EuCARD-CON-2011-011

7 EUCARD

European Coordination for Accelerator Research and Development

PUBLICATION

Real-Time IPMI Protocol Analyzer

Kozak, T (TUL) et al

08 May 2011

The research leading to these results has received funding from the European Commission
under the FP7 Research Infrastructures project EUCARD, grant agreement no. 227579.

This work is part of EUCARD Work Package 10: SC RF technology for higher intensity
proton accelerators and higher energy electron linacs.

The electronic version of this EuCARD Publication is available via the EuCARD web site
<http://cern.ch/eucard> or on the CERN Document Server at the following URL :
<http://cdsweb.cern.ch/record/1349299

EuCARD-CON-2011-011

http://cern.ch/eucard
http://cdsweb.cern.ch/record/1349299

Real-Time IPMI Protocol Analyzer

T. Kozak, P. Predki, D. Makowski
Technical University of Lodz
Department of Microelectronics and Computer Science
Lodz, Poland

Abstract—The Advanced Telecommunications Computing Ar-
chitecture (ATCA) is a modern platform, which gains popularity,
not only in telecommunication, but also in others fields like High
Energy Physics (HEP) experiments. Computing systems based
on ATCA provide high performance and efficiency and are char-
acterized by significant reliability, availability and serviceability.
ATCA offers these features because of an integrated manage-
ment system realized by the Intelligent Platform Management
Interface (IPMI) implemented on dedicated Intelligent Platform
Management Controller (IPMC).

IPMC is required on each ATCA board to fulfill the ATCA
standard and is responsible for many vital procedures performed
to support proper operation of ATCA system. It covers, among
others, activation and deactivations of modules, monitoring of
actual parameters or controlling fans. The commercially available
IPMI implementations are expensive and often not suited to
demands of specific ATCA applications and available hardware.
Thus, many research centers and commercial companies decide
to develop their own version of IPMC software. Despite precise
IPMI specification, these implementations are often incompatible
with each other, which leads to incorrect in-system behavior of
devices equipped with IPMC from various vendors.

ATCA specifies the I>C protocol as a physical layer of IPML
There are many devices able to monitor the I°C bus such as
logic analyzers or specialized oscilloscopes. However, there is
no available equipment capable of debugging IPMI as a higher
level protocol. The article compares available methods of IPMI
debugging and describes a custom made device prepared to
monitor in real-time up to eight IPMI lines and analyze the
IPMI protocol. Accessibility of this kind of equipment allows to
discover errors and find the reasons of faulty behavior of the
IPMC under development, greatly reduce the time to market
factor and decrease costs of ATCA system development.

Index Terms—Advanced Telecommunications Computing Archi-
tecture, Intelligent Platform Management Interface, protocol
analyzer

I. INTRODUCTION

Thanks a high standard of reliability and availability the Ad-
vanced Telecommunications Computing Architecture (ATCA)
has become more and more popular in many modern ap-
plications. Although intended mainly for telecommunications
markets it has spread into other areas, including High Energy
Physics (HEP) and other large-scale experiments [1]. Among
the features that make this solution a good candidate in
such applications are the redundancy of various management
components as well as adaptation of the Intelligent Platform
Management Interface (IPMI) [2].

A. IPMI as part of Advanced Telecommunications Computing
Architecture

IPMI has been developed by Intel as a set of common
interfaces to a computer system which can be used by system
administrators to monitor the state of the system and manage it
[3]. It is completely independent of the underlying operating
system and can even be implemented without one. Remote
access to the monitored system is possible even if it has
failed and IPMI allows to find out about the cause of the
failure and to take appropriate actions leading to system
recovery. At the top of the hierarchical structure of IPMI lies
the Base Management Controller (BMC) to which all other
controllers are connected. These satellite controllers, placed
among various system modules, use the Intelligent Platform
Management Bus (IPMB) to exchange messages with the
BMC located in the same chassis.

The IPMI protocol is used in ATCA as the basis for
communication between all the elements of the system [4].
Here, the Shelf Manager (ShM) takes the role of the BMC
while the satellite controllers are the Intelligent Platform
Management Controllers (IPMCs) situated on Field Replace-
able Units (FRUs) such as ATCA carrier boards. The IPMB
takes the form of a redundant I?C bus [5] (IPMB-0) and the
chassis is called an ATCA Shelf, see TABLE I for comparison
of these two naming conventions. Since the proposed IPMI
protocol analyzer has been developed mainly with ATCA-
based applications in mind, the system components’ names
will follow the ATCA nomenclature in the article.

TABLE I
BASE IPMI vs. ATCA NOMENCLATURE
Base IPMI ATCA AMC
Base Management Controller Shelf Manager —
Satellite Controller Intelligent Module
Platform Management
Management Controller
Controller
IPMB Redundant I12C I2C IPMB-L
IPMB-0
Chassis ATCA Shelf —

Another part of ATCA and MicroTCA (uTCA) systems
are the Advanced Mezzanine Modules which are installed
on carrier boards or directly in a shelf, respectively. They,
too, have to be able to deal with the IPMI protocol and the
component responsible for this is the Module Management
Controller (MMC) which communicates with the IPMC on a
carrier board over the IPMB-Local (IPMB-L) I?C bus. Each

TABLE 11
IPMI MESSAGES STRUCTURE

Byte No Request Response
1 I°C Responder Ad- 1 I°C Requester
dress Address
2 Network Function 2 Network Function
3 Header Checksum 3 Header Checksum
4 I2C Requester 4 I2C Responder Ad-
Address dress
5 Command 5 Command
Sequence Number Sequence Number
6 Command Code 6 Command Code
7 Completion Code
T:N Data 8:N Data
N+1 Message Checksum ~ N+1 Message Checksum

AMC module requires an independent connection to the IPMB
and carrier boards exist with up to four slots for these devices.

B. IPMI messaging

IPMI is designed as a request-response protocol where
messages are transferred from the IPMC to the ShM and
back. The structures of both request and response messages
are presented in TABLE II. The IPMI messages are divided
into categories called Network Functions and each one consists
of many commands. The majority of the Network Functions
come from the base IPMI specification. However, ATCA in-
troduced some additional commands that were specific to this
kind of architecture and so another category was introduced.
These extra commands are grouped in the PICMG Extension
Network Function, getting its name from the collaboration that
created ATCA - the PCI Industrial Computer Manufacturers
Group (PICMG).

Each request in the IPMI communication needs to be
followed by a response. The side initiating the exchange has to
retry sending the original message if no response is received.
This allows, for example, the ShM to know if a given FRU has
become unresponsive or if one of the IPMB-0 buses has failed.
What is more, even though the specification is explicit in the
definitions of command implementations, some vendors do not
completely comply with them which may cause errors in the
message interchange. Information about the actual causes of
failures in communication is not accessible from the level of
the IPMI or ATCA and can only be obtained by monitoring
the communication channels and analyzing the conversations
between the modules in the system.

In addition to that, many research facilities decide to design
their own ATCA-compliant boards which require the imple-
mentation of the IPMC. The realization of such a controller
can be a daunting task as the number of mandatory commands
that need to be taken care of exceeds one hundred with
another hundred or more optional ones. This is the most time
consuming stage of IPMC software development which also
includes low-level drivers, interrupt service routines and other
high-level application logic [6]. Knowing exactly where and
when errors in communication arise and what their cause is
can greatly improve the quality of the software and allow to
develop it much faster.

II. REQUIREMENTS AND AVAILABLE SOLUTIONS

There is a wide variety of devices capable of monitoring
communication links between electronic equipment. Most of
them are able to analyze common used standards like 12C,
SPI, UART or CAN. Other, more sophisticated ones, can
monitor modern protocols such as USB, Gb Ethernet or PCI
Express. ATCA specifies a I2C bus as the physical layer for
IPMI. Therefore, only this protocol is of interest as far as
the considerations of this article are concerned. The authors
investigated solutions available on the market in order to find
the device which could fulfill the main project requirements
which include:

e Analyzing IPMI as a higher level protocol,
e Simultaneously monitoring a minimum of 5 I2C buses in
real time:

e Two IPMB-0 buses,
e Three IPMB-L buses,

e Possibility of data storage for further analysis,
e Easy integration with the developed ATCA system is also
desirable.

The following part of the paper will consist of a short eval-
uation of a few devices which may be used as I°C analyzers
like oscilloscopes, logic analyzers and dedicated devices.
Modern oscilloscopes and logic analyzers give wide possi-
bilities of electronic circuits monitoring. Moreover, these two
kinds of equipment are often integrated in a single device.
Leading manufacturers of measurement equipment such as
Agilent Technologies, Tektronix or Hameg provide whole
families of devices capable of monitoring the I°C protocol,
for example the 16800 family from Agilent Technologies
or the MSO70000 series from Tektronix. Modern analyzers
may monitor signals with sampling rate up to 50 GS/s (e.g.
MSO72004, DPO/DSA72004B), offer from several to a hun-
dreds channels (e.g. 16806A). Despite its great potential this
kind of measurement equipment is not a suitable solution
because of many drawbacks. First of all, the analyzers are
not able to monitor IPMI as a higher level protocol which
dramatically increases the time needed to analyze the data.
Moreover, the amount of gathered I12C frames is limited by
the memory installed in the device. However, the most serious
disadvantage are high costs of such equipment. Modern logic
analyzers and oscilloscope presents possibilities which exceed
the needs of simple I2C bus monitoring. Therefore, a set of
devices utilized only as I2C bus analyzers is available on
the market. The following solutions include Beagle 12C/SPI
Protocol Analyzer [7], BusPro-I Bus Analyzer and Exerciser,
CAS-1000-12C/E Bus Analyzer and Exerciser [8], DV3100
and DV3400 from DigiView [9], Telos Tracii400 [10], Telos
Connii MM 2.0 [11] and Bus Pirate [12], a project from
the open source community. These devices present various
capabilities, but all of them are able to monitor the I2C bus
in transparent mode. It means that they do not influence the
behavior of the monitored system. They are delivered with
dedicated software which is used for visualization of I2C
frames. Moreover, some of them, like the Beagle Protocol

Analyzer or Connii ML, offer a set of software libraries
which allow to create a custom application. It should give the
possibility to build an IPMI analyzer basing on the available,
low cost hardware. Unfortunately, all of the presented devices
are able to monitor only single I2C bus what is not sufficient.
At least two IPMB-0 lines and three additional lines should
be simultaneously monitored to provide a full view about
IPMI communication in any ATCA system. Therefore, it was
necessary to developed a custom analyzer, preferably as an
ATCA board in order to simplify the connectivity.

III. PROPOSED SOLUTION

One of the major drawbacks of all the available solutions is
that they do not support IPMI message analysis directly. The
end-user is required to analyze the raw I?C frames in order
to decode the IPMI requests and responses built from them.
Another one is that these devices require additional connectors
for integration with an ATCA system. A limitation in the
number of buses is also a disadvantage.

The IPMI Protocol Analyzer deals with these problems. The
developed PCB is the size of an ATCA Board and complies
with all the specification requirements dealing with physical
dimensions and connectivity of such a board. This means that
the Analyzer can be inserted into any ATCA Shelf with no
additional cabling and no extra work is necessary to monitor
the communication over the IPMB-0 buses which the Analyzer
taps into using a Zone 1 connector. What is more, up to eight
I2C channels can be monitored independently, with buffers
restoring the levels of each pair of data (SDA) and clock
(SCL) signals. This allows the Analyzer to be used when
developing not only IPMC for ATCA Boards but also Module
Management Controllers (MMCs) for Advanced Mezzanine
Cards (AMCs) that are typically installed in carrier boards
as far as ATCA is concerned. Communication between the
MMCs and the carrier board IPMC can be observed on the
IPMB-Local buses.

All the data produced on the Protocol Analyzer board is
transferred to a PC over a USB connection where it is collected
by a dedicated software where the analysis of IPMI frames
takes place. The application capabilities include detection of
errors in communication, such as not acknowledged (NACK)
I2C frames, filtering messages according to various criteria as
well as storing the message exchange in a file on disk.

The IPMI Protocol Analyzer is also a cost efficient solution
as it does not require advanced electronic components and
production techniques. It should be possible to manufacture
the whole design on a two-layer PCB provided a non-BGA
FPGA is used.

A. Hardware Architecture

The IPMI Protocol Analyzer board allows to monitor of
up to eight independent I2C channels simultaneously which
carry IPMI messages. The two IPMB-0 buses are available at
the Zone 1 connector directly from the backplane while the
six remaining buses require a link to be made to one of the
two connectors present at the board. These additional channels

Fig. 1.

Photograph of the IPMI Protocol Analyzer board

are useful when developing or diagnosing a system which
uses AMC modules. The central part of the board is a Xilinx
Spartan3 FPGA, where all the signal processing takes place.
The algorithms and dataflow implemented in the device are
explained in the next subsection. A short description of the
vital components of the Analyzer board, as indicated in the
photograph shown in Fig. 1, is presented below. The letters in
parentheses correspond to the location of the components on
the board.

The heart of the device is an XC3S200 FPGA chip from
Xilinx Spartan 3 family (A). All of the IC buses are connected
to the FPGA, where they are collected into packets containing
whole IPMI messages and then are sent to the PC application.
The current firmware revision of the Analyzer logic covers
almost 50% of available resources. The Analyzer PCB is
designed to provide Ethernet connectivity, but the currently
used FPGA’s resources are not sufficient to implement the IP
stack. Thus, in the next version of the device an FPGA with
greater resources e.g. XC3S1000 is recommended. In order to
establish an Ethernet connection via Zone 2 a simplified ver-
sion of IPMC must be present on the board to cover Electronic
Keying. Therefore, an Atmel ATmega 128 microcontroller
(B) was applied. Moreover, it is also responsible for power
management on the board. It is the first device to be powered
up after the main power has been applied. It then proceeds
with enabling other LDO regulators which provide power,
among others, to the FPGA. All these converters are located
on the back side of the IPMI Protocol Analyzer board and
include 5V, 3.3V, 2.5 V and 1.8 V regulators. Every power
supply is equipped with an additional LED indicator (C) to
confirm its proper operation. All I2C buses are buffered via
a set of LTC4300 devices (D). They allow to regenerate the
level of the signals on the lines and can be switch on or off

SCL
scL)
Edge |
Detector
SDA read_data
SDA Edge
Detector
Fig. 2. ‘I?C Data Gatherer’ module

by FPGA logic to choose whether a given I2C bus should be
monitored by the IPMI Protocol Analyzer or not. The USB
communication standard was chosen to provide user friendly
communication links between the Analyzer and an external
computer, where analyzing software is run. Therefore, the PCB
is equipped with a USB connector (E) and an FTDI FT2232HL
(F) integrated circuit. It features two UART controllers which
present themselves as virtual COM ports to the PC to which
the USB cable is connected. The I?C connectivity is provided
by two external connectors (G). Both of these allow the IPMI
Analyzer to listen to I?C buses not available at the ATCA
backplane, most notably the IPMB-L buses for IPMC < MMC
communication on ATCA carrier boards. The same signals are
present at both connectors which only differ in pitch one of
them being 2 mm and the other 2.54 mm. The board is also
equipped with set of the LED indicators (H) and push buttons
(D to control and visualize the state of the Analyzer.

B. FPGA Firmware

The FPGA firmware is designed in a modular way that
enables instantiation of up to N I2C monitoring modules,
where N is the maximum number of buses supported by the
underlying hardware (eight in this case). For different hard-
ware architectures, if more than eight buses were available, it
would not be a problem to monitor all of them, provided there
were enough FPGA resources.

Each pair of SDA and SCL signals for a given bus are inputs
to an ‘I2C Data Gatherer’ module (Fig. 2) which consists
of units detecting falling and rising edges on the inputs, an
‘I?C Finite State Machine’ and a ‘FIFO controller’ transferring
full IPMI frames to and from a Xilinx FIFO IP Core. Each
‘I2C Data Gatherer’ module is identified by a unique 8-bit ID
number chosen in an arbitrary way. This ID number, along
with an additional byte marking the Start or Stop bit, is
appended to the beginning and the end of the whole message,
respectively, in order for the PC application to be able to
distinguish between frames coming from different buses. For
example, a message appearing on the IPMB-A bus has the
following general form:

5.9

,A, ’S’ ,A, p

address | bytel | ... | byten

SDA=f
SCL=1

:)-37 "

SDA=r
SCL=1
Ready to send
Fig. 3. ‘I?C Finite State Machine’ state transition diagram

’A’ - ID number of the IPMB-A bus,

’s’ - special character indicating Start Bit,

address - address of the slave device on the 12C bus,
bytel ... byten - data bytes,

9

p’ - special character indicating Stop Bit.

Other special characters include 'n’ for Not Acknowledge
event and 'r’ for Repeated Start event on the I2C bus. Also, if
a data byte is equal to the bus ID number an additional byte
equal to the bus ID number is added before this data byte,
which acts as an escape character.

The ‘I2C Finite State Machine’, see Fig. 3, requires six
input signals in order to properly monitor the bus at the lowest
level, that is forming raw I2C frames from the Start to the Stop
bit. These signals are SDA, SCL and rising and falling edge
indicators of both. The states the FSM goes through during
data acquisition are the following:

e [DLE - The machine enters this state on reset and waits
for the falling edge of the SDA signal while the SCL
signal is high, which marks the first step of the Start Bit
on the 12C bus,

e START - The machine waits for the falling edge of the
SCL signal following the previous falling edge on the
SDA signal, completing the Start Bit on the I?C bus,

e ADDR - The I2C bus address of the target device is read
in this state. Seven values, corresponding to seven address
bits, are read from the SDA bus on the rising edge of the
SCL signal,

e RW - The Read/Write bit is read from the SDA bus on
the falling edge of the SCL signal. A ’1” indicates that
the master reads from the slave while a *0’ indicates that
the master writes to the slave. In case of IPMI messaging
the master transmitter mode is used exclusively, so this
value should always be ’0’,

e DATARDY - In this state the signal indicating that a valid
byte of data is present at the output of the ‘I2C FSM’
module is asserted,

e ACK - After every eight bits an acknowledge bit should
be asserted by the device receiving the data (slave for
R/W equal to 0’ and master for R/W equal to ’1’) by
pulling the SDA line low. The state of the SDA line is
checked in this state,

e DATA - Eight data bits are collected in this state in a
similar manner as in the ADDR state. However, if a rising
edge of the SDA line is found when the SCL signal is
high a Stop Bit is detected on the I12C bus indicating end
of transmission.

It is important to emphasize that the signal monitoring
modules do not interfere with the communication taking place
on the bus. The IPMI Protocol Analyzer is transparent as far
as I2C is concerned, it does not have an address assigned and
can not act as neither master nor slave in any kind of I°C
conversation.

The signals coming out of the ‘I2C FSM’ are forwarded
to the ‘FIFO Controller’ which puts the data into a FIFO
queue and makes it available to the ‘Decision Module’ which
reads one message at a time and outputs it to the PC over the
USB cable. Each module responsible for monitoring one of
the buses has its own FIFO which can hold up to 1024 IPMI
messages with a maximum length of 32 bytes.

The ‘Decision Module’ receives signals from ‘FIFO Con-
trollers’ of all the monitored I2C buses and so it is important
that all of them have equal access to the analyzer output. In
order to meet this requirement the ‘Decision Module’ acts
as a multiplexer switching between ‘FIFO Controllers’ in a
round robin fashion. It sends one whole IPMI message at
a time from one I1°C bus and moves to the next one. If a
message is available there, it is sent. Otherwise, the next I2C
bus is checked and so on. The data bytes that move through
the ‘Decision Module’ are not transparent to it because it
uses the Stop Bit sequence (bus ID + ’p’) to know when
one IPMI message is finished before accessing another ‘FIFO
Controller’. Thus, it is vital that a failure on one of the buses
does not halt the entire Analyzer. For this reason a timeout
counter has been implemented and if neither a data byte nor a
Stop Bit sequence is detected for more than 100 us after the
transmission has started, the faulty bus is skipped.

C. PC Software for IPMI Frame Analysis

The PC application has been written in Perl scripting
language using Tkx as the Graphical User Interface (GUI)
library [13]. It consists of two parts - one part collects the
data from the serial port and writes it to a temporary file on
the disk while the second one, with a GUI, enables the user
to analyze the obtained IPMI messages. The GUI part of the
software has an auto-refresh option that allows the data to
be analyzed in real-time. The frame list is updated every one
second. However, it is possible to record the transmission and
analyze it at a later time, offline. (Fig. 4).

The application is equipped with several functions which
make the frame analysis easier and more user-friendly. The
search option uses regular expressions to find a message
according to user input. Flexible filtering mechanisms have

been implemented. The user can filter out messages accord-
ing to the IPMI command Net Function, requester address,
responder address or I12C bus. It also can show or hide Not
Acknowledged frames. All these options enable fast access to
only those messages that are of interest to the user (Fig. 5).

Met Function Filker Requester Address Filker

=101 x|

Ivw 00: Chassis control | skatus |ED, Aa
¥ 02: Data bridging to nest bus | MOT
¥ 04: Sensor [Event I¥ Enable

[08 Application Responder Address Filker

[~ 08: Firmware |2|:|, Ga
[0a: Mon-vaolatile storage [~ ot
v 0c: Media specific config ¥ Enable
v zc: Group extensions Bus Filker

Ivw 2e: OEM specific F1CzlC3sa Ve

ALL | NONE' [~ allow NACK Frames
Enable Filters
Disable Filkering
Fig. 5. IPMI Protocol Analyzer filtering window

IV. TEST RESULTS

Tests of the IPMI Protocol Analyzer have been carried
out at Deutsches Elektrontn-Synchrotron (DESY) laboratories
using a Schroff 13U, 14 slot ATCA Shelf [14]. It has been
populated with the Analyzer board, the Carrier Board for
LLRF Control System and a RadiSys Promentum ATCA-1200
ATCA Managed Quad-AMC Carrier Blade [15]. A Pigeon
ShMM-500R Shelf Manager [16] has been used and the
AMC modules that have been installed in the carrier boards
have been TEWS TAMC900 [17], Emerson PrAMC-6210 [18]
and NAT NAMC-8560-8E1 [19]. These devices have been
present in the Shelf in various combinations while the IPMI
Protocol Analyzer gathered and analyzed IPMI frames from
five channels - two IPMB-0 and three IPMB-L.

The periods of time where the most data is transferred
over the I?C buses is during the activation and deactivation
of FRU devices [20]. In case of AMC module activation
and deactivation messages are transmitted from the AMC’s
MMC to the carrier board’s IPMC and further down to the
ShM. Responses to these messages have to travel all the way
back to the MMC. This means that, if all the AMC modules
on one carrier board are being activated at once, all the
communication channels are active during these transmissions.
This constitutes the hardest working conditions for the IPMI
Protocol Analyzer as it needs to be able to gather and send
to the PC frames from up to five channels simultaneously.
The Analyzer had no problems dealing with such a workload
and no data has been lost. This has been verified by checking

IPMI Analyzer - C:/cygwin/home /myperl/ipmilog/PraAMCipmi
Filter Help Quit

=101 %]

29 C b4 72 o0 11 00 10 c0 0 231310016 00 19 o =lID: 294

4 5350 11 00 10 0 07 06 46 F7 5331 00 16 00 19c0 5 Data Length: 18

2056, Ba 28 42 20 54 11 03 a0 01 10 ¢7 . ’
Bus: A

296:1. 7e 265a20c4 11 004001 105a
2971, 20 2c b4 Fe o4 11 00 1052 31 31 00 19 00 00 50 09 =0 ff ff 1 Ff FF a4 95 7b |
298:6, 20 2c b4 82 54 11 00 10 5a 31 00 19 00 00 50 05 0 fF ff e1 ff Ff a4 95 df
299:4, §a 2542 2055 11 036001 10b3

300:1, 7e 2852 206 11 00 b0 01 1046

3011, 202cb4 7ec811 00103 24 98 F3 28 59 F5 0051 0000 Fc 01 51 00 00 12
302:4, 20 2c b4 5258 11 00 10 F3 a4 953 F3 28 29 FS 00 51 00 00 fc 01 51 00 00 76
303:6. 82 284 20 5c 11 03 c0 01 10 9f

304:1. e 265a20cc 11 00c0 01 1032

305:1, 20 2cb4 7ecc 11 00 10 Fc 02 2f 0000 fd 02 23 00 00 fd 02 21 00 00 Fd 29
306:6, 20 2c b4 §a 5c 11 00 10 fc 02 2F 00 00 Fd 02 23 00 00 Ffd 02 21 00 00 fd 8d
307:4, 82 2842 2060 11 03d001 10 8b

3081, 72 2853 20d0 11 004001 10 1e

309:1, 20 2c b4 7e d0 11 00 1003 2f 00 00 fe 03 23 00 00 fe 03 21 00 00 fe 04 17
310:A, 20 2cb4 82 60 11 00 10 03 2f 00 00 fe 03 23 00 00 Fe 03 21 00 00 fe 04 7h
311:B. Ba 2584206411 03e001 1077

312:11, 72 2852 20d4 11002001 1004 LI

Prev | Mext |

Input search string...

CIper. ..

— Details Quit
Refresh Off

Responder Slave Address: 20

Network Function: Non-volatile storage (Ob) (response)
Header Checksum: b4

Requester Slave Address: Ba

Sequence Number: 14

Command: Read FRU Data (11)

Completion Code: Command completed normally (00)
Data: 10 c0 02 06 46 f25a 310016 00 19 c0 82 44 &6 94
Data Checksum: 4b

Fig. 4. Main IPMI Protocol Analyzer application window

the sequence numbers of the IPMI messages received at the
PC. The sequence number is a 6-bit variable and so it goes
from 00h to 3Fh and then is reset to 00h again. Making sure
that no gaps appear in the communication and that the overall
activation or deactivation procedure is carried out according
to the specification proves that the IPMI Analyzer is capable
of handling such situations.

While verifying the proper operation of the IPMI Analyzer
several inconsistencies in operation of certain devices that have
been monitored have been found. First of all, the TAMC900
AMC (Serial Number 9369462) module does not comply with
the IPMI requirement of resending requests if no response is
received. During the activation (deactivation) process AMC
modules send several requests to the carrier board. If, for
some reason such as physical failure, such a request from the
TEWS TAMC900 does not reach the target carrier board or a
response does not reach the TEWS device, the whole activation
(deactivation) is halted as no retries are carried out. The carrier
board does not have the possibility to restart the process since
the AMC module is the initiating side. The only solution
to this problem is restarting the AMC by power cycling the
device. As an additional note, it is worth mentioning that the
TEWS module is responsive and it is possible to, for example,
retrieve the information concerning the state of the on-board
sensors. Only the activation (deactivation) logic is corrupt in
such situations.

Another issue has been encountered with the NAT NAMC-
8560-8E1. Although this module has been activated and de-
activated by the Carrier Board for LLRF Control System, the
activation process has constantly failed on the RadiSys carrier
board. The problem turned out to be with the FRU Inventory
which is read by the carrier board during the activation pro-
cess. In one of the fields of one of the FRU records a constant
value of ‘Manufacturer ID’, given by the specification, is
required. Although this value does not influence the overall

ID: 204 Emerson PrAMC-6210

Data Length: 18

Bus: A
Responder Slave Address: 20
Network Function: Non-volatile storage (Ob) (response)
Header Checksum: b4
Requester Slave Address: 8a
Sequence Number: 14
Command: Read FRU Data (11)
Completion Code: Command completed normally (00)
Data: 10 c0 02 06 46 6 0019 c082 44 6 94
Data Checksum: 4b

ID: 525 NAT NAMC-8560

Data Length: 18

Bus: B

Responder Slave Address: 20

Network Function: Non-volatile storage (Ob} (response)
Header Checksum: b4

Requester Slave Address: Ba

Sequence Number: 36

Command: Read FRU Data (11)

Completion Code: Command completed norma 0]
Data: 10 00 00 00 00 00 00 00 40 c0 02 06 3d

Data Checksum: b2

Fig. 6. ATCA standard implementation inconsistencies. The top figure shows
the correct byte ordering for the PrAMC-6210 module. The bottom figure
shows the incorrect byte ordering for the NAMC-8560 module.

operation of the AMC, it is verified by the RadiSys carrier
board. In case of the NAT device the byte order of this field is
reversed which the RadiSys board detects as an invalid value
and halts the activation process. The content of the frame in
question is presented in Fig. 6 as compared with a proper byte
ordering of ‘Manufacturer ID’ value for an Emerson AMC
module.

V. CONCLUSIONS

IPMI messaging is a crucial part of every ATCA-based
system. The redundancy of the IPMB-0 bus is one of the
reasons the message flow between the ATCA boards and the
ShM is very stable which contributes to the overall reliability
and availability of the ATCA solution. However, such a
redundancy will not guarantee proper operation of the system
if the possible problems arise from the implementation of the
standard in commercially-available and in-house devices such
as ATCA carrier boards or AMC modules [21]. Therefore, it is
very important to identify these issues as quickly as possible
during development of IPMCs’ and MMCs’ new firmware and
to do so with as little effort as possible in order to focus on
other features of the devices.

Some equipment is available that can be used for this pur-
pose. Oscilloscopes and Logic Analyzers can monitor the I2C
signals at a very low level which is not convenient for frames
consisting of several dozens of bytes and message exchange
consisting of hundreds of such frames, for example during
activation or deactivation. Other devices, built specifically for
monitoring and analyzing serial protocols, including 12C, can
be more helpful but still require a lot of attention in order to
form IPMI messages from the gathered raw I°C data.

A new solution has been presented that fills that void
in the ATCA development environment. The IPMI Protocol
Analyzer is a perfect choice for such an application. It can
be easily integrated in any ATCA Shelf, it does not require
any additional power supply and it is possible to monitor and
analyze all the IPMI messaging channels. Additionally, the PC
software has been developed in the Perl scripting language
which makes this a portable solution that can be run on any
operating system provided that the computer is equipped with
a USB slot. A standard 10/100 Mbps Ethernet connection will
be sufficient in the future revisions of the Analyzer while all
the data acquisition and storage will be done remotely on a
server connected to the board. The ability to filter and search
for specific messages in software as well as disabling any of
the 12C channels in hardware allows the developer to focus
only on these parts of the standard implementation that are the
most important at any given time. The IPMI Protocol Analyzer
proved to be very helpful during development of IPMC and
MMC firmware of modules for LLRF control system at DESY,
namely the Carrier Board for LLRF and the AMC_B universal
communication module [22].

What is more, the IPMI Protocol Analyzer can also be used
in situations where commercially-available devices seem to
be operating incorrectly. In spite of strict requirements of the
standard, not all of the equipment vendors follow them which
may lead to instable or erroneous activity. Information about
such occurrences can be fed back to the manufacturer which
can greatly increase the overall quality of all ATCA-compliant
devices.

ACKNOWLEDGMENTS

”The research leading to these results has received funding
from the European Commission under the EuCARD FP7

Research Infrastructures grant agreement no. 227579. The au-
thors are scholarship holders of the project entitled “Innovative
education ...” supported by European Social Fund.”

REFERENCES

[11 S. Simrock, L. Butkowski, M. Grecki, T. Jezynski, W. Koprek, G. Jablon-
ski, W. Jalmuzna, D. Makowski, A. Piotrowski, and K. Czuba, “Evalu-
ation of an ATCA based LLRF system at FLASH,” in Mixed Design of
Integrated Circuits Systems, 2009. MIXDES ’09. MIXDES-16th Interna-
tional Conference, 25-27 2009, pp. 111 -114.

[2] A. Karlsson and B. Martin, “ATCA: its performance and application
for real time systems,” Nuclear Science, IEEE Transactions on, vol. 53,
no. 3, pp. 688 — 693, june 2006.

[3] IPMI v2.0 rev. 1.0 specification. [Online]. Available:
http://www.intel.com/design/servers/ipmi/spec.htm/

[4] PICMG 3.0 AdvancedTCA Base R3.0. [Online]. Available:
http://www.picmg.org/v2internal/specifications.htm/

[5] The I2C-bus specification, version 2.1. [Online]. Available:

www.nxp.com/documents/other/39340011.pdf/

[6] A.Zawada, D. Makowski, T. Jezynski, S. Simrock, and A. Napieralski,
“ATCA Carrier Board with IPMI supervisory circuit,” in Mixed Design
of Integrated Circuits and Systems, 2008. MIXDES 2008. 15th Interna-
tional Conference on, 19-21 2008, pp. 101 -105.

[7] Beagle Protocol Analyzers Data Sheet v3.06. [Online]. Available:
http://www.totalphase.com/download/pdf/beagle-v3.06.pdf

[8] CAS-1000-12C/E Product Webpage. [On-
line]. Available: http://www.corelis.com/products-bus-
analyzers/Bus_Analyzer_I2C_CAS-1000-12C-E.htm

[9] DigiView DV3400 Product Webpage. [Online]. Available:
http://www.tech-tools.com/dv_dv3400.htm

[10] Telos Tracii 400 Product Webpage. [Online]. Available:
http://www.telos.de/tracii400/

[11] Telos Connii MM 2.0 Product Webpage. [Online]. Available:
http://www.telos.de/conniimm?20/

[12] Bus Pirate Project Webpage. [Online]. Available:
http://dangerousprototypes.com/bus-pirate-manual/

[13] Comprehensive Perl Archive Network: Tkx. [Online]. Available:
http://search.cpan.org/dist/Tkx/

[14] Schroff 12 U, 14 slot ATCA shelf. [Online]. Available:
http://www.schroff.pl/internet/html_pl/index.html

[15] Radisys Promentum ATCA-1200 Quad-AMC Carrier Blade datasheet.
[Online]. Available: http://www.radisys.com/Products/ATCA/Carrier-
Blades/Promentum-ATCA-1200.html

[16] Pigeon Point Products Webage. [Online]. Available:
http://www.pigeonpoint.com/products.html

[17] TAMC900 8 Channel 105 MSps 14 Bit AD Converter.
[Online]. Available: http://www.powerbridge.de/daten_e/AMC-10-
Modules/TAMC900/tamc900.htm

[18] MPC8641D PowerPC Processor Based AMC Module. [Online].
Available: http://www.emerson.com/sites/Network_Power/en-
US/Products/Product_Detail/Product1/Pages/EmbCompPrAMC-
6210.aspx

[19] NAT NAMC-8560-xE1/T1/J1 Datasheet. [Online]. Available:
www.nateurope.com/data_sheets/NAMC-8560-E1_ds.pdf

[20] P. Predki and D. Makowski, “Hot-plug based activation and deactivation
of ATCA FRU devices,” in Mixed Design of Integrated Circuits Systems,
2009. MIXDES °'09. MIXDES-16th International Conference, 25-27
2009, pp. 119 -122.

[21] J. Lang, M. Liu, Q. Wang, W. Kuehn, Z. Liu, and H. Xu, “Intelligent
Platform Management Controller for ATCA Compute Nodes,” in Real
Time Conference, 2009. RT ’09. 16th IEEE-NPSS, 10-15 2009, pp. 35
-37.

[22] D. Makowski, A. Piotrowski, and A. Napieralski, “Universal communi-

cation module based on AMC standard,” in Mixed Design of Integrated
Circuits and Systems, 2008. MIXDES 2008. 15th International Confer-
ence on, 19-21 2008, pp. 139 —143.

