
A
TL

-U
PG

R
A

D
E-

PR
O

C
-2

01
1-

00
4

20
M

ay
20

11

A New Variable-Resolution Associative Memory for

High Energy Physics

A. Annovi, S. Amerio, M. Beretta, E. Bossini, F. Crescioli, M. Dell'Orso, P. Giannetti, J. Hoff, T. Liu, D. Magalotti,

M. Piendibene, I. Sacco, A. Schoening, H.-K. Soltveit, A. Stabile, R. Tripiccione, V. Liberali, R. Vitillo, G. Volpi

Abstract– We describe an important advancement for the

Associative Memory device (AM). The AM is a VLSI processor

for pattern recognition based on Content Addressable Memory

(CAM) architecture. The AM is optimized for on-line track

finding in high-energy physics experiments. Pattern matching is

carried out by finding track candidates in coarse resolution

“roads”. A large AM bank stores all trajectories of interest,

called “patterns”, for a given detector resolution. The AM

extracts roads compatible with a given event during detector

read-out.

 Two important variables characterize the quality of the AM

bank: its “coverage” and the level of fake roads. The coverage,

which describes the geometric efficiency of a bank, is defined as

the fraction of tracks that match at least one pattern in the bank.

Given a certain road size, the coverage of the bank can be

increased just adding patterns to the bank, while the number of

fakes unfortunately is roughly proportional to the number of

patterns in the bank. Moreover, as the luminosity increases, the

fake rate increases rapidly because of the increased silicon

occupancy. To counter that, we must reduce the width of our

roads. If we decrease the road width using the current

technology, the system will become very large and extremely

expensive.

 We propose an elegant solution to this problem: the “variable

resolution patterns”. Each pattern and each detector layer within

a pattern will be able to use the optimal width, but we will use a

“don’t care” feature (inspired from ternary CAMs) to increase

the width when that is more appropriate. In other words we can

use patterns of variable shape.

As a result we reduce the number of fake roads, while keeping

the efficiency high and avoiding excessive bank size due to the

reduced width.

 We describe the idea, the implementation in the new AM

design and the implementation of the algorithm in the simulation.

Finally we show the effectiveness of the “variable resolution

patterns” idea using simulated high occupancy events in the

ATLAS detector.

Manuscript received May 20, 2011. This work was supported in part by the

U.E. IOF project 254410 .
A. Annovi, M. Beretta, and G. Volpi are with INFN Frascati.

S. Amerio is with INFN Padova.

E. Bossini, F. Crescioli, M. Dell'Orso, P. Giannetti, M. Piendibene, I.
Sacco, R. Vitillo are with INFN Pisa.

J. Hoff, T. Liu are with Fermilab.

D. Magalotti is with INFN Perugia
A. Schoening, H.-K. Soltveit are with University of Heidelberg

A. Stabile, V. Liberali are with INFN Milano.

R. Tripiccione is with INFN Ferrara.

I. INTRODUCTION

rack reconstruction in high-energy physics experiments

requires large online computing power. The Fast Tracker

(FTK) for the ATLAS trigger [1] is an evolution of the CDF

Silicon Vertex Tracker (SVT) [2], [3], the only state-of-the-art

online processor that tackles and solves the full track

reconstruction problem at a hadron collider.

The FTK track fitting system approaches offline tracking

precision with a processing time of the order of tens of

microseconds, compatible with 100 kHz input event rates.

This task can be performed with negligible time delay by

doing pattern recognition with a content addressable memory

(Associative Memory, AM), i.e. a device that compares in

parallel the event hits with all the stored pre-calculated low

resolution track patterns and returns the addresses of the

matching patterns. A second processor receives the matching

patterns and their related full-resolution hits to perform the

final track fitting (Track Fitter, TF).

A critical figure of merit for the AM-based track

reconstruction system is the number of patterns that can be

stored in the bank. For the SVT upgrade [2], [4] we developed

a version of the AM chip (AMchip03 processor) [5] using a

180 nm CMOS technology and a strictly standard-cell VLSI

design approach. The AM chip upgrade increased the number

of patterns stored in a chip from 128 to 5 × 10
3
 and it could

work at a 50 MHz frequency
1
.

The FTK processor proposed for the ATLAS experiment is

much more ambitious than SVT. In fact a very high efficiency

and high quality track reconstruction, already shown possible

by SVT, must be achieved in a much more complex detector.

Moreover, the higher luminosity (>1034 cm-2 s-1) will increase

the complexity of events. As a consequence a very large bank

is necessary: candidate tracks have to be found with more than

95% efficiency over the whole tracking detector (|<2.5),

with high efficiency down to transverse momentum of 1 GeV,

and the pattern recognition has to be extended to 11 silicon

detector layers (3 pixel layers and 8 SCT layers) with a small

enough pattern width to reduce drastically the number of fake

tracks and the track fitting processing time.

II. THE PATTERN BANK

As already mentioned, two important variables

characterize the goodness of the AM bank: its coverage and

the rate of fake roads. The coverage is a purely geometric

1 Higher frequency could be achieved, but it was not required by the final

application.

T

quantity, defined as the probability that a track (with helix

parameters within the desired range) intersects at least (M-1)

of the M silicon layers within a pattern in the bank. In short, it

is the fraction of reconstructable tracks based only on the

detector geometry; it describes the geometric efficiency of the

bank only. Track efficiency instead includes the contributions

of all the algorithms used in FTK, the clustering of single

detector channels before the AM and, after the AM, the track

fitting inside roads whose efficiency is determined by a 
2
 cut.

We generate tracks in the whole detector (no detector

symmetries are exploited, to prevent alignment problems) and

we store new patterns corresponding to the generated tracks,

until the bank reaches the desired coverage. Each layer is

subdivided into bins (Super Strips, SS) of equal size, each one

is a rectangle in φ-z space. A pattern is a combination of M

Super Strips, one in each layer. Only patterns that are hit by at

least one track are kept. The whole collection of generated

tracks is the FTK training sample. The bank is generated using

very large training samples produced with the full ATLAS

simulation. The geometry and resolution information are

extracted from the simulated training samples rather than from

a geometric description of the detector.

 To maximize the efficiency of the pattern bank for a given

size, we order the pattern list by the number of training tracks

that match a pattern. We use this number to define the

coverage of the single pattern. The larger the number of

training tracks passing through the same pattern, the larger is

that pattern’s coverage. We then fill up the available AM

pattern locations using the most frequently hit patterns, the

“high-coverage patterns”.

Fig. 1: The coverage and efficiency of the AM bank in the barrel (||<1).

The SS sizes are 16 strips in the r-φ SCT layers and 22 (36) pixels in the φ (z)

direction in the pixel layers. The arrow shows the chosen operating point.

The number of generated patterns depends on the helix

parameter range of the training track sample. We have

selected ranges appropriate to triggering on electrons, muons,

taus, and heavy quark jets. Azimuth, rapidity and z0 are

generated flat over the entire silicon detector. Curvature is

generated flat for tracks of pT1 GeV (chosen for e and μ

isolation as well as τ and b daughters), and the impact

parameter is flat out to 2 mm in order to be efficient for b-

quarks.

 Fig. 1 shows a typical curve of track coverage and

efficiency versus bank size. The coverage is determined by the

bank only, while efficiency is affected by all the FTK

algorithms. There is an initial rapid rise as the bank is filled

with high-coverage patterns, patterns that tracks commonly

match. Beyond that, the curve rises slowly as less probable

patterns are added from the tails of the multiple scattering

distribution (“low-coverage patterns”). Although the

efficiency for real tracks grows slowly in this region, the

number of fake matched roads rises nearly linearly with the

bank size. Thus we have to choose a size that balances the

need for good efficiency with the need to limit the rate of fake

matched roads. Moreover, as the luminosity increases, the

number of fakes increases rapidly because of the increased

silicon occupancy. To counter that, we must reduce the width

of our roads to improve resolution.

Fig. 2: (a) Eight patterns are compatible with a straight line when each

layer is divided into two bins. Pattern number 3 matches the input track. (b)
The width of the SS in each layer is further reduced by a factor of two and we

test the four possible patterns consistent with the matched pattern in the

previous step.

We can use a successive approximation strategy to reduce

the pattern width. We could repeat pattern matching on the

same event with ever increasing pattern spatial resolution

(decreasing pattern width). Coarser resolution is obtained by

simply ORing adjacent SSs. Fig. 2 demonstrates how this

works for the case of straight line tracks passing through a 4-

layer tracker. Fig. 2.a shows the eight possible patterns found

when a large road (let’s call it “fat road”) is divided into two

half SSs in each layer. Pattern 3 matches the track’s actual

trajectory, and it becomes the “parent pattern” for the next

stage in which the width of the SSs is further reduced by a

factor of two. Figure 2.b shows that there are 4 possible finer

resolution patterns, with pattern 3 matching the input track.

Since there still is a track candidate, we can further reduce the

SS size by another factor of two. This process is iterated until

either we reach the final resolution (success) or we are left

with no track candidate (a low resolution “fake road” seeded

the search for a real track that doesn’t exist). A fake road is

one that disappears when we use finer resolution.

The pattern bank can thus be arranged in a tree structure

(Fig. 3) where increasing depth corresponds to increasing

spatial resolution. The tree root corresponds to the incoming

fat road. Each node not belonging to the final level represents

one “parent pattern” and is linked to its sub-patterns (pattern

block), corresponding to a factor of 2 increased SS resolution.

We could compare each sub-pattern to the event and every

matched pattern is a track candidate that enables the search at

the next level. A refined track candidate (thin road) is found

10
5

whenever the tree bottom is reached. Reaching the intrinsic

detector resolution, the pattern recognition is complete.

Fig. 3: Hierarchical pattern organization in a tree structure.

However it is not convenient to push the pattern matching

search down to the detector intrinsic resolution, since a few

remaining hit ambiguities are easily resolved by the track fitter

which fits all of the hit combinations in a matched road. The

tree search is obviously much faster than a purely sequential

search, but it is also much slower than the AM approach;

given a certain resolution the AM compares in parallel all the

patterns of the corresponding tree level with the event. In the

tree search, instead the average number of patterns one has to

examine serially to find a single track [6] is proportional to the

total number of levels in the tree and to the average number of

patterns in a pattern block. If there is more than one track in a

fat road, the number of nodes tested during the tree search

increases faster than linearly [7] since many fake matches can

occur at low resolution.

To maintain the minimum latency for pattern matching, the

AM road finding approach is preferable. However, if we

narrow the road width using current technology, the needed

hardware would become very large and extremely expensive.

Fig. 4 shows the coverage and efficiency versus bank size

when the SS sizes are divided by two in the φ direction

compared to the segmentation of Fig. 1: 8 strips in the r-φ

SCT layers and 11 (36) pixels in the φ (z) direction in the

pixel layers. The working point of ~120 M patterns in Fig. 4 is

roughly a factor 10 larger than that for the bank of Fig. 1 (~12

M patterns). Reducing the pattern width by a factor 2 just in

the φ direction requires a bank a factor of 10 larger to provide

a similar efficiency.

We propose an elegant solution to this problem, the

“variable resolution patterns”. It allows the use of a small AM

bank, like the one of Fig. 1, while profiting from the positive

effects of high pattern resolution (like the bank of Fig. 4).

Fig. 4: The coverage and efficiency in the barrel for the bank with pattern

width reduced by a factor of 2 along the φ direction. The SS sizes are 8 strips

in the r-φ SCT layers and 11 (36) pixels in the φ (z) direction in the pixel

layers. The arrow shows the chosen operating point.

III. THE PATTERNS WITH VARIABLE RESOLUTION

We include in the chip the ability to exploit high resolution

for each pattern and each layer, but we use a “don’t care”

feature (inspired from ternary CAMs) to employ such fine

resolution only when necessary. In this way the shape of each

pattern
2
 can be optimized to improve the acceptance for valid

tracks with maximum fake rejection. The goal of the increased

resolution is the reduction of the number of fake roads, roads

that can be removed just by using a better resolution. Fake

roads at the baseline LHC occupancy are a very large fraction

of the total number of roads found for an affordable AM

system without variable resolution.

High-coverage patterns cause most of the bank size

increase when pattern width is decreased. The tree

representation of the bank shows that the high-coverage

patterns are those that produce many sub-patterns (Fig. 5).

High-coverage patterns are very symmetric, being compatible

with many possible different tracks as can be seen in the

figure.

For this reason the probability that a fake road survives a

single step of resolution improvement is high. If the high-

coverage pattern matches the event, there is a good probability

that more than one sub-pattern will also match the event. To

kill high-coverage fake roads, many steps in the tree are

necessary. Thus the high-coverage patterns are retained at low

resolution in the pattern-bank since the resolution needed to

significantly reduce their fakes is beyond today’s

technological reach.

However the main cause of the fakes found by a standard

AM is the large number of low-coverage patterns for a bank

with narrow patterns. In Fig. 1 the 90% efficiency is reached

easily just after the rapid raising part of the curve. In Fig. 4

instead the high-coverage patterns provide only a limited

efficiency (~80%) and the last 10% gain is reached only if a

very large number of low-coverage patterns are included in the

bank. These low coverage patterns produce most of the fakes,

2 The shape of a pattern is given by the width of the super strip in each

layer.

THIN ROAD

Depth 0

Depth 1

Depth 2

PARENT
PATTERN FAT ROAD

Pattern Blocks

10
5

which can easily be deleted with just one step of finer

resolution.

Fig. 5: graphic representation of low-coverage and high-coverage patterns.

For a low-coverage pattern, Fig. 5 shows that, for

resolution improved by a factor of two, only a fraction of the

half SSs are compatible with any of the sub-patterns. They are

the yellow ones. The white ones are not touched by any real

track, but they offer all their acceptance to fakes. Going down

just a single step in SS width reduces the fake road rate

significantly. Simulation with real events confirms this

hypothesis (see next section).

The choice of high or low resolution can be separately

applied layer by layer. When we divide a SS in two parts,

both halves can be touched by real tracks (both halves in the

same layer are yellow, using the representation style of Fig. 5)

or just one of them is compatible with a real track (one half is

yellow and the other one is white). In the first case the layer is

used at low resolution applying the “don’t care” (DC) feature

to the least significant bit of the pattern word during the

comparison with the event. In the second case the layer is used

at full resolution, reducing by a factor two the area that the SS

offers to uncorrelated hits from other tracks. As a result we

reduce the number of fake roads, keeping the efficiency high

and avoiding the bank size blowing up due to the narrower SS

width.

IV. SIMULATION RESULTS

The simulation program for FTK (FTKSim) processes

complete ATLAS events and creates the same list of tracks

that will be produced by the FTK hardware. The program

serves a number of purposes:

• detailed and reliable evaluation of FTK physics

performance by processing complete events produced

by the full ATLAS detector simulation,

• evaluation of crucial parameters needed for the

hardware design,

• determination of the large set of constants needed for

programming FTK, and

• determination of tracking performance parameters for

use in fast parametric detector simulation for high

statistics studies of physics performance.

These goals are achieved with an intermediate-level

simulation that describes the FTK algorithm and internal data

accurately, but avoids detailed bit-level simulation of the

hardware in order to attain sufficient speed for simulating

moderate sized samples of complete events. The core code [8]

is based on a similar simulator created for the CDF SVT but

with data structures appropriate for ATLAS Athena [9].

The simulated datasets used for performance studies are

associated production of a W and a Higgs, with the Higgs

forced to decay to either or .
Samples were produced at three instantaneous luminosities

with different number of pile-up events per beam crossing:

17.6, 40 and 75. WH events have been chosen as typical of the

multi-jet events that come out of the level-1 trigger. These

could be the most complex events FTK has to process.

The table below reports the number of roads found in the

event for the different detector occupancies. We use 3

different pattern banks: the low-resolution bank of Fig 1, the

high-resolution bank of Fig. 4 and the new “variable

resolution” bank. The bank with “variable resolution” using

only 1 DC bit has a size intermediate between the low- and

high-resolution banks, approximately a factor of 3 smaller

than the high-resolution bank. The track efficiency measured

on WH events is 90% for muons and 79% for pions with

occupancy of 40 pile-up events, which deteriorates by roughly

10% at very high luminosity. The bank coverage (efficiency

due to the bank only) is more than 90% for both 40 and 75

pile-up events.

The first two columns of table 1 show that 80-90% of roads

coming out of the low-resolution bank are fake roads,

disappearing if we reduce the pattern width by a factor of 2.

The last column shows that the variable resolution idea

reduces fakes very similarly to the high resolution case, with

the advantage that the bank size is much smaller.

Table 1: The mean number of roads found in WH events at 3 different

luminosities and using 3 different patterns banks: the low-resolution bank of

Fig 1, the high-resolution bank of Fig. 4 and the new idea of a variable

resolution bank.

Pile-up Low-resolution High-resolution Variable resolution

17.6 645 103 135 103 123 103

40 4.7 106 0.73 106 0.83 106

75 6.8 106 0.76 106 1.1 106

In fact both low-resolution and high-resolution options are

not implementable with today’s technology, the former

because it would require too much hardware to process the

roads found by the AM, the second one because it would

require too large an AM bank.

Variable resolution offers the solution, allowing a

reasonable size for both parts of the system. Variable

resolution achieves the same efficiency and same rate of fake

roads as the high-resolution case with a factor of 3 smaller

bank, thus improving by a factor 3 the effectiveness of the

hardware

These results can be further improved using a second step

or even third step in resolution using 2 or 3 don’t care bits.

Preliminary results with 2 don't care bits show a factor of 5

gain in number of patterns for same efficiency and fake

performance.

1

Low probability
to fire AM patterns
(asymmetric):
few sub-patterns

LOW coverage
patterns

High probability
to fire AM patterns
(symmetric):
many sub-patterns

HIGH coverage
patterns

V. THE IMPLEMENTATION IN THE SIMULATION

As described in Section II and III, the basic idea is to have

two different segmentations of the inner detector: a high-

resolution (thin) SS segmentation, producing “thin patterns”,

and a low-resolution (fat) SS segmentation that produces the

“fat patterns”. The fat SS size is a power of 2 times the thin

size (2, 4, 8, …) and the thin SSs are internal partitions of the

fat SS.

The simulation starts by producing the thin SS bank,

resulting in a very large number of high resolution patterns.

Using the geometrical relation between the high resolution and

the low resolution SSs, the thin patterns are grouped into

families producing the tree structure of Fig. 3. The bank

generation is still not complete. The last step is a scan of all

the layers used in any fat pattern to set for each layer the status

of the DC bits. This can be understood with the help of Fig. 5.

If we choose the fat SS size as twice the thin one, each fat SS

will be divided into two parts, described by 1 DC bit and two

possible scenarios: all the sub-patterns involve the same half

SS (in this case the other half SS is not touched by any track,

as the white bins in Fig. 5) or they involve both halves (layers

in Fig. 5 where no white bin is shown, both are yellow). If

both the half SSs are yellow, the DC bit is set to 1, and the

lower resolution is used for that layer in the pattern matching

simulation. If one of the two half SS is white, the DC bit is set

to 0 and the higher resolution is used in the pattern matching.

In this latter case we need an additional bit (the position bit,

POS) that establishes which half SS is to be used in the

comparison with the event.

If multiple DC bits are used, we find that the use of a Grey

code improves the ability to group neighboring high resolution

SSs. Three examples of the construction of the DC and the

position bits are shown in Fig. 6. For each configuration of DC

and position bits, the figure shows in dark gray the high-

resolution SS that are accepted for a match. In a) there are 2

examples using 1 DC bit; the “X” in the position indicates the

value doesn’t matter and both positions are matched. In b)

there is an example with 2 DC bits, when only the most

significant bit is set to don't care (DC=10). With standard

binary encoding this configuration accepts two non-

contiguous bins. In c) it is seen that using a Grey code

provides a more powerful description of the active partition. In

the case of DC=10 we can match the two central position. This

is not possible with binary encoding.

The bank just described is used in the pattern matching

simulation. Two steps are executed: the first step performs the

old-style AM chip simulation without taking into account the

DC bit information, producing the results of the low-resolution

pattern matching (see table 1). After that, the roads found by

the first step are tested in more detail: in the layers where the

DC bit is not set the hit position is checked at higher

resolution. The hits in the SS part selected by the POS bits

(yellow bins of Fig. 5) are kept, the others (the one in the

white bins) are removed. This procedure rejects all the fake

roads that fired during the first step because of hits belonging

to the rejected thin, white SSs.

This two step method is not the same used in the hardware

but has exactly the same result and helps us debug and

understand the rejection flow of the variable resolution

patterns.

VI. THE IMPLEMENTATION IN THE AMCHIP

We have designed a new AMchip prototype with the goal of

increasing the pattern density by introducing the DC bits to

allow more effective pattern matching. The new device will

perform pattern matching with up to 8 layers. Within each

pattern the hardware allocates for each layer a CAM word [10]

of 15 bits to store the hit position with high resolution.

Incoming hits are compared with the stored word to find layer

matches. If all or all except one of the layers are matched, the

pattern is considered matched and its address is sent out.

Fig. 7: Logic of 4 CAM words with “don’t care” bits.

The 15 bits within each word are configured to store 12 bits

plus 3 bits with the don't-care option. By setting one or more

of these bits to DC we can allow a single layer to match hits

with lower resolution. Since in our application the hit encodes

a position, the resolution can be lowered for each pattern and

each layer by a factor 2, 4 or 8 depending on the number of

DC bits. From the hardware point of view each CAM bit with

the don’t-care option occupies two times the area of a normal

bit. In fact the ternary cell is implemented combining two

normal cells. In a don’t-care cell three values (0, 1, X) can be

stored using two SRAM cells, as showed in Fig. 7, compared

to normal cells that only store (0, 1) values. The additional

00 01 10 11

00 01 11 10

a)

 0 1

b)

c)

DC 1, Pos X

DC 0, Pos 1

DC 10, Pos X1

DC 10, Pos X1

Fig. 6: The active partitions within a fat SS for different DC and position

values. The numeric values are showed in binary format.

cost of the don’t-care hardware is a 20% increase in the core

logic (18 normal cells vs 15 cells). Since the number of

patterns needed for same efficiency and same fake rate is

reduced by a factor of at least 3, this is a very effective

technique.

VII. CONCLUSIONS

The variable resolution pattern matching is an innovative idea

that makes it possible to reduce the cost, size and complexity

of FTK, down to values that allows building it for the

expected SLHC luminosities. Using just a single DC bit we

gain a factor 3 in the effective number of patterns, with larger

gains expected using 2 and 3 DC bits.

Pattern matching techniques are widely used in trigger

applications for high energy physics experiments, and most

applications can exploit variable resolution patterns to

improve the effectiveness of pattern matching.

REFERENCES

[1] A. Annovi et al., “Hadron Collider Triggers with High-Quality Tracking
at Very High Event Rates”, IEEE Trans. Nucl. Sci., vol. 51, pp 391,

2004.

[2] J. Adelman et al., “The Silicon Vertex Trigger upgrade at CDF”, Nucl.
Intsr. and Meth. in Physics Research A, vol. 572, Issue 1, pp 361-364,

March 2007.

[3] J. Adelman et al., “Real time secondary vertexing at CDF”, Nucl. Intsr.
and Meth. in Physics Research A, vol. 569, pp 111–114, 2006.

[4] J. Adelman et al., “On-line tracking processors at hadron colliders: the

SVT experience at CDF II and beyond”, Nucl. Instr. and Meth. in
Physics Research A, vol. 581, pp 473–475, 2007.

[5] A. Annovi at al., “A VLSI Processor for Fast Track Finding Based on

Content Addressable Memories”, IEEE Trans. Nucl. Sci., vol. 53, pp
2428, 2006.

[6] M. Dell'Orso and L. Ristori, "A highly parallel algorithm for track

finding", Nucl. Intsr. and Meth., A287, (1990) 436-440
[7] M. Dell’Orso, L. Ristori, “VLSI Structure For Track Finding “, Nucl.

Instr. and Meth. A 278 (1989) 436.

[8] E. Brubaker et al., “Performance of the Proposed Fast Track Processor
for Rare Decays at the ATLAS Experiment.”, IEEE Trans. Nucl. Sci.

vol. 55, pp 145-150, 2008

[9] The ATLAS Collaboration. ATLAS Computing Technical Design
Report, July 2004. ATLAS TDR-017, CERN-LHCC-2005-022.

[10] K. Pagiamtzis and A. Sheikholeslami, “Content-addressable memory

(cam) circuits and architectures: a tutorial and survey”, Solid-State
Circuits, IEEE Journal of, vol. 41, no. 3, pp. 712 – 727, march 2006.

