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Abstract– We describe an important advancement for the 

Associative Memory device (AM). The AM is a VLSI processor 

for pattern recognition based on Content Addressable Memory 

(CAM) architecture. The AM is optimized for on-line track 

finding in high-energy physics experiments. Pattern matching is 

carried out by finding track candidates in coarse resolution 

“roads”. A large AM bank stores all trajectories of interest, 

called “patterns”, for a given detector resolution. The AM 

extracts roads compatible with a given event during detector 

read-out. 

  Two important variables characterize the quality of the AM 

bank: its “coverage” and the level of fake roads. The coverage, 

which describes the geometric efficiency of a bank, is defined as 

the fraction of tracks that match at least one pattern in the bank. 

Given a certain road size, the coverage of the bank can be 

increased just adding patterns to the bank, while the number of 

fakes unfortunately is roughly proportional to the number of 

patterns in the bank. Moreover, as the luminosity increases, the 

fake rate increases rapidly because of the increased silicon 

occupancy. To counter that, we must reduce the width of our 

roads. If we decrease the road width using the current 

technology, the system will become very large and extremely 

expensive. 

  We propose an elegant solution to this problem: the “variable 

resolution patterns”. Each pattern and each detector layer within 

a pattern will be able to use the optimal width, but we will use a 

“don’t care” feature (inspired from ternary CAMs) to increase 

the width when that is more appropriate. In other words we can 

use patterns of variable shape. 

As a result we reduce the number of fake roads, while keeping 

the efficiency high and avoiding excessive bank size due to the 

reduced width.   

  We describe the idea, the implementation in the new AM 

design and the implementation of the algorithm in the simulation. 

Finally we show the effectiveness of the “variable resolution 

patterns” idea using simulated high occupancy events in the 

ATLAS detector. 
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I. INTRODUCTION 

rack reconstruction in high-energy physics experiments 

requires large online computing power. The Fast Tracker 

(FTK) for the ATLAS trigger [1] is an evolution of the CDF 

Silicon Vertex Tracker (SVT) [2], [3], the only state-of-the-art 

online processor that tackles and solves the full track 

reconstruction problem at a hadron collider. 

The FTK track fitting system approaches offline tracking 

precision with a processing time of the order of tens of 

microseconds, compatible with 100 kHz input event rates. 

This task can be performed with negligible time delay by 

doing pattern recognition with a content addressable memory 

(Associative Memory, AM), i.e. a device that compares in 

parallel the event hits with all the stored pre-calculated low 

resolution track patterns and returns the addresses of the 

matching patterns. A second processor receives the matching 

patterns and their related full-resolution hits to perform the 

final track fitting (Track Fitter, TF).  

A critical figure of merit for the AM-based track 

reconstruction system is the number of patterns that can be 

stored in the bank. For the SVT upgrade [2], [4] we developed 

a version of the AM chip (AMchip03 processor) [5] using a 

180 nm CMOS technology and a strictly standard-cell VLSI 

design approach. The AM chip upgrade increased the number 

of patterns stored in a chip from 128 to 5 × 10
3
 and it could 

work at a 50 MHz frequency
1
. 

The FTK processor proposed for the ATLAS experiment is 

much more ambitious than SVT. In fact a very high efficiency 

and high quality track reconstruction, already shown possible 

by SVT, must be achieved in a much more complex detector. 

Moreover, the higher luminosity (>1034 cm-2 s-1) will increase 

the complexity of events. As a consequence a very large bank 

is necessary: candidate tracks have to be found with more than 

95% efficiency over the whole tracking detector (|<2.5), 

with high efficiency down to transverse momentum of 1 GeV, 

and the pattern recognition has to be extended to 11 silicon 

detector layers (3 pixel layers and 8 SCT layers) with a small 

enough pattern width to reduce drastically the number of fake 

tracks and the track fitting processing time. 

II. THE PATTERN BANK 

As already mentioned, two important variables 

characterize the goodness of the AM bank: its coverage and 

the rate of fake roads. The coverage is a purely geometric 

 
1 Higher frequency could be achieved, but it was not required by the final 

application. 
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quantity, defined as the probability that a track (with helix 

parameters within the desired range) intersects at least (M-1) 

of the M silicon layers within a pattern in the bank. In short, it 

is the fraction of reconstructable tracks based only on the 

detector geometry; it describes the geometric efficiency of the 

bank only. Track efficiency instead includes the contributions 

of all the algorithms used in FTK, the clustering of single 

detector channels before the AM and, after the AM, the track 

fitting inside roads whose efficiency is determined by a 
2
 cut.  

We generate tracks in the whole detector (no detector 

symmetries are exploited, to prevent alignment problems) and 

we store new patterns corresponding to the generated tracks, 

until the bank reaches the desired coverage. Each layer is 

subdivided into bins (Super Strips, SS) of equal size, each one 

is a rectangle in φ-z space. A pattern is a combination of M 

Super Strips, one in each layer. Only patterns that are hit by at 

least one track are kept. The whole collection of generated 

tracks is the FTK training sample. The bank is generated using 

very large training samples produced with the full ATLAS 

simulation. The geometry and resolution information are 

extracted from the simulated training samples rather than from 

a geometric description of the detector.  

 To maximize the efficiency of the pattern bank for a given 

size, we order the pattern list by the number of training tracks 

that match a pattern. We use this number to define the 

coverage of the single pattern. The larger the number of 

training tracks passing through the same pattern, the larger is 

that pattern’s coverage. We then fill up the available AM 

pattern locations using the most frequently hit patterns,  the 

“high-coverage patterns”. 

 

 
Fig. 1: The coverage and efficiency of the AM bank in the barrel (||<1). 

The SS sizes are 16 strips in the r-φ SCT layers and 22 (36) pixels in the φ (z) 

direction in the pixel layers. The arrow shows the chosen operating point. 

 

The number of generated patterns depends on the helix 

parameter range of the training track sample. We have 

selected ranges appropriate to triggering on electrons, muons, 

taus, and heavy quark jets. Azimuth, rapidity and z0 are 

generated flat over the entire silicon detector. Curvature is 

generated flat for tracks of pT1 GeV (chosen for e and μ 

isolation as well as τ and b daughters), and the impact 

parameter is flat out to 2 mm in order to be efficient for b-

quarks.  

 Fig. 1 shows a typical curve of track coverage and 

efficiency versus bank size. The coverage is determined by the 

bank only, while efficiency is affected by all the FTK 

algorithms. There is an initial rapid rise as the bank is filled 

with high-coverage patterns, patterns that tracks commonly 

match. Beyond that, the curve rises slowly as less probable 

patterns are added from the tails of the multiple scattering 

distribution (“low-coverage patterns”). Although the 

efficiency for real tracks grows slowly in this region, the 

number of fake matched roads rises nearly linearly with the 

bank size. Thus we have to choose a size that balances the 

need for good efficiency with the need to limit the rate of fake 

matched roads.  Moreover, as the luminosity increases, the 

number of fakes increases rapidly because of the increased 

silicon occupancy. To counter that, we must reduce the width 

of our roads to improve resolution.  

 

 
Fig. 2: (a) Eight patterns are compatible with a straight line when each 

layer is divided into two bins. Pattern number 3 matches the input track. (b) 
The width of the SS in each layer is further reduced by a factor of two and we 

test the four possible patterns consistent with the matched pattern in the 

previous step. 

 

We can use a successive approximation strategy to reduce 

the pattern width. We could repeat pattern matching on the 

same event with ever increasing pattern spatial resolution 

(decreasing pattern width).  Coarser resolution is obtained by 

simply ORing adjacent SSs. Fig. 2 demonstrates how this 

works for the case of straight line tracks passing through a 4-

layer tracker. Fig. 2.a shows the eight possible patterns found 

when a large road (let’s call it “fat road”) is divided into two 

half SSs in each layer. Pattern 3 matches the track’s actual 

trajectory, and it becomes the “parent pattern” for the next 

stage in which the width of the SSs is further reduced by a 

factor of two. Figure 2.b shows that there are 4 possible finer 

resolution patterns, with pattern 3 matching the input track. 

Since there still is a track candidate, we can further reduce the 

SS size by another factor of two. This process is iterated until 

either we reach the final resolution (success) or we are left 

with no track candidate (a low resolution “fake road” seeded 

the search for a real track that doesn’t exist). A fake road is 

one that disappears when we use finer resolution. 

The pattern bank can thus be arranged in a tree structure 

(Fig. 3) where increasing depth corresponds to increasing 

spatial resolution. The tree root corresponds to the incoming 

fat road. Each node not belonging to the final level represents 

one “parent pattern” and is linked to its sub-patterns (pattern 

block), corresponding to a factor of 2 increased SS resolution. 

We could compare each sub-pattern to the event and every 

matched pattern is a track candidate that enables the search at 

the next level. A refined track candidate (thin road) is found 
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whenever the tree bottom is reached. Reaching the intrinsic 

detector resolution, the pattern recognition is complete.  

 
Fig. 3: Hierarchical pattern organization in a tree structure.  

 

However it is not convenient to push the pattern matching 

search down to the detector intrinsic resolution, since a few 

remaining hit ambiguities are easily resolved by the track fitter 

which fits all of the hit combinations in a matched road. The 

tree search is obviously much faster than a purely sequential 

search, but it is also much slower than the AM approach; 

given a certain resolution the AM compares in parallel  all the 

patterns of the corresponding tree level with the event. In the 

tree search, instead the average number of patterns one has to 

examine serially to find a single track [6] is proportional to the 

total number of levels in the tree and to the average number of 

patterns in a pattern block. If there is more than one track in a 

fat road, the number of nodes tested during the tree search 

increases faster than linearly [7] since many fake matches can 

occur at low resolution. 

To maintain the minimum latency for pattern matching, the 

AM road finding approach is preferable. However, if we 

narrow the road width using current technology, the needed 

hardware would become very large and extremely expensive.  

Fig. 4 shows the coverage and efficiency versus bank size 

when the SS sizes are divided by two in the φ direction 

compared to the segmentation of Fig. 1: 8 strips in the r-φ 

SCT layers and 11 (36) pixels in the φ (z) direction in the 

pixel layers. The working point of ~120 M patterns in Fig. 4 is 

roughly a factor 10 larger than that for the bank  of Fig. 1 (~12 

M patterns). Reducing the pattern width by a factor 2 just in 

the φ direction requires a bank a factor of 10 larger to provide 

a similar efficiency.  

We propose an elegant solution to this problem, the 

“variable resolution patterns”.  It allows the use of a small AM 

bank, like the one of Fig. 1, while profiting from the positive 

effects of high pattern resolution  (like the bank of Fig. 4). 

 

 
Fig. 4: The coverage and efficiency in the barrel for the bank with pattern 

width reduced by a factor of 2 along the φ direction. The SS sizes are 8 strips 

in the r-φ SCT layers and 11 (36) pixels in the φ (z) direction in the pixel 

layers.  The arrow shows the chosen operating point. 

III. THE PATTERNS WITH VARIABLE RESOLUTION 

We include in the chip the ability to exploit high resolution 

for each pattern and each layer, but we use a “don’t care” 

feature (inspired from ternary CAMs) to employ such fine 

resolution only when necessary. In this way the shape of each 

pattern
2
 can be optimized to improve the acceptance for valid 

tracks with maximum fake rejection. The goal of the increased 

resolution is the reduction of the number of fake roads, roads 

that can be removed just by using a better resolution. Fake 

roads at the baseline LHC occupancy are a very large fraction 

of the total number of roads found for an affordable AM 

system without variable resolution. 

High-coverage patterns cause most of the bank size 

increase when pattern width is decreased. The tree 

representation of the bank shows that the high-coverage 

patterns are those that produce many sub-patterns (Fig. 5). 

High-coverage patterns are very symmetric, being compatible 

with many possible different tracks as can be seen in the 

figure.   

For this reason the probability that a fake road survives a 

single step of resolution improvement is high. If the high-

coverage pattern matches the event, there is a good probability 

that more than one sub-pattern will also match the event. To 

kill high-coverage fake roads, many steps in the tree are 

necessary.  Thus the high-coverage patterns are retained at low 

resolution in the pattern-bank since the resolution needed to 

significantly reduce their fakes is beyond today’s 

technological reach. 

However the main cause of the fakes found by a standard 

AM is the large number of low-coverage patterns for a bank 

with narrow patterns. In  Fig. 1 the 90% efficiency is reached 

easily just after the rapid raising part of the curve. In Fig. 4 

instead the high-coverage patterns provide only a limited 

efficiency (~80%) and the last 10% gain is reached only if a 

very large number of low-coverage patterns are included in the 

bank.  These low coverage patterns produce most of the fakes, 

 
2 The shape of a pattern is given by the width of the super strip in each 

layer. 
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which can easily be deleted with just one step of finer 

resolution. 
 

Fig. 5: graphic representation of low-coverage and high-coverage patterns.  

 

For a low-coverage pattern, Fig. 5 shows that, for 

resolution improved by a factor of two, only a fraction of the 

half SSs are compatible with any of the sub-patterns. They are 

the yellow ones. The white ones are not touched by any real 

track, but they offer all their acceptance to fakes. Going down 

just a single step in SS width reduces the fake road rate 

significantly. Simulation with real events confirms this 

hypothesis (see next section). 

The choice of high or low resolution can be separately 

applied layer by layer.  When we divide a SS in two parts, 

both halves can be touched by real tracks (both halves in the 

same layer are yellow, using the representation style of Fig. 5) 

or just one of them is compatible with a real track (one half is 

yellow and the other one is white).  In the first case the layer is 

used at low resolution applying the “don’t care” (DC) feature 

to the least significant bit of the pattern word during the 

comparison with the event. In the second case the layer is used 

at full resolution, reducing by a factor two the area that the SS 

offers to uncorrelated hits from other tracks. As a result we 

reduce the number of fake roads, keeping the efficiency high 

and avoiding the bank size blowing up due to the narrower SS 

width.   

IV. SIMULATION RESULTS  

The simulation program for FTK (FTKSim) processes 

complete ATLAS events and creates the same list of tracks 

that will be produced by the FTK hardware. The program 

serves a number of purposes: 

• detailed and reliable evaluation of FTK physics 

performance by processing complete events produced 

by the full ATLAS detector simulation, 

• evaluation of crucial parameters needed for the 

hardware design, 

• determination of the large set of constants needed for 

programming FTK, and 

• determination of tracking performance parameters for 

use in fast parametric detector simulation for high 

statistics studies of physics performance. 

These goals are achieved with an intermediate-level 

simulation that describes the FTK algorithm and internal data 

accurately, but avoids detailed bit-level simulation of the 

hardware in order to attain sufficient speed for simulating 

moderate sized samples of complete events. The core code [8] 

is based on a similar simulator created for the CDF SVT but 

with data structures appropriate for ATLAS Athena [9]. 

The simulated datasets used for performance studies are 

associated production of a W and a Higgs, with the Higgs 

forced to decay to either     or    .  
Samples were produced at three instantaneous luminosities 

with different number of pile-up events per beam crossing: 

17.6, 40 and 75. WH events have been chosen as typical of the 

multi-jet events that come out of the level-1 trigger. These 

could be the most complex events FTK has to process. 

The table below reports the number of roads found in the 

event for the different detector occupancies. We use 3 

different pattern banks: the low-resolution bank of Fig 1, the 

high-resolution bank of Fig. 4 and the new “variable 

resolution” bank. The bank with “variable resolution” using 

only 1 DC bit has a size intermediate between the low- and 

high-resolution banks, approximately a factor of 3 smaller 

than the high-resolution bank. The track efficiency measured 

on WH events is 90% for muons and 79% for pions with 

occupancy of 40 pile-up events, which deteriorates by roughly 

10% at very high luminosity. The bank coverage (efficiency 

due to the bank only) is more than 90% for both 40 and 75 

pile-up events.  

The first two columns of table 1 show that 80-90% of roads 

coming out of the low-resolution bank are fake roads, 

disappearing if we reduce the pattern width by a factor of 2. 

The last column shows that the variable resolution idea 

reduces fakes very similarly to the high resolution case, with 

the advantage that the bank size is much smaller.   

 
Table 1: The mean number of roads found in WH events at 3 different 

luminosities and using 3 different patterns banks: the low-resolution bank of 

Fig 1, the high-resolution bank of Fig. 4 and the new idea of a variable 

resolution bank. 

Pile-up Low-resolution High-resolution Variable resolution  

17.6  645  103 135  103 123  103 

40 4.7  106 0.73 106 0.83 106 

75 6.8 106 0.76 106 1.1 106 

 

 

In fact both low-resolution and high-resolution options are 

not implementable with today’s technology, the former 

because it would require too much hardware to process the 

roads found by  the AM, the second one because it would 

require too large an AM bank. 

Variable resolution offers the solution, allowing a 

reasonable size for both parts of the system. Variable 

resolution achieves the same efficiency and same rate of fake 

roads as the high-resolution case with a factor of 3 smaller 

bank, thus improving by a factor 3 the effectiveness of the 

hardware 

These results can be further improved using a second step 

or even third step in resolution using 2 or 3 don’t care bits. 

Preliminary results with 2 don't care bits show a factor of 5 

gain in number of patterns for same efficiency and fake 

performance.   

1

Low probability
to fire AM patterns
(asymmetric): 
few sub-patterns

LOW coverage
patterns

High probability 
to fire AM patterns 
(symmetric): 
many  sub-patterns

HIGH coverage
patterns



 

V. THE IMPLEMENTATION IN THE SIMULATION 

As described in Section II and III, the basic idea is to have 

two different segmentations of the inner detector: a high-

resolution (thin) SS segmentation, producing “thin patterns”, 

and a low-resolution (fat) SS segmentation that produces the 

“fat patterns”. The fat SS size is a power of 2 times the thin 

size (2, 4, 8, …) and the thin SSs are internal partitions of the 

fat SS.  

The simulation starts by producing the thin SS bank, 

resulting in a very large number of high resolution patterns. 

Using the geometrical relation between the high resolution and 

the low resolution SSs, the thin patterns are grouped into 

families producing the tree structure  of Fig. 3. The bank 

generation is still not complete. The last step is a scan of all 

the layers used in any fat pattern to set for each layer the status 

of the DC bits. This can be understood with the help of Fig. 5. 

If we choose the fat SS size as twice the thin one, each fat SS 

will be divided into two parts, described by 1 DC bit and two 

possible scenarios: all the sub-patterns involve the same half 

SS (in this case the other half SS is not touched by any track, 

as the white bins in Fig. 5) or they involve both halves (layers 

in Fig. 5  where no white bin is shown, both are yellow). If 

both the half SSs are yellow, the DC bit is set to 1, and the 

lower resolution is used for that layer in the pattern matching 

simulation. If one of the two half SS is white, the DC bit is set 

to 0 and the higher resolution is used in the pattern matching. 

In this latter case we need an additional bit (the position bit, 

POS) that establishes which half SS is to be used in the 

comparison with the event. 

 

 
 

 

 

If multiple DC bits are used, we find that the use of a Grey 

code improves the ability to group neighboring high resolution 

SSs. Three examples of the construction of the DC and the 

position bits are shown in Fig. 6. For each configuration of DC 

and position bits,  the figure shows in dark gray the high-

resolution SS that are accepted for a match. In a) there are 2 

examples using 1 DC bit; the “X” in the position indicates the 

value doesn’t matter and both positions are matched. In b) 

there is an example with 2 DC bits, when only the most 

significant bit is set to don't care (DC=10). With standard 

binary encoding this configuration accepts two non-

contiguous bins. In c) it is seen that using a Grey code 

provides a more powerful description of the active partition. In 

the case of DC=10 we can match the two central position. This 

is not possible with binary encoding. 

The bank just described is used in the pattern matching 

simulation. Two steps are executed: the first step performs the 

old-style AM chip simulation without taking into account the 

DC bit information, producing the results of the low-resolution 

pattern matching (see table 1). After that, the roads found by 

the first step are tested in more detail: in the layers where the 

DC bit is not set the hit position is checked at higher 

resolution. The hits in the SS part selected by the POS bits 

(yellow bins of Fig. 5) are kept, the others (the one in the 

white bins) are removed. This procedure rejects all the fake 

roads that fired during the first step because of hits belonging 

to the rejected thin, white SSs.  

This two step method is not the same used in the hardware 

but has exactly the same result and helps us debug and 

understand the rejection flow of the variable resolution 

patterns. 

VI. THE IMPLEMENTATION IN THE AMCHIP 

We have designed a new AMchip prototype with the goal of 

increasing the pattern density by introducing the DC bits to 

allow more effective pattern matching. The new device will 

perform pattern matching with up to 8 layers. Within each 

pattern the hardware allocates for each layer a CAM word [10] 

of 15 bits to store the hit position with high resolution. 

Incoming hits are compared with the stored word to find layer 

matches. If all or all except one of the layers are matched, the 

pattern is considered matched and its address is sent out. 

 

 
Fig. 7: Logic of 4 CAM words with “don’t care” bits. 

 

The 15 bits within each word are configured to store 12 bits 

plus 3 bits with the don't-care option. By setting one or more 

of these bits to DC we can allow a single layer to match hits 

with lower resolution. Since in our application the hit encodes 

a position, the resolution can be lowered for each pattern and 

each layer by a factor 2, 4 or 8 depending on the number of 

DC bits. From the hardware point of view each CAM bit with 

the don’t-care option occupies two times the area of a normal 

bit. In fact the ternary cell is implemented combining two 

normal cells.  In a don’t-care cell three values (0, 1, X) can be  

stored using two SRAM cells, as showed in Fig. 7, compared 

to normal cells that only store (0, 1) values. The additional 

00     01      10     11 

00     01      11      10 

a) 

   0                1 

b) 

c) 

DC 1, Pos X 

DC 0, Pos 1 

DC 10, Pos X1 
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Fig. 6: The active partitions within a fat SS for different DC and position 

values. The numeric values are showed in binary format. 



 

cost of the  don’t-care hardware is a 20% increase in the core 

logic (18 normal cells vs 15 cells). Since the number of 

patterns needed for same efficiency and same fake rate is 

reduced by a factor of at least 3, this is a very effective 

technique.   

VII. CONCLUSIONS 

The variable resolution pattern matching is an innovative idea 

that makes it possible to reduce the cost, size and complexity 

of FTK, down to values that allows building it for the 

expected SLHC luminosities. Using just a single DC bit we 

gain a factor 3 in the effective number of patterns, with larger 

gains expected using 2 and 3  DC bits. 

Pattern matching techniques are widely used in trigger 

applications for high energy physics experiments, and most 

applications can exploit variable resolution patterns to 

improve the effectiveness of pattern matching. 
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