mode of the Higgs where alternate analysis tech-

niques will be key if it is be a discovery channel, as the standard cuts based

searches in this channel results in a low signal to background ratio. Aside

from a possible discovery channel, tt̄H is also the most promising channel in

which the hadronic coupling of the Higgs boson can be studied.

This chapter looks at two possible methods of enhancing the statistical sen-

sitivity of this channel. In particular, a log-likelihood approach (detailed in

section 2.4) has been adopted in a bid to find the highest possible significance

for the channel. Alongside the log-likelihood analysis, a neural network has

been implemented, as a proof of concept, to show that by completing a multi-

variate analysis on this channel, the sensitivity can be improved.

The Higgs plus associated top channel is a particularly challenging decay

mode of the Higgs boson and has been declared as non-feasible by CMS [41].

The use of a standard cut-based counting method for assessing expected sen-

sitivity is seriously hampered in this channel by the systematic uncertainties

which affect the robustness of the expected signal and background distribu-

tions. This channel is one of the few that allows access to the mass range

just above the LEP limit and use of the log-likelihood analysis will augment

the amount of information available to disentangle the signal from the large

background, and improve the sensitivity of the mode. Section 7.2 presents
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the tt̄H mode, the data samples used in the analysis and the sensitivity

results found for this channel in the ATLAS Experiment study, called the

Computing Systems Commissioning (CSC) analysis [27]pp1333.

Section 7.3 presents the counting experiment approach to computing the

sensitivity. Here, Eq 2.45 is used to establish that for tt̄ H , discovery can only

be achieved if systematic uncertainties are tightly constrained and the signal-

to-background ratio greatly improved. The main systematic uncertainties

for this channel are introduced in Table 7.4. The discovery and exclusion

potential for the tt̄ H channel are discussed in section 7.4.

7.2 The tt̄H Decay Mode

This channel is relevant in the low-mass range between the LEP limit at 114.4

GeV and approximately 130 GeV. The semi-leptonic decay mode studied here

has a final state including two light jets, four b-jets, a lepton and a neutrino,

making it one of the most difficult final states to reconstruct. The Feynman

diagram for the tt̄H channel is shown in Figure 7.1.

Additionally, the combinatorics involved in recombining the four b-jets in

this channel are large, and have a significant effect on the mass distribution.

Incorrectly combining two of the jets to reconstruct the Higgs mass leads to

a broadened Higgs peak, and this in turn causes the sensitivity of the chan-

nel to be reduced. The most relevant backgrounds for this channel are tt̄bb̄

(which is produced in both a QCD and electroweak process) and tt̄jj, where
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Figure 7.1: Feynman diagram for the tt̄H → bjjb̄lνbb̄ (semi-leptonic tt̄H)
decay. The high transverse momentum lepton from the decay of the inter-
mediate W boson acts as a trigger for the channel.
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light jets are misidentified as b-jets.

The data used in the study that follows was generated for the CSC exercise

completed by members of ATLAS during 2007-09. This channel was stud-

ied in detail in the relevant CSC paper [27]pp1333 and prior to that in [77].

The CSC study contained three individual studies, a ‘cuts-based’ analysis, a

‘pairing likelihood analysis’ and a ‘constrained mass fit’ analysis. The mass

distribution produced by the pairing likelihood analysis is used in the study

that follows.

The tt̄H signal was produced with Pythia6.4 and was calculated at lead-

ing order. At the time of writing, no next-to-leading order cross-section

calculation for the signal exists. The process generated for the signal is

pp → tt̄HX → bqq̄b̄lνbb̄X (with l = µ±, e±). The tt̄H cross-section is

σtt̄H = 537 fb, and including the various branching ratios, (BRH→bb̄ = 0.675,

BRW→lν = 0.1066 and BRW→jj = 0.676), the fiducial cuts (|η| < 2.7 and

PT > 10 GeV) and the lepton filter efficiency, εfilter = 0.953, the final cross-

section is 100 fb.

The QCD tt̄bb̄ background was generated with AcerMC34 and Pythia6.4.

AcerMC34 is a Matrix Element leading order generator, which handles the

hard process generation, with Pythia adding the Initial and Final State Ra-

diation. The EWK tt̄bb̄ background was generated with AcerMC33, and

also interfaced with Pythia6.4. The process generated for the tt̄bb̄ back-

grounds is pp → tt̄bb̄X → lνbqq̄bbb̄X, where l = µ±, e±, and the leading

order cross-sections for each process are σ(pp → tt̄bb̄) = 8.2(gg) + 0.5(qq̄)
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pb (QCD) and σ(pp → tt̄bb̄) = 0.90(gg) + 0.04(qq̄) pb (EWK). Both have

a lepton filter efficiency applied at generator level, of εfilter = 0.946 for the

QCD process, and εfilter = 0.943 for the electroweak process.

The tt̄jj background is generated with MCatNLO and is an NLO+NLL

process, generated as tt̄ → lνqq̄bqq̄b̄ where l = e±, µ± or τ±. The inclusive

cross-section is 833 pb. There is a filter applied to this sample requiring that

each event has an electron or muon within |η| < 2.7 and with PT > 14 GeV.

Additionally, there must be at least 6 jets in each event, four of which must

be within |η| < 2.7 and the other two, within |η| < 5.2 and all six must have

PT > 14 GeV. Roughly 10% of the events generated in the tt̄jj sample will

be tt̄bb̄ events and these are removed using a process detailed in [78].

7.2.1 tt̄H Analysis Framework

This study begins by reconstructing a leptonic W from the high PT trig-

ger lepton and the missing transverse momentum in the event. The second

(hadronic) W in the event is then reconstructed from the two (of six) jets

least likely to be b-jets, with the likelihood based on the b-jet weight1 [27]pp389.

The window applied to the reconstructed W mass is ±25 GeV. Top quarks

are then reconstructed by pairing the remaining four b-jets with the W solu-

tions. The best pairing is selected following a χ2 minimisation based on the

mass of the top quark. The top reconstruction also has a ±25 GeV window

around the nominal top mass (selected to be 175 GeV) applied. After top

1The likelihood that jet comes from a b quark.
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quark reconstruction, the remaining jets are used to reconstruct the Higgs

boson. The pairing likelihood analysis (the output of which is utilised in

the following study) makes use of further jet information in order to better

reconstruct the W bosons and the top quarks. The final analysis in the CSC

study was a constrained mass fit, which attempts to address the issue of jet

combinatorics by making use of jet charge information. Additionally, the W s

and tops are forced on-shell, and their energies are rescaled in the analysis

to reflect this mass constraint.

The results of each of the three analyses completed for the CSC study are

shown below in Table 7.1 for 30 fb−1. It is clear from the results that making

a discovery in this channel would require a significant amount of high quality

data to be recorded, as, even with 30 fb−1, the best discovery sensitivity

achieved was Z = 2.18 in the Constrained Mass Fit analysis. None of the

figures in Table 7.1 include systematic uncertainties and so the numbers in

reality are likely to be significantly lower.

Analysis Z

Cut-Based 1.82
Pairing Likelihood 1.95
Constrained Mass Fit 2.18

Table 7.1: Discovery sensitivity as a number of sigma (Z), for the tt̄H decay
mode of the Higgs, with 30 fb−1 of ATLAS data, as calculated by three anal-
ysis methods developed for the CSC study, completed by ATLAS members
during 2007-09 [27]pp1333.
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7.3 Systematic Uncertainties in the Counting

Experiment

In the following section, we make the assumption that the statistical and

systematic uncertainties are uncorrelated, such that we are able, in a simple

way, to describe the allowed uncertainty for a given sensitivity. The likelihood

that a channel will be a discovery mode, can be assessed using Eq 2.45, which

includes the effect of systematic uncertainties on the achievable sensitivity.

As s
b

is measurable from Monte Carlo simulation, the limits placed on the

achievable sensitivity can be modelled.

7.3.1 Constraints and limits of sensitivity on tt̄ H

Figure 7.3 shows the results for tt̄ H , for 10 fb−1, 30 fb−1 and 100 fb−1. We

see in this figure that there are strict constraints imposed on the achievable

sensitivity by the systematic uncertainties relevant to this search mode. If

we consider the example mass distribution in Figure 7.2, it is clear why sys-

tematic uncertainties can kill the sensitivity in this channel. The low rates

of expected signal in comparison to the large backgrounds show clearly that

any fluctuation on the background, could mask the small signal.

From Monte Carlo simulation, the ratio of signal-to-background for tt̄ H is

approximately 15%. Figure 7.3 indicates that with systematic uncertainties

constrained to 6%, we can expect only a 2σ result for this channel in the

early years of data taking. With 100 fb−1 and s
b

improved, to 30%, the ex-
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pected sensitivity reaches 5σ, if systematic uncertainties are constrained to

< 5%. More realistically, they will be of the order 10%, meaning to achieve

discovery, the signal-to-background ratio must increase three fold to 50%, at

this integrated luminosity.

Alternatively, one can look at Figure 7.4 which shows the relationship be-

tween ε and the sensitivity, Z. This is just a recasting of equation 2.45 to

assess the sensitivity achievable at fixed values of s
b
. The results are shown

again for 10 fb−1, 30 fb−1 and 100 fb−1.

The current tt̄ H analyses do not decrease the reducible background suf-

ficiently and so the small signal-to-background ratio is a serious limitation

that should be overcome if this channel is going to be useful in the future

as a discovery mode of the Higgs boson in the region around the LEP limit.

Further analysis to increase this ratio is ongoing, though as yet there are no

analyses which increase the ratio enough to allow early discovery with tt̄ H .

With the current analysis, the limitations imposed on the sensitivity by the

systematic uncertainties make discovery, at least in the early stages of LHC

running, unachievable.

In the following, we introduce a method to extract more information from

the distributions in order to increase the likelihood of making a conclusive

statement regarding discovery or exclusion of the Higgs, and show an im-

provement in the sensitivity of the channel.
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Figure 7.2: Example of the expected signal and background distributions for
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Figure 7.3: s
b

versus ε (% systematic uncertainty), yielding the 1 to 5σ result
(shown separately for the five values of Z ). Results for 10 fb−1 (top), 30 fb−1

(middle) & 100 fb−1 (bottom).
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7.4 Binned Log-Likelihood Analysis

It is common to base an analysis on the shape of distributions specific to

the signal and background of the channel. The binned Log-Likelihood Ratio

(LLR) takes the form:

Q =
L(data|ŝ(mH) + b̂)

L(data|ˆ̂b)
, (7.1)

as described in section 2.4 in Chapter 2.

With L(data|ŝ+ b̂) and L(data|ˆ̂b), both described by a Poisson distribution

we write, q, as:

q = −2lnQ = −2ΣN
i=1

(
si − niln

[
1 +

si

bi

])
. (7.2)

That is, the likelihood ratio of each bin in a histogram is calculated and

then summed with all the other bins to produce a single value of the test

statistic corresponding to a single set of data produced under a given hypoth-

esis, H0 or H1. All the possible values of the test statistic are represented by a

Probability Distribution Function (p.d.f.). The shape of the p.d.f. is dictated

by the statistical and systematic uncertainties considered in the calculation

of the likelihood ratio.
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7.4.1 Likelihood Distributions and Median Sensitivity

Given the definitions and the analysis techniques introduced above and in

Chapter 2, this section details the results of the shape analysis study on the

tt̄ H channel. The initial motivation for the development of this method of

analysis was improving the low significance of the tt̄ H channel in the classical

counting experiment framework.
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Figure 7.5: Signal and background distributions of the tt̄ H pairing-likelihood
analysis, normalised to 30fb−1.

In order to calculate the median sensitivity for the counting and the

shape methods, we use the λ function introduced in section 2.5. We also
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measure directly from the distributions, a p-value, and show that in this

channel (due to its low expected sensitivity and the Gaussian nature of the

likelihood distributions), the measured p-value, and the value of λ tend to the

same figure when running 106 pseudo-experiments. Histograms with 1-bin

in the mass range 0-420 GeV were used to compute the counting experiment

sensitivity and a 14-bin histogram in the mass range 0-420 GeV (shown in

Figure 7.5) was used for the shape method (LLR). We consider three cases,

and in each, compare the one-bin results to those for shape (i.e. 14 bins).

The results shown are for 30fb−1 of expected ATLAS data.

The three cases considered are as follows:

• Include statistical fluctuations from all the tt̄ H backgrounds (tt̄bb̄QCD,

tt̄bb̄EW and tt̄jj) separately. Each background is generated at a differ-

ent initial integrated luminosity, and in this case the statistical uncer-

tainty of the Monte Carlo simulation samples are correctly propagated.

• Sum the backgrounds, and include a Poisson statistical uncertainty

on the total number of background events in each bin. In this case

the statistical uncertainties from the original Monte Carlo simulation

samples are not propagated.

• No statistical fluctuations i.e. assume shapes are exact. This shows,

given the current state of the analysis for the channel, the maximum

median sensitivity achievable.

The likelihood distributions for the counting and the shape analysis cases
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are shown together in Figure 7.6. To produce these distributions, 106

pseudo-experiments were carried out. This is sufficient to show their Gaus-

sian shape. Producing the likelihood distributions from a larger number of

pseudo-experiments would smooth the distributions somewhat, however the

median and standard deviation of the fitted Gaussians remain approximately

constant as the number of pseudo-experiments increases, meaning that λ can

be considered robust.

As expected, the separation of the likelihood functions increases from left to

right for both one-bin and shape. This is unsurprising, as in each subsequent

case, the relative statistical uncertainty is smaller. It is more interesting,

and indeed the purpose of this study, to show that in each case, comparing

the top plot to that on the bottom, we see a small but important increase

in the separation of the likelihood distributions, which, following our defini-

tions of sensitivity, equates to a small but important increase in the expected

sensitivity from this channel.

The figures in Table 7.2 show two interesting results. Firstly, the robust-

ness of λ as an estimator for sensitivity is confirmed in this case, with only

very small differences in the expected sensitivity observed between Z (the

sensitivity measured using the discovery p-value) and λ. Secondly, moving

from one-bin to shape, the average improvement, for each of the three cases

considered, is consistently 10%. Though this is a small improvement, it is

important for a complex channel like tt̄ H .
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Z λ λFIT

Separate Background

One Bin 1.08 1.03 1.06
Shape 1.22 1.14 1.20

Single Background

One Bin 1.47 1.46 1.46
Shape 1.61 1.61 1.61

No Statistical Fluctuations

One Bin 2.07 2.1 2.08
Shape 2.30 2.34 2.34

CSC 1.95
s√
b

2.09

Table 7.2: Expected discovery sensitivity for each case introduced above,
calculated in three ways: from a measure of a p-value (denoted Z in the
table), using λ with the µ and σ of the distributions taken directly from the
distribution, and thirdly, using the µ and σ for the distributions from the
Gaussian fit. For completeness, the CSC result and s√

b
(0-420GeV) results

are also shown.
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CL (%)

Separate Backgrounds

One Bin 73
Shape 79

Single Background

One Bin 85
Shape 89

No Statistical Fluctuations

One Bin 96
Shape 98

Table 7.3: Expected exclusion confidence levels for each of the three cases
introduced.

Exclusion Confidence Limits

Finally, we consider the effect of the inclusion of shape in this channel on our

ability to exclude the signal. The exclusion confidence level results for each

case are shown in Table 7.3. In the counting experiment, CLs=0.27 i.e. we

can exclude at approximately a 73% Confidence Level. Based on convention,

this is not sufficient to exclude the Higgs at a mass of 120 GeV under the

assumption of H1. For the shape analysis, the exclusion confidence level

achievable increases to 79%, under the assumption of H1 with 30 fb−1. In

excluding the signal, the uncertainties on the signal play an important role,

and here we can see that even statistical fluctuations on the signal remove any

chance of making an exclusion of the Higgs boson at this mass. With more

statistics, as is suggested from the result where the statistical fluctuations

have not been included, it is feasible that this channel could exclude a low-
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mass Higgs at > 95% CL, however it seems unlikely that other channels or

a statistical combination of channels will not achieve this result first.

7.5 Neural Network Analysis

A neural network is a multivariate analysis which makes use of a collection

of event variables to separate signal from background. It works roughly like

the human brain (but on a more simplistic scale), by copying the processes

and multi-layered connectivity of neurons in a biological system. Taking

a multivariate approach means that more information is available to the

decision making process, but also introduces the potential for less reliability.

The set of variables utilised here were studied by H. McGlone in [79]. They

are introduced below and are referred to in the following as the ‘generic’

variables.

The neural network used in this study is discussed in more detail in [79]. It

is a Multilayer Perceptron (MLP) and the layout resembles that of Figure

7.7. There are a number of input neurons or nodes, and then a number of

hidden layers, each of which in turn have a number of neurons. The output

is not restricted in general to only one node, however in the neural network

utilised here, only one output is used. The layout selected for the neural

network used here is 36 : 8 : 4 : 1, meaning there are 36 input nodes, two

hidden layers, one which has 8 nodes, and the other which has only 4. It

has been shown in [79] that the results are insensitive to this choice.
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Figure 7.7: Example of the layout of a multilayer perceptron neural network.
The MLP can have many hidden layers, each with a different number of
nodes.

Before the NN can be used to analyse a dataset, it must be trained. This

involves teaching the network to recognise signal events from background

events. Separate data samples are used to carry out the two stages of the

learning process; training and testing. It is important not to overtrain the

neural network in this stage; too many cycles and the NN will begin to

recognise individual events and is said to be overtrained. In the opposite

case, when the NN has gone through too few training cycles, it will not

develop optimal pattern recognition. The neural network utilised here

was trained over 1000 cycles, which is deemed the appropriate number of

training cycles to ensure the NN reaches the optimal pattern recognition

needed to produce robust results without overtraining.
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The output from the neural network is ideally a distribution peaked

at 0 and 1. Events deemed as signal should have a neural network score of

1, with the background events having a NN score of 0. The output from the

neural network is shown in Figure 7.8 and the normalised output is shown

in Figure 7.9.

Figure 7.8: The output from the neural network using the Generic Input
variables. The signal events are peaked towards 1 (in red) and the background
results are peaked towards 0. This is highlighted by the log-scale. The LLR
analysis aims to utilise this difference in the output to augment the sensitivity.

The set of generic variables used in the analysis are the following set of event

characteristics:

- mbn1bn2 - the invariant mass distribution of all the b-jet combinations in
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the event. All the jets are considered and are ordered by b-jet weight.

The highest six combinations are kept.

- P bn1bn2
T - the transverse momentum of all b-jet combinations in the

event. All jets, ordered by b-jet weight are considered. The highest six

combinations are kept.

- Etn1
T + Etn2

T - Sum of transverse energy for all the combinations of top

quark candidates in the event. Top pairs are ordered by χ2 value. Top

six combinations are retained.

- ∆φ(tn1, tn2) - φ difference of all combinations of top quark candidates

in the event, ordered by χ2. Top six are retained.

- ∆η(tn1, tn2) - η difference of all combinations of top quark candidates

in the event, ordered by χ2. Top six are retained.

- bn Likelihood - Likelihood that a b candidate is a b-jet, ordered by b-jet

weight. Top six candidates are retained.

These variables are calculated in the neural network analysis following ap-

proximately the same process as in the cut-based analysis for the CSC study

detailed above. Following the neutrino solution, the W ’s are reconstructed,

followed by the top quark. No mass window is imposed on the W recon-

struction, but the window on the top quark is 25 GeV. The top quark pairs

are ordered by χ2. And for each pair, the necessary variables are calculated

(
∑
Et, ∆φ and ∆η).
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7.5.1 Systematic Uncertainties

In the results shown above for the tt̄H channel, no systematic uncertain-

ties have been included. Several systematic uncertainties applicable to this

channel are introduced in the Table 7.4.

tt̄H(H → bb̄) relative uncertainties (%)

Contribution Signal tt̄jj tt̄bb̄ [QCD] tt̄bb̄ [EWK]
Luminosity 6 6 6 6

Trigger 1.5 1.5 1.3 1.4
Lepton ID 0.6 0.3 0.3 0.3

MET 1 1 1 1
NLO Acceptance 10 5.5 10 10

PDF 2.2 1.9 2.7 2.7
xsec 10 10 10 10
btag 16 20 20 20
JES 9 5 5 5

Table 7.4: Systematic uncertainty on the signal and background contribu-
tions to the tt̄H(H → bb̄) decay mode. Uncertainties are applied to the over-
all normalisation of the signal and background contributions, are relative and
shown as a percentage. Unless stated otherwise in the table, the uncertain-
ties are symmetric. The Luminosity, Trigger and Lepton ID uncertainties
are combined in quadrature and added as a single combined uncertainty.

These uncertainties are estimated by the ATLAS experiment Higgs group

responsible for studying this channel. Additionally, in some instances, they

are estimated from current experiments, such as the CDF experiment at

Fermilab.

The uncertainties relevant to this channel are:
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• Luminosity This is the uncertainty on the measured Luminosity of the

experiment. The 6% figure applied here is higher than the performance

requirement of the ATLAS Experiment, which is quoted internally as

3% [80]. In the initial running period of the ATLAS experiment, it is

reasonable to expect this uncertainty will be higher.

• Trigger This is the uncertainty on the trigger rate at the experiment.

For the tt̄ H channel, the trigger will be the high transverse momentum

charged lepton from the decay of one of the W-bosons (produced when

the associated top-quark decays). The acceptance rate of this trigger

will be measured with data using the ‘tag and probe’ method. Cur-

rently, a value is estimated from Monte Carlo simulation and includes

an uncertainty. The value of this efficiency will affect the observed

cross-section.

• Lepton ID Again, this refers to the uncertainty on the identification

rates for charged leptons. This uncertainty will also affect the measured

cross-section of the decay. Contamination results measured in Chapter

6 would suggest this figure is sensible as the number used here is similar

to that measured in Chapter 6. The fake rate for medium electrons from

photons and jets was measured to be (on average) 0.41%.

• Missing ET (MET) This uncertainty reflects the uncertainty on the

measured missing transverse energy. 1% is optimistic for the first year

of running, though this figure is estimated from a similar error on a
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Higgs analysis at the CDF experiment.

• NLO Acceptance This is the uncertainty associated with the dif-

ference between leading order (LO) and next-to-leading order (NLO)

calculations of the cross-section and is also estimated from CDF. The

uncertainty reflects the variations in the measured acceptance depend-

ing on whether a LO or NLO Monte Carlo generator is used. It is

feasible that when an NLO generator is used, a higher acceptance is

measured, leading to a higher cross-section for the mode. As yet, there

is no NLO calculation of the tt̄ H cross-section, so the 10% assumed

here for the signal is based on measured uncertainties on the relevant

backgrounds for the tt̄ H channel.

• Probability Density Function (PDF) These uncertainties result

in an uncertainty on the relative cross-section for a given diagram.

The PDF uncertainties are measured either by varying the eigenvalues

of the CTEQ parameterisation parameters or by comparing CTEQ

parameterisations to those from another library, such as MRST2001.

The variation in either case is applied as the uncertainty.

• xsec This is an additional uncertainty on the cross-section for the sig-

nal and backgrounds. This uncertainty is estimated from the difference

between various calculations of the cross-section from different gener-

ators. It is worth noting that there is no NLO calculation of the tt̄ H

cross-section, and in some instances, cross-sections vary by over 50%
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X (without Systematics) X (inc. Systematics)

−2σ 1.9 2.3
−1σ 2.6 3.2

median 3.6 4.6
+1σ 5.2 6.2
+2σ 7.1 8.9

Table 7.5: The number (X) times σSM excluded at 95% CL for 1 fb−1 of tt̄H
data, calculated using the Neural Network score distribution shown above,
as input to the Log-Likelihood analysis.

for different generators, indicating that 10% here may be too low.

7.5.2 Bayesian Limit Results

Following the method set out in section 2.4, we set a 95% CL exclusion on

a multiple, X, of the Standard Model cross-section, σSM , for the process

being considered. For X > 1, σSM is not excluded. Instead, exactly XσSM

is excluded at 95% CL. For X ≤ 1, the SM cross-section has been excluded

at exactly 95% CL (X = 1) or greater (X < 1). The results are presented in

Table 7.5 and 7.6. The result is given including the ±1σ, 2σ uncertainty on

the measurement of X.

The results shown in Tables 7.5 and 7.6 show the number times the standard

model cross-section that is excluded at 95% Confidence Level for 1fb−1 of

expected ATLAS data, at
√
s = 14 TeV. As stated in section 2.4 an exclu-

sion at 95% Confidence Level indicates, given the hypothesis of no signal, the

measurement will be false-positive in 1 out of 20 trials. In this case, a false
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X (without Systematics) X (inc. Systematics)

−2σ 4.3 7.4
−1σ 5.6 10.1

median 7.9 14.7
+1σ 11.6 21.8

2σ 16.0 32.6

Table 7.6: The number (X) times σSM excluded at 95% CL for 1 fb−1 of tt̄H
data, calculated using the invariant mass distribution from the Pairing Like-
lihood analysis completed for the CSC study, as input to the Log-Likelihood
analysis.

positive is a measurement of background, when in fact we observe signal.

For the neural network analysis, 3.6σtt̄H is excluded at the 95% CL, for the

case with no systematic uncertainties applied. Including systematic uncer-

tainties on this result, reduces the strength of the exclusion to 4.6σtt̄H . Given

the systematic uncertainties which have been included in the neural network

analysis, this drop in sensitivity is small and is a positive indicator that

though this channel will prove to be difficult, the use of such multivariate

techniques as discussed here, combined with a good understanding of sys-

tematic uncertainties will enable access to improved physics results.

Aside from comparing the two cases, one with systematics and one without,

the same results were also found using the standard mass distribution as

input to the calculator, and the results are shown in Table 7.6. It is striking

to see how much the neural network improves the results compared to the

standard log-likelihood analysis where a non-parameterised mass distribu-

tion is used as input. The median exclusion for the mass distribution result
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is 7.9σtt̄H excluding systematic uncertainties, and with the inclusion of the

same systematic uncertainties as in the neural network, the median exclusion

jumps to 14.7σtt̄H , almost a factor of two.

The MLP neural network improves the exclusion results possible in this chan-

nel by a factor 3.2 compared to using the pairing likelihood mass distribution

in the LLR analysis, and, alongside this, the neural network appears more

robust against the fluctuations introduced by the Gaussian distributed sys-

tematics uncertainties presented in Table 7.4. However, it is worth noting

that these systematics are designed for application to an LLR analysis that

has a mass distribution as input, rather than a Neural Network score, based

on variables such as the φ separation of the top quark candidates. As such,

further studies should be completed that include relevant uncertainties for a

neural network score distribution, to verify the robustness of this result.

7.6 Summary

The main aim of this chapter was to introduce the Log-Likelihood approach

to the Higgs plus associated top channel, and to show the positive effect

of including a multivariate analysis technique to the list of analysis methods

adopted for the channel. It has been shown that simple counting experiments

suffer from the need to tightly constrain the systematic uncertainties, in par-

ticular, for low signal-to-background ratio channels. For 100fb−1, systematics

need to be less than 5% for discovery with tt̄ H to be possible at the current
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signal-to-background ratio. With the tt̄ H channel, early discovery is not

feasible using the counting experiment framework. By applying the binned

likelihood method to tt̄ H , we have shown that incorporating the shape

information of a suitable discriminating variable, such as the reconstructed

H→ bb̄ invariant mass, improves the expected sensitivity by as much as 10%.

Finally, we considered the output score from a neural network analysis as the

input distribution to the likelihood analysis. The studies completed showed

the sensitivity (in this particular case, to exclusion of the Higgs boson given

the hypothesis that it does not exist) increases when the neural net output

is utilised, tripling from 14.7σtt̄H to 4.6σtt̄H excluded at 95% CL for 1 fb−1.

It is likely that the uncertainties included in the Neural Network analysis do

not reflect well the uncertainties on the variables used to calculate the Neural

Network score, the result of which is that the exclusion is too high. These

techniques are not restricted to the tt̄ H decay mode of the Higgs, nor in

fact to solely Higgs physics. They can be exploited for any physical process

where evidence for or against a signal hypothesis is necessary. The following

chapter adopts the methods described here and exploits them for the combi-

nation of the results for the low mass Higgs channels under consideration at

ATLAS.



Chapter 8

Combined Higgs Analysis

8.1 Introduction

One of the main aims of the ATLAS Collaboration is to understand the mech-

anism of electroweak symmetry breaking, and in particular to find evidence

for the existence of the Standard Model (SM) Higgs boson. A combined anal-

ysis of the direct searches completed at ATLAS for the Computing Systems

Commissioning (CSC) study [27] has been performed and is compared with

the combined results in the CSC note using the Profile Likelihood approach

advocated in [27]pp1480. The decay modes studied are H → γγ, H → ττ ,

H → 4l, H → WW + 0 jets and H → WW + 2 jets. These channels are

studied at 1 fb−1 and 10 fb−1. The centre of mass energy for the pp colli-

sions is
√
s = 14 TeV, and the instantaneous luminosity for all studies is 1033

cm−2s−1, unless stated otherwise.
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This chapter is divided as follows: sections 8.2 to 8.5 briefly outline the indi-

vidual studies completed by the ATLAS Experiment Higgs Working Group.

These studies were completed as part of the Computing Systems Commis-

sioning (CSC) Studies undertaken by members of the ATLAS Experiment

over the course of several years, and each are available in the Higgs Chapter

in [27]. Each of these sections contain an indication of the systematic un-

certainties being considered. The statistical and systematic uncertainties on

each channel are discussed in more detail in section 8.6. Section 8.7 discusses

the use of the λ-function as a measure of the sensitivity. The discovery and

exclusion potential for each channel is presented in section 8.8. Each set of

results is shown for the case where no systematics uncertainties have been

considered (‘stat-only’), for those systematics quoted in the CSC analyses

(‘CSC’) and finally for a set of earlier systematic uncertainties determined

by the author (‘author’). Section 8.9 shows the combined results for the chan-

nels. Finally, in section 8.10, the results from the official ATLAS combination

are compared and discussed.

8.2 The H → γγ Decay Mode

The H → γγ decay mode of the SM Higgs boson, is a feasible low-mass

discovery channel. This channel is also useful for defining benchmarks for

detector performance. With excellent photon identification and energy res-

olution, this channel provides one of the best signal peaks in terms of mass
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resolution, having a resolution of 1.2% [27]pp1212 at mH = 120 GeV.

The Higgs boson is produced predominantly from the gg → H process, how-

ever it is also produced in association with jets in the Vector Boson Fusion

(VBF) process, qq̄ → qq̄H. There has been significant work completed look-

ing at the di-photon decay of the Higgs boson with 1 or 2 forward jets from

the VBF production mode. However, in the work presented here for the

di-photon decay only direct (gg) production of the Higgs is considered. This

will be referred to as the inclusive H → γγ analysis. The cross-section for

the signal is shown in Table 8.1.

Figure 8.1: Feynman diagram for the H → γγ decay mode.

The backgrounds for the H → γγ decay can be separated into two categories;

reducible and irreducible. Irreducible backgrounds are those in which there
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Mass (GeV) σLO [fb] σNLO [fb]

110 23.519 43.590
120 20.170 37.579
130 17.491 32.809
140 15.314 28.886

Table 8.1: Production cross-section of the Higgs at Leading Order (LO) and
Next-to-Leading Order (NLO) for the direct gg fusion process. These results
are replicated here from [27]pp1212.

are two, true photons in the event. The reducible backgrounds are those in

which there is at least one fake photon, generally from a jet.

Background σ [pb]

qq̄, qg → γγX 20.9
gg → γγ 8.0

γj 180×103

jj 477×106

Table 8.2: Next-to-Leading order production cross-sections for the irreducible
and reducible backgrounds for the H → γγ channel. These results are re-
produced here from [27]pp1212.

The cross-sections (in pb) for each background process is shown in Table

8.2. An example of the invariant mass distribution is shown in Figure 8.9,

for mH = 130 GeV, at 10 fb−1. In this channel, two mass points will be

considered in the likelihood analysis; 120 GeV and 130 GeV.
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Systematic Uncertainties

The systematic uncertainties considered for this channel are shown in Table

8.3. This mode has been shown in [81] to be robust against systematic uncer-

tainties. Two sets of systematic uncertainty have been considered throughout

this study. In Table 8.3, in the ‘author’ case, systematic uncertainties have

been applied to the signal and total background i.e. the fluctuation is only

on the summed number of events per bin for all backgrounds. This is not the

most realistic case, as it is likely that the jj background, for example, will

be more uncertain than the γγ continuum background, due to uncertainties

on the jet-photon fake rate (measured to be greater than 1% in Chapter

6). Though this level of uncertainty may seem low, the massive QCD cross-

section expected compared to the significantly lower γγ cross-section means

this can have a large effect.

The ‘CSC’ set of uncertainties are those stated in the CSC publication.

No robust systematic analysis was included in the CSC studies however in

some cases, uncertainties were quoted. The uncertainties considered in this

mode are discussed in more detail in section 8.6.
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H → γγ relative uncertainties (%) - ‘author’

Contribution H → γγ γγ γj jj Total Background
Luminosity 3 0 0 0 3

PDF 10 0 0 0 10
Multiparton Contrib 18 0 0 0 18

Fragmentation 6 0 0 0 6
µR/µF scale 5 0 0 0 0

H → γγ relative uncertainties (%) - ‘CSC’

Contribution H → γγ γγ γj jj Total Background
Luminosity 3 3 3 0 4.2

PDF 0 6 7 0 9.2
Multiparton Contrib 0 0 0 0 0

Fragmentation 0 5 1 0 5.1
µR/µF scale 5 14 20 0 24.4

Table 8.3: Systematic uncertainty on the signal and background contribu-
tions to the H → γγ decay mode. For details, see the text.
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8.3 The H → ZZ Decay Mode

The H → ZZ(∗) → 4l decay mode of the Higgs boson is often referred to as

the ‘Golden’ mode for Higgs discovery. Covering the mass range between 120

- 600 GeV, the relatively clean signal of four leptons (4e±, 4µ±, 2µ±2e±) plus

the good e± and µ± reconstruction expected from ATLAS results in a narrow

Higgs peak in this mode. As with the H → γγ channel, the backgrounds can

Figure 8.2: Feynman diagram for the H → 4l decay.

be separated into two categories, irreducible and reducible. The dominant

background is the irreducible ZZ∗ → 4l. In the region 120− 150 GeV, there

are other backgrounds which play an important role, including the Zbb̄→ 4l

and tt̄→ 4l. Masses up to (and including) 180 GeV are considered.

The cross-sections for the relevant mass points are stated in Table 8.4

and can be seen in full in [27]pp1243.
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Mass (GeV) σLO.BR [fb] σNLO.BR [fb]

120 1.68 2.81
130 3.76 6.25
140 5.81 9.72
150 6.37 10.56
160 2.99 4.94
165 1.38 2.29
180 3.25 5.38

Table 8.4: Production cross-section × Branching Ratio, of the Higgs boson
in the H → 4l channel, at Leading Order (LO) and Next-to-Leading Order
(NLO) for the direct gg fusion and VBF processes. Note BR included is the
Z → ll where l = e, µ.

There are several backgrounds which are important for this study. Namely,

the qq̄ → ZZ(∗) → 4l irreducible continuum background, and the reducible

gg → Zbb̄→ 2lbb̄.

These two backgrounds are the only ones included in the analysis which

follows. The cross-sections for the backgrounds which may be considered for

this channel are shown in Table 8.5. The corrections to the first two cross-

sections represent the addition to the cross-section for diagrams that were

not included in the Monte Carlo event generation.

Background σ [fb] Correction [fb]

qq̄ → ZZ → 4l 158.8 +47.64
gg → Zbb̄→ 2lbb̄ 52,030 +8640

gg, qq̄ → tt̄ 833,000
qq̄ → WZ 26,500

q/barq → Z Inclusive 1,500,000

Table 8.5: Production cross-section at LO or NLO (for tt̄ only) for theH → 4l
background processes. These results are replicated here from [27]pp1243.
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Systematic Uncertainties

The systematic uncertainties included in theH → 4l analysis are presented in

Table 8.6. Though systematic uncertainties are quoted for the backgrounds

individually in the ‘CSC’ case, they are applied to the summed, total back-

ground (i.e. those in the column ‘Total Background’ are applied). In this

channel, this is the case for both the ‘CSC’ and ‘author’ set of systematics.

The ‘Experimental’ uncertainty in the ‘CSC’ set of systematics includes un-

certainties on Luminosity, particle ID efficiency and resolution, some of which

are not reflected in the ‘author’ case. As such, for this mode, the ‘CSC’ uncer-

tainties represent a more robust set of normalisation uncertainties. However,

in the ‘author’ case, a shape uncertainty (applied to all channels in the ‘au-

thor’ case and discussed in section 8.6) is included. These uncertainties are

discussed in more detail in section 8.6.
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H → 4l relative uncertainties (%) - ‘author’

Contribution H → 4l Zbb̄ ZZ Total Background
Luminosity 3 0 0 3

PDF 5.6 0 0 5.6
µR/µF scale 15.1/-13.6 0 0 15.1/-13.6

H → 4l relative uncertainties (%) - ‘CSC’

Contribution H → 4l Zbb̄ ZZ Total Background
Experimental 7.8 7.7 6.9 10.3

PDF 0 4.6 3.2 5.6
µR/µF scale 0 15.1/-13.5 0.45/-0.90 15.1/-13.6

Table 8.6: Systematic uncertainty on the signal and background contribu-
tions to the H → 4l decay mode. See text for details.

8.4 The H → ττ Decay Mode

The H → ττ decay mode of the SM Higgs boson provides a good prospect for

discovery below ∼ 130 GeV. Not only is this a feasible discovery mode but the

VBF H → ττ channel also gives access to the spin and CP properties of the

Higgs boson, should it exist. Alongside this, in the Minimal Supersymmetric

Standard Model [24] (one of the preferred Supersymmetric extensions to

the SM), H → γγ is suppressed, making the possibly enhanced decay to

tau-leptons important for both SM and beyond the Standard Model physics

searches.

Given the complexity of the final state in this decay mode, which can

include electrons, muons, missing transverse energy, hadronic tau decays, and

forward jets from the VBF production process, every aspect of the ATLAS
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Figure 8.3: Feynman diagram of the VBF H → ττ decay mode.

detector has to be performing at the highest efficiency achievable. The CSC

study completed for this channel [27]pp1271 considered for the first time, all

three possible final states for this mode; the fully leptonic (H → ττ →
ντ lνντ lν), the semi-leptonic (H → ττ → ντ lνντjj) and the fully hadronic

(H → ττ → ντjjντjj) channels. Only the fully leptonic (ll) and semi-

leptonic (lh) channels are considered here.

The mass range over which this channel is feasible is 110 to 130 GeV.

Beyond 130 GeV the branching fraction to two tau leptons drops below

what is considered feasible for analysis. The signal cross-sections for the

mass points considered in the following are given in Table 8.7.

Only the QCD and Z → ττ backgrounds have been included in the study

presented though there are several other backgrounds which could be consid-
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Mass (GeV) σNLO [fb]

110 372.0
120 309.1
130 225.4

Table 8.7: Production cross-section of the Higgs boson at NLO for the VBF
process.

ered in future analysis of this channel. These (and additional backgrounds)

and the relevant cross-sections are detailed in Table 8.8.

Background σ [pb]

Z → ll + jets 35.1
W → lν + jets 346.3
tt̄+ jets (Full) 450.0
tt̄+ jets (Fast) 833.0
tt̄ (2µ Full) 32.6

WW/ZZ/ZZ + jets 174.2
QCD dijets (Full) 1.4x109

QCD dijets (Fast) 1.4x109

Table 8.8: Production cross-section at Next-to-Leading Order (NLO) for the
H → ττ background processes.

Systematic Uncertainties

In the CSC study, the uncertainty on the background is included directly in

the calculation of the significance by allowing a variable in the fit of the back-

ground distribution to float. This approach, however, is not followed here.

Rather, an explicit statement regarding which systematic uncertainties af-

fect the background is required, alongside a value for the uncertainty. In this
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mode, uncertainties are applied explicitly to each of the backgrounds con-

sidered. This will have an adverse affect on the sensitivity (as the statistical

as well as systematic fluctuations on each background are being considered)

but this is a more realistic approach than that followed for the other modes,

where a single value for each uncertainty is applied to the summed, total

background. In the ‘CSC’ case, there are no uncertainties quoted for the

background (due to the approach adopted in the study to handle the uncer-

tainties). As such, the ‘author’ set of uncertainties represent a more valid

set of uncertainties for this mode. For the signal uncertainties quoted in

the ‘CSC’ case, the ‘Experimental’ uncertainty is a quadratic sum of un-

certainties including; electron, muon, jet and tau-lepton reconstruction ID

efficiencies, resolutions and energy scales, b-tagging efficiency, forward jet

tagging efficiency and central jet reconstruction efficiency. The uncertainties

considered in this mode are discussed in more detail in section 8.6.
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H → ττ relative uncertainties (%) - ‘author’

Contribution H → ττ Z → ττ QCD
Luminosity 3 3 3

PDF 3.5 3.5 3.5
Multiparton Contrib 10 10 10

µR/µF scale 3 3 3
εCJV Scale Dep 0 0 0

H → ττ relative uncertainties (%) - ‘CSC’

Contribution H → ττ Z → ττ QCD
Experimental 20 3 3

PDF 3.5 0 0
Parton Shower + U.E. 10 0 0

µR/µF scale 3 0 0
εCJV Scale Dep 1 0 0

Table 8.9: Systematic uncertainty on the signal and background contribu-
tions to the H → ττ → ντ llντ ll and H → ττ → ντ llντjj decay modes. For
details see the text.
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8.5 The H → WW Decay Mode

This channel is one of the most promising of the decay modes at ATLAS. It

covers a wide mass range, from 130− 190 GeV. Having also been studied as

part of the CSC study, with 10 fb−1, discovery is feasible with the H → WW

mode between 145− 180 GeV [27]pp1306.

The H → WW channel has two decay modes; the H → WW + 0j and the

H → WW + 2j. The 0j mode is produced by the most common production

method, gg → H, and the subsequent decay of the Higgs is to lνlν. Thus far,

only the eνµν mode has been studied. If one of the W -boson’s in the event

decay’s hadronically, in the process H → WW → lνjj, this is a 2j event.

Alternatively, if the Higgs is produced in associated with two forward jets,

(via VBF), then the decay H → WW → lνlν + 2j is also a two jet event.

The H + 0j and H + 2j modes have separate event selection and triggers

in order to keep the samples disjoint. A feynman diagram for the H + 0j

channel is shown in Figure 8.4.

The signal in this channel is produced either by direct gluon-gluon fusion,

or by vector boson fusion, producing a Higgs boson in association with two

forward jets. There are several backgrounds relevant to the WW decay of

the Higgs, and which are dominant depends on the production method and

whether the W decays are fully or semi-leptonic. For the WW +0j case, the

dominant background is pp → WW . For the H + 2j case, this background

is relevant when it is produced in association with two jets in the process,
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Figure 8.4: Feynman diagram for H → WW + 0j. In the 2j case, the
production mode can be VBF, producing two forward jets, or one of the W’s
in the diagram above can decay hadronically.

qq̄ → qq̄WW .

Finally, for both modes, the W +n jets (n ≤ 5) process contributes to the

backgrounds. It is dominant in the WW → lνjj channel but also contributes

to the fakes in the fully leptonic mode.

The signal (at mH = 130, 170 GeV) and relevant backgrounds for this study

are detailed in Table 8.10.

Systematic Uncertainties

Systematic uncertainties for the two decay modes are quoted in Table 8.11.

For both the ‘CSC’ and the ‘author’ cases, the systematic uncertainties are

less robust than in other channels. In the CSC studies of this decay mode, no
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Signal σ [pb]

gg → H → WW (mH = 170 GeV) 19.418
VBF H → WW (mH = 170 GeV) 2.853
VBF H → WW (mH = 130 GeV) 0.936

Background σ [pb]

qq̄/gg → WW 111.6
gg → WW 5.26
pp→ tt̄ 833

Z → ττ + jets 2015
W + jets 20510

Table 8.10: Cross-sections at NLO for the H → WW background processes
and for the signal at mH = 130, 170 GeV.

robust analysis of the systematic uncertainties was completed. As such, the

uncertainties quoted for the ‘CSC’ case are based upon uncertainties quoted

in other modes, and are added as a total contribution to the cross-section.

In the 2j case, the uncertainty is similarly based on uncertainties from other

channels with similar decay remnants, in particular, this mode will suffer

from all the uncertainties relating to jet reconstruction. For the 0j mode,

both the ‘CSC’ and the ‘author’ set of uncertainties are roughly equivalent

with the main difference arising from the shape uncertainty applied in the

‘author’ case. For the 2j case, the larger uncertainty applied in the ‘CSC’

case, though only an estimate of the uncertainties in this mode, is more likely

to represent the true uncertainties in this mode. Those in the ‘author’ case

are too small for such a complex decay. The uncertainties considered in this

mode are discussed in more detail in section 8.6.



8.5: The H → WW Decay Mode 225

H → WW → eνµν relative uncertainties (%) - ‘author’

Contribution H → eνµν tt̄ WW Fakes Z → ττ Total Background
Luminosity 3 3 3 3 3 3

PDF 0 0 0 0 0 10.3
εlID 0.2 0 0 0 0 0.2

H → WW → eνµν relative uncertainties (%) - ‘CSC’

Contribution H → eνµν tt̄ WW Fakes Z → ττ Total Background
Combined 0 0 0 0 0 10

H → WW → lνjj relative uncertainties (%) - ‘author’

Contribution H → lνjj tt̄ Fakes Total Background
Luminosity 3 3 3 3

εlID 0.2 0 0 0.2

H → WW → lνjj relative uncertainties (%) - ‘CSC’

Contribution H → lνjj tt̄ Fakes Total Background
Combined 0 0 0 20

H → WW → eνµν + 2j relative uncertainties (%) - ‘author’

Contribution H → eνµν + 2j tt̄ Fakes Total Background
Luminosity 3 3 3 3

εlID 0.2 0 0 0.2

H → WW → eνµν + 2j relative uncertainties (%) - ‘CSC’

Contribution H → eνµν + 2j tt̄ WW Fakes Z → ττ Total Background
Combined 0 0 0 0 20

Table 8.11: Systematic uncertainty on the signal and background contribu-
tions to the H → WW + 0j and H → WW + 2j decay modes. See the text
for details.
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8.6 Statistical and Systematic Uncertainty

Inclusion of statistical and systematic uncertainties in the assessment of the

sensitivity of an experiment to a particular measurement is essential. The

work shown in the following includes several different systematic uncertain-

ties. The statistical uncertainties are also an important source of error in

the analysis that follows. The approach used to incorporate the effect of

statistical uncertainties is discussed.

8.6.1 Statistical Uncertainties

Statistical uncertainties should be propagated from the original Monte Carlo

data generated. Ideally, unnormalised distributions with statistical errors

included, are scaled to the number of events corresponding to the integrated

luminosity being tested, Ltest. Generally, this results in the background being

scaled up (as not enough Monte Carlo has been generated) and the signal

being scaled down (since, as signal cross-sections are generally small, a lot of

Monte Carlo can be produced). The scale factor, sftest should be applied to

the statistical uncertainty on the bin, as well as the number of events in the

bin, so that the relative uncertainty remains constant.

The inputs to the analysis shown here are normalised mass distributions, and

were not provided with statistical uncertainties included on the number of

events in the bin, and as such it has not been possible to accurately propagate

the original Monte Carlo uncertainties. Table 8.12 details the input provided
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by each channel for the analysis.

Channel Mass Points (GeV) Integrated Luminosity (fb−1)

H → γγ 120, 130 10, 30

H → ττ 110, 120, 130 1

H → 4l 120 - 180 30

H → WW + 0j 130 - 190 various

H → WW + 2j 130 - 190 various

Table 8.12: For each of the channels, the masses provided and the integrated
luminosity at which the masses were provided for the combined analysis.

To model the expected effect of the statistical uncertainties, some as-

sumptions have been made. The integrated luminosity of the normalised his-

tograms is assumed to be the integrated luminosity generated. This means,

for example in the H → 4l channel, the uncertainty on the bin is
√
N × 1

30
,

assuming Ltest = 1 fb−1 i.e.
√
N × sftest. This is similarly the case for the

H → γγ mode. For the H → ττ modes, more data was available, including

an estimate of the generated Monte Carlo. As such it is possible, using

L =
N

σeff

,
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to estimate the original amount of Monte Carlo generated and therefore cor-

rectly propagate the statistical uncertainty in this channel. Finally, for the

H → WW modes, the statistical uncertainty is
√
N where N is number of

events in the bin for Ltest i.e. the effect of the scale factor has not been

included (this is because for several backgrounds and signals the scale fac-

tors were large, even for 1 fb−1 and including the scale factor would result

in artificially large statistical uncertainty, the effect of which is to reduce

the sensitivity of the channel to well below what is expected from previous

studies).

Following this approach maximises the expected sensitivity for each chan-

nel. The mass distributions in Figure 8.5, which show examples of pseudo-

data with these statistical uncertainties included show the validity of the

approach, with resulting uncertainties resembling Poisson uncertainties. It is

recognised that the approach is not correct, and it is assumed in an analysis

with real data, a more thorough approach to provision of statistical uncer-

tainties on Monte Carlo will be adopted.

8.6.2 Systematic Uncertainties

Several systematic uncertainties have been included in the analysis which

follows, and their effect on the normalisation of the signals and backgrounds

in the form of a relative, percentage uncertainty has been quoted for each

search mode in the sections above. In the ‘CSC’ case, the systematic

uncertainties used are those stated explicitly in the ATLAS CSC publication
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Figure 8.5: Mass Distributions for 130GeV (10 fb−1), as an example of dis-
tributions that are considered, showing the statistical uncertainties applied
are acceptable.
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[27]. Where uncertainties have not been quoted in the CSC publication

(e.g. in the H → WW channel) an estimate of the uncertainty was made

from systematic uncertainties quoted for other channels and applied as one

quadratically summed contribution. For the ‘author’ case, the uncertainties

were taken from various sources, including private recommendations [88],

the recommendations made by the ATLAS Higgs Working Group [80], and

from earlier versions of the CSC publication. Additionally, the ‘author’

systematic uncertainties include (for only the individual channel results)

a shape uncertainty on the resolution of the signal peak. This shape

uncertainty represents a 100% broadening of the Higgs peak, for each mass

point, and is modelled by convoluting the signal peak with an appropriate

width Gaussian distribution. The motivation for this systematic comes from

a study of the H → 4l channel, showing that even a slight deformation of

the detector shape (< few mm), in the x-y plane of the detector can result

in this level of broadening of the peak.

The main sources of systematic uncertainty considered in this analysis

include; Luminosity, Parton Distribution Functions, Multiparton Con-

tribution, Central Jet Veto Efficiency, Fragmentation, Parton Shower

and Underlying Event, µF/µR and experimental uncertainties (including

resolutions, energy scales, identification efficiencies and Emiss
T uncertainties).

All experimental uncertainties have been ascertained by the individual

Higgs group, or have been taken from recommendations made by the

convenors of the ATLAS Higgs Working Group [80], [87]. The uncertainty
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on the luminosity is an ATLAS standard. The theoretical uncertainties

are estimated individually for each channel by members of the Higgs group

within ATLAS. The systematic uncertainties included in each of the modes

are introduced below.

• Luminosity This is the uncertainty on the measured luminosity of the

experiment. The 3% figure applied here is a performance requirement

of the ATLAS Experiment.

• Parton Density Function (PDF) Uncertainty These uncertainties

result in an uncertainty on the relative cross-section for a given diagram.

The PDF uncertainties are measured either by varying the eigenvalues

of the CTEQ parameterisation parameters or by comparing CTEQ

parameterisations to those from another library, such as MRST2001.

The variation in either case is applied as the uncertainty.

• Multiparton Contribution This is the uncertainty on the cross-

section caused by the multiple interactions which can feasibly occur

in the collision. In H → γγ in particular, this uncertainty is impor-

tant, as the ALPGEN generator is utilised and MLM matching [82]

of the Matrix Element (ME) component of the event to the Parton

Shower (PS) component is affected by this uncertainty.

• Fragmentation This uncertainty also affects theH → γγ channel, and

is measured by comparing the rate of single and double fragmentation
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of partons to photons in several event generators. ResBos [83, 84,

85] measures single photon fragmentation at LO and DIPHOX [86]

measures both single and double photon fragmentation at NLO, with

the difference representing the measured uncertainty.

• Renormalisation and Factorisation Scale The µR and µF un-

certainty is estimated by taking the initial value for the scale (often

MZ ,MW or MH) and varying it between 0.5 and 2 times the nominal

value and reflects theoretical uncertainties due to the omission of higher

order diagrams at event generation.

• Parton Shower and Underlying Event (UE) This systematic is

relevant for theH → ττ channel, and is akin to the Multiparton Contri-

bution uncertainty which affects other channels. This is an uncertainty

on the cross-section as a result of the uncertainty about the amount

of activity from the interaction of other partons in the event i.e. those

not in the hard scatter. This uncertainty is measured by modelling the

parton shower, hadronisation and UE with several Monte Carlo event

generators and measuring the relative difference.

• Central Jet Veto Efficiency This is an uncertainty specific to the

H → ττ decay mode of the Higgs boson and is shown in some instances

to result in fluctuations of up to 41% in the signal cross-section. The

central jet veto (CJV) in this mode is an important tool for event selec-

tion and is highly dependent on energy scale selection. This uncertainty
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is modelled by varying the energy scale, applying the CJV and mea-

suring the resultant cross-section for several event generators. Though

it has been shown to vary up to 41%, in most instances the variation

is around 10% or less.

8.7 Use of λ as an estimator for Sensitivity

The λ function, introduced in Eq 2.30, is a useful tool for estimating the

sensitivity of a dataset in the case where the p-value cannot be measured

i.e. too few pseudo-experiments have been run. For the p.d.f. to be defined

well enough to establish an accurate p-value, over 106 sets of pseudo-data are

produced, in a CPU intensive process.

To avoid such CPU consumption, the λ function is used. This section com-

pares (where possible) the expected sensitivity calculated using λ with the

expected sensitivity calculated from a p-value. The applicability of this func-

tion as a tool to estimate sensitivity for each of the Higgs decay modes is

considered. The function can be used to quickly estimate a sensitivity as a

number of Gaussian sigma, and requires that both the mean and the width

of the p.d.f. for each hypothesis is known.
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Z1fb−1 λ1fb−1 Z10fb−1 λ10fb−1

120 1.08 1.05 3.01 2.96
130 1.08 1.08 2.53 2.51

Table 8.13: The expected (median) sensitivity is shown for 1 fb−1 and 10 fb−1

of ATLAS data, calculated in two ways; a). from a p-value, measured from
a fit to the probability density function (p.d.f.) distribution and mapped
to a number of Gaussian sigma using Eq 2.5 and b). using Eq 2.30, where
the variables in the equation are estimated from the p.d.f.s, for the H → γγ
decay mode of the SM Higgs boson.

Z1fb−1 λ1fb−1 Z10fb−1 λ10fb−1

110 1.25 1.47 3.29 3.14
120 1.18 1.49 2.97 2.88
130 1.00 1.16 2.41 2.33

Table 8.14: The expected (median) sensitivity is shown for 1 fb−1 and 10
fb−1 of ATLAS data for the H → ττ decay mode of the SM Higgs boson.
For details see the text in Table 8.13.

Z1fb−1 λ1fb−1 Z10fb−1 λ10fb−1

120 0.22 0.63 1.48 1.54
130 1.21 1.62 3.39 3.72
140 2.14 2.80 - 6.27
150 2.47 3.10 - 7.78
160 1.46 2.21 - 4.45
180 1.31 1.64 3.58 4.34

Table 8.15: The expected (median) sensitivity is shown for 1 fb−1 and 10
fb−1 of ATLAS data for the H → ZZ → 4l decay mode of the SM Higgs
boson. For details see the text in Table 8.13.
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Z1fb−1 λ1fb−1 Z10fb−1 λ10fb−1

130 0.84 0.82 - 3.38
140 1.69 1.59 - 5.91
150 2.38 2.35 - 7.77
160 2.98 2.95 - 9.78
170 2.95 2.92 - 9.56
180 2.39 2.36 - 7.55
190 1.65 1.62 - 5.04

Table 8.16: The expected (median) sensitivity is shown for 1 fb−1 and 10
fb−1 of ATLAS data for the H → WW + 0 jets decay mode of the SM Higgs
boson. For details see the text in Table 8.13.

Z1fb−1 λ1fb−1 Z10fb−1 λ10fb−1

130 0.38 - 1.01 1.57
140 0.29 0.24 1.75 2.52
150 0.33 0.25 2.45 3.29
160 0.22 0.63 3.28 3.83
170 0.25 0.16 3.10 3.64
180 0.65 0.30 2.64 3.11
190 0.41 0.68 2.15 2.49

Table 8.17: The expected (median) sensitivity is shown for 1 fb−1 and 10
fb−1 of ATLAS data for the H → WW + 2 jets decay mode of the SM Higgs
boson. For details see the text in Table 8.13.

Z1fb−1 λ1fb−1 Z10fb−1 λ10fb−1

130 1.25 1.47 - 3.58
140 1.26 1.29 - 5.38
150 1.87 2.14 - 7.56
160 2.88 3.28 - 8.81
170 - 4.21 - 7.74
180 2.75 2.97 - 6.58
190 3.09 3.03 - 6.26

Table 8.18: The expected (median) sensitivity is shown for 1 fb−1 and 10
fb−1 of ATLAS data for the combination of the direct search modes. For
details see the text in Table 8.13.
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Figure 8.6: The p.d.f.s for each of the channels and the combination at
mH = 130 GeV, for 1 fb−1. (H → ττ and H → WW + 2j shown for 10
fb−1).
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The use of λ as an estimator of sensitivity is a reasonable choice for modes

with Gaussian p.d.f.s. Figure 8.6 shows examples of the p.d.f.s for each of

the modes. In the H → WW + 0j case, where the p.d.f.s are Gaussian, and

the tails are well behaved, this approximate measure works very well.

However in the H → 4l mode, where the low background at low masses re-

sults in a non-Gaussian p.d.f., the comparison is not as good. Also, in the

H → WW + 2j mode, where the tail of the distribution is not smooth, this

results in the comparison of λ and Z being less feasible. Despite the limi-

tations, in the work that follows, λ has been used to estimate the expected,

median sensitivity. This saves significant CPU time in running the code,

though it is recognised that for a result including real data, the necessary

number of pseudo-experiments needed such that the p-value can be measured

directly without a fit to the p.d.f. is necessary.

8.8 ATLAS Sensitivity Studies

The discovery potential, using the λ function, for each of the ATLAS direct

search modes introduced above, is presented for 1 fb−1 and 10 fb−1 of ex-

pected ATLAS data. Discovery potential measured as a number of standard

Gaussian sigma is shown. The exclusion potential is displayed as a number,

X, times the SM cross-section which is excluded at a 95% CL where the con-

fidence level is calculated following the modified frequentist method (CLs)

set out in section 2.4.
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Three sets of results are shown for each channel; ‘stat-only’, ‘author’ and

‘CSC’. All results are measured from p.d.f.s produced from the minimisation

of the relevant χ2 function (as in Eq 2.17), using the LLR method, described

in section 2.4. The invariant mass distributions for each mass point, from

the CSC analyses described above are used as the discriminating variable.

8.8.1 Discovery Potential

The discovery potential for each channel at 1 fb−1 and 10 fb−1 is shown in

Figure 8.7 and Figure 8.8, respectively. Each plot shows the results for the

nominal case of ‘stat-only’, in black, the initial study including the ‘author’

systematics in blue and the study including the ‘CSC’ systematics in red.

Note that the results for the H → ττ channel are the combined results for

the ll and lh decay modes.

Discovery is not expected for any of the channels individually for 1 fb−1.

For H → WW + 2j, the expected sensitivity is negligible at 1 fb−1 and the

fluctuations in the shape of the discovery curves is purely statistical.

For 10 fb−1, the discovery sensitivity reaches 5σ for the H → 4l and the

H → WW+0j search modes in the ranges 132−166 GeV and 136−190 GeV,

for the ‘stat-only’ case, respectively. The inclusion of systematic uncertainties

on these promising channels is most pronounced in the H → WW+0j mode,

where uncertainties on the background reduce the expected discovery region

to 144− 174 GeV (‘author’) and 150− 174 GeV (‘CSC’).

For the H → 4l mode, the ‘author’ systematics have the largest impact
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Figure 8.7: Expected (median) discovery sensitivity, as a function of the
Higgs boson mass for each direct search mode and for the combination, for
1 fb−1. The black distribution shows the stat-only case, the blue shows the
author systematics result and the red shows the CSC results.
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Figure 8.8: Expected (median) discovery sensitivity, as a function of the
Higgs boson mass for each direct search mode and for the combination, for
10 fb−1. The black distribution shows the stat-only case, the blue shows the
author systematics result and the red shows the CSC results.
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on the possible discovery range (137 − 159 GeV). This is opposite to the

H → WW + 0j where the ‘CSC’ systematics result in the smallest discovery

range. The expected statistics (∼ 70 events for H → 4l and ∼ 1300 for

H → WW + 0j) in each of the modes and the shapes of the distributions,

suggests the shape uncertainty, included in the ‘author’ results, on the H →
4l channel would have a larger, relative effect than on the H → WW + 0j.

Discovery with 10 fb−1 is not expected for the other individual search modes.

For both 1 fb−1 and 10 fb−1 the results can be placed in two categories;

the statistical uncertainties dominate the sensitivity of the H → γγ, H →
ττ and H → 4l channels, and for the H → WW modes, the systematic

uncertainties dominate. Interestingly, in the H → WW + 2j mode, the

specific treatment of the systematic uncertainties also has a large effect with

the ‘CSC’ uncertainties having a bigger effect than the ‘author’ ones. The

implication here being that in this mode, shape uncertainties have a lesser

effect than normalisation uncertainties. The combined result is discussed in

section 8.9.

8.8.2 Exclusion Potential

The exclusion potential of the ATLAS Experiment is shown for each direct

search mode in Figures 8.9 to 8.13. The limits are expressed as a multiple of

the SM prediction and the bands show the 68% and 95% probability regions

where the limits can fluctuate, in the absence of signal. For search modes

with Gaussian p.d.f.s the uncertainty bands are expected to be symmetric.
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In the H → 4l and H → ττ searches, the p.d.f.s are non-Gaussian, resulting

in asymmetric uncertainty bands. The limits displayed are obtained with the

Bayesian calculation described in section 2.4. Each figure shows an example

of the invariant mass distributions used as input to the log-likelihood analysis

(top-left), exclusion potential for the nominal ‘stat-only’ case (top-right), the

initial study including the ‘author’ systematics (bottom-left) and the study

including the ‘CSC’ systematics (bottom-right). The invariant mass distribu-

tions in each diagram show the signals and backgrounds as they are included

in the analysis. The data points on the diagrams show one example of a

set of (ŝ + b̂) pseudo-data, including errors bars which reflect the statistical

uncertainty on each bin.
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Figure 8.9: The invariant mass distribution for the inclusive H → γγ decay
mode at mH = 130 GeV is shown, for 10 fb−1 of expected ATLAS data,
alongside the expected (median, for the background-only hypothesis) 95%
CL upper limits on the ratios to the SM cross-section, as a function of the SM
Higgs boson mass at 1 fb−1. Top right: results for statistical uncertainty only.
Bottom Left: Including the ‘author’ systematics. Bottom Right: Results
including the ‘CSC’ systematics.
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For 1 fb−1, a SM Higgs boson can be excluded with 95% Confidence Level

in the H → WW + 0j mode between 136 GeV and 190 GeV. Exclusion is

not possible with the other search modes exclusively. As in discovery, the

H → γγ mode is shown to be robust, with the cross-section excluded varying

minimally between the three cases presented.

For H → ττ , the effect of the non-Gaussian p.d.f. is evident in the asymmet-

ric error bands. The effect is more pronounced here than in the calculation

of λ as for this mode, the p.d.f. is largely Gaussian until one approaches

the tails, meaning the measurement of the median and width for λ are not

affected but the calculation of ±1, 2σ error bands are. There is an additional

effect on the upper 2σ error band at 110 GeV in this mode. It can be seen

from the mass distribution shown in 8.10 that the background becomes large

in this region and this results in the excluded cross-section at +2σ blowing

up.

The H → 4l mode also has non-Gaussian p.d.f.s caused by the low expected

background at mH <∼ 150 GeV and the constraint that the number of

background events stay above 0, resulting in the asymmetric error bands ob-

served. The median, expected exclusion results are consistent for the three

cases aside from in the ‘author’ systematics results at mH = 180 GeV, where

the decrease in sensitivity (due to the background which becomes large in

this region) is less pronounced than for the ‘stat-only’ and ‘CSC’ cases.

In the H → WW + 0j case, the inclusion of systematic uncertainties results

in the range over which a SM Higgs can be excluded being reduced. The
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Figure 8.10: Exclusion potential for the H → ττ channel. See caption in
Figure 8.9 for details.
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Figure 8.11: Exclusion potential for the H → 4l channel. See caption in
Figure 8.9 for details.
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Figure 8.12: Exclusion potential for the H → WW +0j channel. See caption
in Figure 8.9 for details.
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Figure 8.13: Exclusion potential for the H → WW +2j channel. See caption
in Figure 8.9 for details.
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minimum range excluded is 139 GeV to 186 GeV, for the ‘CSC’ results. The

region excluded for the ‘author’ results is only slightly different, from 138

GeV to 187 GeV. This indicates that the shape uncertainty on the signal

has only a small effect on the overall exclusion potential as this is the major

difference in the systematics applied in each case for this mode.

TheH → WW+2j mode is consistent across the set of results, aside from the

160 GeV mass point in the ‘author’ results, where the excluded cross-section

falls from 1.2σH→WW+2j to 1.98σH→WW+2j. At the 160 GeV point, the WW

background is on-shell, so the combined effect of the shape uncertainty and

the peaked background is enough to reduce the exclusion confidence level in

this region.

8.9 Combined Sensitivity to the SM Higgs

The direct searches discussed above are combined to assess the overall sensi-

tivity of the ATLAS Experiment to the Standard Model Higgs boson. Both

discovery sensitivity and exclusion confidence levels are presented for a com-

bination based on the method set out in section 2.6. Each search is included

at the relevant mass points, and the uncertainties (either ‘CSC’ or ‘author’)

are applied. The discriminating variable for each mode and mass point is

the invariant mass distribution1. The search methods, triggers and system-

atic uncertainties on the normalisation are all the same as for the individual

1Aside from the H → WW channel, where the transverse mass distribution is used.
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searches. For the combination including the ‘author’ set of systematics, the

shape uncertainty which represented a degradation of the signal peak reso-

lution is not included. This is due to the CPU consumption necessary to

complete a combined analysis including this error. Systematic uncertainties

which are named the same, are considered to be 100% correlated, other-

wise systematics are not correlated. The results are discussed below and are

compared to the official ATLAS Collaboration combination results.

8.9.1 Combined Results

The combined statistical analysis of the direct searches at ATLAS for a Stan-

dard Model Higgs boson, yield the following expected discovery sensitivities;

for the ‘stat-only’ case, at 1 fb−1, a 3σ observation is possible across the

range 135− 170 GeV and for the ‘author’ and ‘CSC’ cases, between 140 and

160 GeV.

For 10 fb−1, an expected discovery sensitivity of 5σ is reached between

122 − 190 GeV, for the ‘stat-only’ results, 125 − 185 GeV, for results in-

cluding the ‘author’ systematics, and between 127 − 185 GeV, for results

including the ‘CSC’ systematic uncertainties. The major effect of inclusion

of the systematics is between 130 GeV and 190 GeV, i.e. in the region where

the H → WW + 0j mode contributes most. It has already been observed

that the systematics have a large impact on this channel and this is reflected

in the combined results. In the lower mass region, the effect of the inclu-

sion of systematic uncertainties is less pronounced. It is also interesting to
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consider that thus far, the tt̄H channel, discussed in Chapter 7 has not been

included in the combined analysis. At 10 fb−1 the expected sensitivity for

this channel is low, however from Figure 8.14 it is clear that a higher inte-

grated luminosity will be necessary for discovery of a light Higgs. With this

in mind, inclusion of the tt̄H channel could provide the additional sensitivity

necessary to achieve discovery, contributing an expected sensitivity of 1.5σ

at mH = 120 GeV for 30 fb−1.

Figures 8.15 and 8.16 show for the three cases discussed the combined dis-

covery sensitivity and the individual expected discovery significances for each

direct search.

Figure 8.17 shows the combined search, for 1 fb−1 would expect to exclude a

SM Higgs boson (in the absence of signal) in the range 128−190 GeV, where

only statistical uncertainties are included, 132 − 190 GeV where the set of

‘author’ systematics have been included, and finally, in the range 130− 190

GeV for inclusion of the ‘CSC’ systematics.

Figure 8.19 indicates that for 10 fb−1, the full low-mass range can be excluded

at > 95% CL using the CLs method, regardless of systematic uncertainties.

This plot shows the CLs values for each channel and the combination for the

three cases discussed throughout. The same is shown for 1 fb−1 in Figure

8.18. Note that in Figure 8.19 the combined result is flat at CL= 0.002, which

is the limit possible for this measurement when 103 pseudo-experiments are

completed.
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Figure 8.14: Expected (median) discovery sensitivity, as a function of the
Higgs boson mass, for the statistical combination of direct searches for the
SM Higgs boson at ATLAS. Results are shown for both 1 fb−1 (top) and
10 fb−1 (bottom) of expected ATLAS data. The black distribution shows
the stat-only case, the blue shows the author systematics result and the red
shows the CSC results.
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Figure 8.15: Expected (median) discovery sensitivity, as a function of the
SM Higgs boson mass, for the combination of the main analysis channels at
ATLAS. Results are shown at mass points over the range 110 to 190 GeV,
for 1 fb−1 of expected ATLAS data. The top plot shows the ‘stat-only’ case,
the middle shows the ‘author’ case results, and the bottom plot shows the
‘CSC’ case results.
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8.10 Comparison to the Profile Likelihood

The Profile Likelihood (PL) method, discussed in section 2.7, is the method

adopted officially by the ATLAS Collaboration for assessing the combined

limits and sensitivity of the experiment to the SM Higgs boson. The results

of the combination using this method were published as part of the CSC

study. This section will compare the results found for the combination us-

ing the Log-Likelihood Ratio technique, to those presented using the Profile

Likelihood technique. It is worth restating here the two main differences in

the methods. The Profile Likelihood method performs a fit to the binned

distributions of the discriminating variable, and makes use of the fit func-

tion in the likelihood ratio. The Log-Likelihood Ratio method adopted for

the work completed in this thesis does not include fits in the mechanism for

calculating the likelihood ratio, and instead calculates bin-by-bin the value

of the likelihood ratio. Secondly, the Modified Frequentist method, CLs is

adopted in the log-likelihood method as the tool to measure exclusion confi-

dence, whereas the standard frequentist exclusion measure of CLs+b is used

in the Profile Likelihood. For completeness, the main results from the PL

analysis are included in Figure 8.20.

The comparison is presented for the discovery sensitivity at 10 fb−1 ex-

plicitly. A comparison of the exclusion potential is made only qualitatively,

as the integrated luminosities at which it has been assessed are different for

the PL and LLR methods.



8.10: Comparison to the Profile Likelihood 255

 (GeV)HM
110 120 130 140 150 160 170 180 190

λ
E

xp
ec

te
d 

S
ig

ni
fic

an
ce

, 

0

2

4

6

8

10

12

14

−1ATLAS Expected @ 14TeV (Combined), L=10fb
Higgs to 2 photons

Higgs to Tau Tau

Higgs to WW (0j)

Higgs to WW (2j)

Higgs to 4l

Combined Sensitivity

 (GeV)HM
110 120 130 140 150 160 170 180 190

λ
E

xp
ec

te
d 

S
ig

ni
fic

an
ce

, 

0

2

4

6

8

10

12

14

-1ATLAS Expected @ 14TeV (Combined), L=10fb

γγHiggs to 

ττHiggs to 

Higgs to WW (0j)

Higgs to WW (2j)

Higgs to 4l

Combined Sensitivity

 (GeV)HM
110 120 130 140 150 160 170 180 190

λ
E

xp
ec

te
d 

S
ig

ni
fic

an
ce

, 

0

2

4

6

8

10

12

14

−1ATLAS Expected @ 14TeV (Combined), L=10fb

γγHiggs to 

ττHiggs to 

Higgs to WW (0j)

Higgs to WW (2j)

Higgs to 4l

Combined Sensitivity

Figure 8.16: Expected (median) discovery sensitivity, as a function of the
SM Higgs boson mass for the combination of the main analysis channels at
ATLAS. Results are shown at mass points over the range 110 to 190 GeV,
for 10 fb−1 of expected ATLAS data. Plots are as per caption in Figure 8.15.
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Figure 8.17: The expected (median) 95% C.L. upper limits on the ratio to the
SM cross-section, as a function of the SM Higgs boson mass, is shown for the
statistical combination of the direct searches for 1 fb−1. Results for statistical
uncertainty only are shown at the top. Including the ‘author’ systematics is
shown in the middle, with results including the ‘CSC’ systematics shown in
the bottom plot.
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Figure 8.18: Expected (median, for the background-only hypothesis) CLs

values, for the SM Higgs as a function of the SM Higgs boson mass, for the
combination of the direct searches at ATLAS, for 1 fb−1. Plots are as per
caption in Figure 8.15.
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Figure 8.19: Expected (median, for the background-only hypothesis) CLs

values, for the SM Higgs as a function of the SM Higgs boson mass, for the
combination of the direct searches at ATLAS, for 10 fb−1. Plots are as per
caption in Figure 8.15.
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Figure 8.21 shows both the PL method results and the LLR method results

for the three cases introduced above. The top plot shows the PL method

results (in green) alongside the results from of the combination using the

LLR method. The bottom plot shows the relative percentage difference as a

function of the PL significance. Table 8.10 provides the sensitivity estimates

for the combined results for the PL method, and the three sets of results

from the LLR combined analysis.

mH (GeV) ZPL λstat λauthor λCSC

110 2.5 3.1 2.7 2.8
120 4 4.3 3.7 3.6
130 6.5 6.3 6.3 5.4
140 9.5 8.9 7.0 7.6
150 12.5 11.6 6.7 8.8
160 12.75 11.5 10.9 7.7
170 11.8 10.2 7.2 6.6
180 10 9.0 6.1 6.3
190 8.6 5.6 4.1 3.8

Table 8.19: Discovery sensitivity at 10 fb−1 for the PL, and the three test
cases of the log-likelihood analysis: no systematics, ‘author’ systematics and
‘CSC’ systematics.
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Figure 8.21: The top plots show the discovery sensitivity for the PL method
(green), the LLR method with no systematics included (black), the LLR
method with ‘author’ systematics included (blue) and finally the LLR with
the ‘CSC’ systematics included (red). The bottom plots shows the relative
difference between the PL and each of the LLR cases as a function of the PL
discovery result. The same colours as in the top plot apply.
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Below 130 GeV, the difference between the PL and the three sets of LLR

results is of the order ±10%. This is the region preferred by electroweak

precision tests for a SM Higgs to exist and given the differences in the tech-

niques, this is a reasonable result, indicating acceptable agreement between

the two methods at low masses.

At higher masses, mH > 130 GeV, the difference in the number of sigma

measured is greater. There are two reasons for this. Firstly, given the least

pronounced difference is between the ‘stat-only’ LLR and the PL, it is ev-

ident that the method adopted for inclusion of systematic uncertainties is

partly responsible for the divergence. In the Profile Likelihood, systematic

uncertainties are included in the fits to the invariant mass distributions, and

these fits functions are then utilised as part of the likelihood ratio calculated

in the PL. This limits the effect of the systematic uncertainties, allowing only

an overall fluctuation as opposed to the bin-by-bin fluctuations modelled in

the LLR analysis. The LLR approach results in a much more pronounced ef-

fect on the expected discovery sensitivity. Secondly, the sensitivity above 130

GeV is greater than 5σ, which is equivalent to a p-value less than 2× 10−7.

As such, even a 60% difference in the number of sigma equates to, in absolute

terms, only a small difference in the p-value. Accurate measurement of this

p-value normally requires a large number (∼ 107) of pseudo-experiments to

be run, but for the LLR was approximated instead, with λ. In the PL a

p-value was measured by utilising Wilks Theorem [36], which states that in

the high statistics limit the likelihood ratio will tend to a 1
2
χ2 p.d.f. As such,
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much higher accuracy is possible for the PL than the LLR as an integrated

p-value can be measured from the functional form of the 1
2
χ2, the result of

which is a higher number of sigma for the PL than for the LLR at the levels

of accuracy needed beyond 5σ.

If one considers the range over which the expected sensitivity indicates dis-

covery, we see the differences between these methods are small. For the PL,

discovery is expected between 124 − 190 GeV, and for the LLR is expected

between 126− 185 GeV (129− 185 GeV) for the ‘author’ (‘CSC’) results. In

the ‘stat-only’ case, the ranges are equivalent.

For exclusion, a direct comparison is not possible. The PL results are shown

for 2 fb−1 and exclude a SM Higgs in the absence of signal between 115 GeV

and 190 GeV at or above 95% CL, using the standard frequentist method

(CLs+b). In the LLR for 1 fb−1, the Higgs is excluded between 128 GeV and

190 GeV, using the modified frequentist method (CLs).

8.11 Conclusion

This chapter presented the combined sensitivity of the ATLAS Experiment

to the Standard Model Higgs boson, assessed using a Log-Likelihood Ratio

analysis. The individual search modes have been introduced, including de-

tails regarding the event selection, triggering and systematic uncertainties.

The propagation of statistical uncertainties was discussed. The use of the λ

function as an estimator of sensitivity was also presented, and it was con-
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cluded that this tool is useful for assessing expected sensitivity. In the case

of the H → 4l and H → ττ modes, though the non-Gaussian p.d.f.s lead

to problems, this is still a useful estimator. For real data, the p-value for

discovery must be found explicitly.

The expected discovery sensitivity and exclusion confidence level was pre-

sented for all the direct search modes discussed (H → γγ, H → ττ , H → 4l

and H → WW ). For discovery it was shown that the channels fit into

two categories; those where statistical uncertainty dominates (H → γγ,

H → ττ and H → 4l) and those where systematic uncertainties dominate

(H → WW ). For the H → WW+2j mode, the treatment of the systematics

is important, however in H → WW + 0j how the systematics were treated

made little difference. These trends are reflected in the combination.

With 10 fb−1 of ATLAS data recorded, one can expect discovery of the SM

Higgs boson from 122 GeV to 190 GeV for the case where no systematics are

included. Including systematic uncertainties this falls to between 127 − 185

GeV.

The exclusion potential at 1 fb−1 was presented and was shown to be robust

against systematic uncertainty at this luminosity. Combining the search

channels resulted in exclusion of the Standard Model cross-section for the

Higgs boson, in the absence of signal, at or above the 95% CL, across the

mass range 130− 190 GeV. It was shown with the LLR analysis, regardless

of the systematic uncertainty treatment, that with 10 fb−1 of ATLAS data,

one can expect to exclude the low-mass Higgs over the full range of interest
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from 110− 190 GeV.

Finally, a comparison to the published combination results for the ATLAS

Collaboration was made. It was shown that though the number of sigma

achievable in the PL method is on average 50% higher than for the LLR

method, the range over which the expected sensitivity is greater than the

5σ needed for discovery was the same. The excluded range for the LLR is

128− 190 GeV for 1 fb−1 compared to 115− 190 GeV for the PL method at

2 fb−1.

If the SM Higgs boson exists, current evidence suggests it will be discovered

in ATLAS if the mass of the boson is between 127 − 185 GeV, and a com-

bined analysis, including a good description of the statistical and systematic

uncertainties for each mode will be required to achieve this result. Two dif-

ferent statistical methods have been compared and reach the same results

for regions over which the SM Higgs can be observed or excluded.



Chapter 9

Conclusions

The Large Hadron Collider at CERN ushers in a new era for particle physics.

One of the main goals of the LHC is discovery of the Standard Model Higgs

boson. The discovery potential of the tt̄H(H → bb̄) decay mode of the SM

Higgs has been assessed with the use of a log-likelihood analysis and the dis-

covery sensitivity was found to be 1.5σ for 30 fb−1. The likelihood analysis

presented here improved the sensitivity by 10%. It was shown that the use

of a neural network can improve the exclusion potential of the tt̄H search by

a factor 3, increasing the SM cross-section excluded at 95% CL, with 1 fb−1

of expected ATLAS data, from 14.6σtt̄H to 4.6σtt̄H .

The combination of four direct search modes of interest at ATLAS (H → γγ,

H → ττ , H → 4l and H → WW ) was presented for three separate treat-

ments of systematic uncertainty, across the Higgs mass range of 110 GeV to

190 GeV, for 1 fb−1 and 10 fb−1 of expected ATLAS data. Overall, exclusion
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of the Standard Model Higgs boson, in the absence of signal, can be expected

with 1 fb−1 between 130 GeV and 190 GeV at 95% CL. For 10fb−1 the SM

Higgs can be excluded between 110 GeV and 190 GeV at 95% CL or above.

The ATLAS discovery sensitivity to the SM Higgs was also assessed. One

can expect to observe a Standard Model Higgs boson in the region 125 GeV

to 185 GeV with an integrated luminosity of 10fb−1. In the region between

115 GeV and 125 GeV, where the tt̄H channel is most sensitive, a 4σ result

is observed. With a higher integrated luminosity, inclusion of the tt̄H chan-

nel in the combination could improve the expected sensitivity sufficiently to

approach a 5σ discovery.

For the sensitivity studies above to be confirmed in real data, excellent par-

ticle identification is needed. Particle identification efficiencies for e, γ, µ,

jets and τ -leptons and corresponding contamination rates were presented. In

some cases, the contamination rates are relatively high, (e.g. εeγ, εγe ≈ 10%)

and a detailed study was performed. The order of precedence selected for

overlap removal was also shown to be important, particularly for contamina-

tion between electrons and jets. The electron efficiency was produced for both

Z → ee and tt̄ electrons, and the physics independence at ±5% confirmed

for the measured efficiencies. The efficiencies are now part of the ATLAS

fast simulation software package, ATLFast. A software package, ATLFast-

Correctors, allows users to implement corrections in the form of efficiencies

and contaminations applied to the ATLFast vanilla output. Validation of

the ATLFast efficiencies on a fully reconstructed tt̄ sample, showed that the
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corrected ATLFast output is now globally, within ±5% of the full simulation

output for isolated electrons. The package is available as part of the ATLAS

Athena software framework.



Freedom is the freedom to say that two plus two make four. If

that is granted, all else follows.

George Orwell, 1949



Where we’re going... We don’t need roads.

Dr Emmett Brown, 1985
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