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Abstract

These proceedings present the unfolding techniques uséatr o ATLAS.
Two representative examples are discussed in detail; ang bis-by-bin cor-
rection factors, and the other iterative unfolding.

1 Introduction

The distribution of any observable is distorted due to epental limitations. Unfolding is the proce-
dure of estimating the “truth-level” spectrum, i.e., theespum that would be measured with an ideal
detector and infinite event statistics. A general introturcto unfolding, and details about various meth-
ods are given in other contributions to this workshop. Theufohere will be on real life examples of
unfolding in ATLAS analyses.

As of early 2011, ATLAS has used two unfolding methods:

i) bin-by-bin correction factors;
i) the iterative method by D’Agostin[]1].

One representative example will be presented from eachatetin Sectiorl 2, bin-by-bin correction
is presented through the inclusive jgt spectrum measurement [2]. In Sectldn 3, D’ Agostini’s itera
tive method|[[1] is presented, as it was used to estimate thetrsin of charged particle multiplicity in
minimum bias interactions [3].

Both methods have drawbacks. An insightful overview candaend in [4], and in other contri-
butions to this workshop. Bin-by-bin correction has beertigalarly criticized for not dealing carefully
with bin correlations, among other things. ATLAS is considg methods beyond bin-by-bin in the next
round of analyses where this method was used.

In searches for new physics, ATLAS does not apply any unfigldbecause it is unnecessary for
making a discovery, or for setting a limit to some model, ardstimating model parameters. Unfolding
can be regarded as useful when the distribution itself (dnaeal version thereof) is regarded as the set
of parameters of interest.

2 Bin-by-bin correction factors

Several ATLAS analyses have used the method of bin-by-hirection factors[[Z,5=7], mostly because
of its simplicity. The example of inclusive jgtr measurement [2] will be discussed. The main result of
this measurement is shown in Hig. 1. In this analysis tratkell corresponds to hadron-level.

2.1 Method description

Let T; be the expected number of events in biof the truth-levelp; spectrum, which is obtained from
Monte Carlo (MC). Leading order¥@HIA [8] QCD MC was used in the case of [2], where no event
selection was applied. The truth-leygl spectrum contains jets reconstructed after hadronizadipply-

ing the antik clustering algorithm on stable hadrons produced aftemfiegtation and hadronization.
Detector simulation is not involved in the truth-level spam.

Let R; be the expected number of events in baf the measureg spectrum, after event selection
which includes trigger requirements, jet reconstructioefficiency at lowp,, primary vertex require-
ments, jet quality criteria etc. The sameIA QCD MC is used as before, after ATLAS detector
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Fig. 1. The estimated truth-level spectrum of inclusive jet (filled markers) from|[2], obtained using bin-by-
bin correction factors, compared to the theoretical tietrel QCD prediction (red band). The black error bars
represent the statistical uncertainty of the estimatedtspm, and the blue band the total systematic uncertainty,
which is obtained by summing in quadrature individual systéic uncertainties. The dominant contribution comes
from the jet energy scale uncertainty. In each bin the eséichauth-level spectrum has been divided by the width
of the bin and by the integrated luminosity, whose uncetydih1%) is not included in the blue error band.

simulation, to obtainR;. Jets are reconstructed by applying the same iantidgorithm on topological
clusters of energy deposited in the calorimetér [9].

Let D; be the actually observed number of events insifithe measureg spectrum. Whereas
T; and R; are both real numbers after normalizing the MC samples taritegrated luminosity of the
available datasetD; can only take integer values, because the observed eventdisarete. If it is
assumed thak; is the result of an ideal simulation of all physical procest®at occur at the proton
collisions' and of the ATLAS detector, thef; is a random integer that follows a Poisson distribution
with meangR;.

Let
C;

i
3|H

; 1)

be the correction factor corresponding to biof the observeg spectrum. The correction factors used
in [2] are shown in Fig.12.

1Obviously this is not a good assumption when one acknowketigepossibility of new physics, but in measurements such
as the one we discuss here it is presumed that what is medsyust QCD.



| — T | T T ‘ T T ‘ T T ‘ T T T T ‘ T T ‘ T T
S 1.2 antik, = ]
2 i -k, jets, R=0.6 i
O t

S - 03<|y|]<0.8 ATLAS i
e I =
5 [ ]
O = ,
5 0.8 —f— PYTHIAG, \'s=7TeV

................. Unc. from shape (x10)

O'6j --------- Unc. from E resol. (x10) B

B —— Unc. fromy resol. (x10) T

0.4 -

0.2 hed heed N
O L ?”Il“:“l““l““lml IIIIII L ““1““IIHllnlrl-lIlm1‘“1‘“I”T“l””}”IIml““i”Il““l““l““ll”[ ) l )

100 200 300 400 500 600 700 800
p, [GeV]

Fig. 2: The correction factord{;) used in[[2]. The statistical uncertainties (black croyses invisibly small. The
green band represents the total systematic uncertairdgpéfor the part which is due to jet energy scale, which
is discussed in Sectign 2.8.4.

The answer returned for binof the truth-levelpr spectrum after bin-by-bin correction is

U; is the estimator of;.

2.1.1 Bias
The estimatol/; has a bias that is easy to compute.

Let's consider the possibility that the truth-level spentris actuallyZ”, which may differ from the
assumed’;. This could happen, for example, if sizable processes dtizar those included inYAHIA
QCD are occurring in nature, or if the modeling of QCD byTRiIA is unrealistic. Let's also assume
that the actual expected spectrum at detector levé] isvhich may differ fromR; for the above reasons,
as well as due to unrealistic modeling of the detector respand of the quantities involved in event
selection. The bias of the estimafdy then is

T; T; T; T, T
Wi=T) = (D= T) = gDy -Ti= i R-T = (- )R @
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Fig. 3: Sketch of the Neyman construction used to correspond amatseumber of data evenf3; to a 68%
confidence interval fof; in the bin-by-bin correction factor method. The definitiarisD;, T;, R;, C; andU; are
given in Sed_Z11.

2.2 Statistical uncertainty

The Neyman construction shown in Hig. 3 is effectively usedhtain a confidence interval f@, given
C; and the datd);. Having observed);, the 68% confidence interval (Cl) f&F; is approximately

Ci(Di /D). )

This is a fair approximation whem; is large, in which case the Poisson distribution/af with mean
R; is similar to a Gaussian of medg and standard deviatiogR;. Although this approximation fails
in bins with few data, the same formula was used impalbins, so for all bins it was assumed that the
statistical uncertainty df/; is symmetric and equal to

This is the size of the black error bars in Hig. 1.

2.3 Systematic uncertainty
The following main sources of systematic uncertainty wdsmntified in [2]:

i) the correction factor; is subject to statistical fluctuations due to finite MC evdatistics;
ii) the amount ofpr smearing in detector simulation may be unrealistic;
i) the used spectrum df; may be unrealistic;
iv) jet energy scale uncertainty.

The following paragraphs describe how each systematicrtaioty was propagated to the final
estimator of the truth-level spectrum.



Fig. 4: The effect of covariance betwedi and R; in the variance of the correction factéf. The gray circle
indicates the case of zero covariance, and the blue cireleake of highly positive correlation.

2.3.1 Finite MC event statistics

The correction factoré’; have some uncertainty due to random fluctuations of the fibeevent statis-
tics available to determin@; and R;. WhenT; fluctuates above its mean, so ddgs so the two are
highly correlated (Figi14%. The statistical uncertainty i’; was computed taking this correlation into
account, as follows:

The N(R;) MC evens which composBE; are separated into those that are coming from the same
truth-level bin (V(R; A T;)) and those originating from different truth-level bing (R; A —T;)).2 Sim-
ilarly, the N(T;) MC events which contribute t@; are separated into those that end up in the same
bin after detector simulation and event selectidf({; A R;)), and those that migrate to different bins
(N(T; A =R;)). The variablesN (T; A R;) and N (R; A T;) are identical. So(; can be expressed as a
function of three statistically independent random vddab

Ti  N(TiARy) + N(Ti A Ry)
R; N(T; AR;) + N(R; AT

C; = (6)
SinceC; is expressed as a function of three statistically uncaedlaariables, error propagation can be
used where covariance terms are zero. Each one of the thremv®h€ populations has standard deviation

VN.

2.3.2 Jetpy resolution uncertainty

A relative systematic uncertainty of 15% in jet resolution was assumed, based on the results of in-situ
studies[[10].

To model the effect of a different; resolution onC;, the jets in MC events were smeared by an
additional amount, which varied from 0 to 20% of the nominal smearing that ispre in ATLAS MC.
For each amount of extra smearing, the value&pthange, whil€el; is not affected. As a result each
correction factolC; has a dependence on the amount of extra smearing. It wastfiontine observed that
in all binsi the correction facto€; increased about linearly with.

It is possible to increase the smearing of jet by adding to it a random offset of appropriate
variance, but it is not possible to do the opposite, i.e.etlhuce the amount of smearing that is nominally
present in the ATLAS MC. This complicates the task of deteing the uncertainty ol’;, because the
resolution uncertainty of 15% is symmetric; thejetresolution could be 15% worse or 15% better than

2Though this was not done in the analysis described here,yitmavorth mentioning thaf; and R; could be generated
separately, using different seeds for the pseudo-randambats in the MC generator. This would result in statisticaide-
pendent estimators; and R;. In addition to that, sinc&; does not involve detector simulation, it is feasible to gateemany
more truth-level MC events, thus estimatifigwith negligible statistical uncertainty, something thafartunately is not easy
for R;.

3The symbolA is the logical “and”, while- is the logical “not”. So,R; A —T; means belonging if?; and notin T;.



its nominal value. The observation th@tdepends linearly on the extra smearing justifies the assampt
that, if the resolution improved,; would decrease, linearly, at the same rate.

Therefore, the systematic uncertainty 6 due to 15% uncertainty on jety resolution is de-
termined by noting the increase 6f when resolution is made 15% worse, and by symmetrizing this
variation. For example, i€; changes by +1% when jpt- resolution is deteriorated by 15%, we assign
to C; a systematic uncertainty ef1%.

2.3.3 Uncertainty in spectrum shape

The correction factor€’; depend on the choice @f;, which affects alsaz;. If, for example, RTHIA
QCD does not provide a realistic model of the true spectrdvat tan biad/;, unlessR; andT; are
simultaneously wrong in such a way thHBt/ R; remains equal to the (unknown) actual refify R; in
Eq.[3. The use of bins quite wider than the amount of smearigesit more likely that, even if; is not
modeled right, the rati@;/R; in each bin will be approximately correct. In [2] the bins aedely wider
than jetpr resolution, and their edges are driven by experimentaltcaings, such as trigger thresholds.

To assess the uncertainty from possible wrong modelirngj; ofhe MC events used to determine
C; were re-weighted in multiple ways. Their re-weighting wadedmined by functions smooth in jet
pr, chosen so as to bracket the variation observed by varyinmpaensity functions, by including
next-to-leading-order corrections to QCD, as well as tHfedince observed betwedn; and R;. For
each set of re-weighted MC events b@thand R; were re-computed, and so was for each bini. The
largest variation observed in ea€h was taken as a systematic uncertainty.

2.3.4 Jet energy scale uncertainty

By far the dominant uncertainty in the find} comes from the uncertainty in jet energy scale (JES). All
previous uncertainties, added in quadrature, amount tate$ of relative uncertainty id’;, which is

the error band shown in Figl 2. The resti0% of uncertainty in the final answer comes from the JES
uncertainty, and it dominates the blue error band in[Hig. 1.

To propagate the JES uncertainty, the reconstrugtedf all jets in MC events is shifted by-1
standard deviation, the exact size of which is a functioretfj and pseudo-rapidity. That affectsR;
strongly, whileT; doesn’t change, therefofg varies significantly. By applying ob; the two alternative
values ofC};, from the positive and the negative JES shift, two extrémealues are obtained for each
bin i, whose distance is considered as the JES uncertaintj.on

3 Iterative unfolding

ATLAS used D’ Agostini’s iterative unfoldingd J1] in the styabf minimum biaspp collisions [3]. The ex-
ample to be shown is the estimation of the truth-level distion of the multiplicity of charged patrticles.
The result of this analysis is shown in Hig. 5.

3.1 Method description
The full method is clearly described in the original artifd¢ by D’ Agostini. This paragraph will make
a connection between the quantitieslin [3] and the notatssa un [1].

Let n., be the number of charged particles produced ippecollision. This is the truth-level
guantity whose distribution needs to be estimated. It spwads to the “cause” mentioned in[[1].

Let n,,.;, be the number of reconstructed tracks ippacollision, which satisfy the selection criteria
listed in [3]. It corresponds to the “effec mentioned in[[1].

The reconstructed tracks are typically fewer than the &atharged particles, due to tracking
inefficiency, therefore typically;,., < n.,. Therefore the migrations matrix is highly non-diagonaid a
schematically looks like Fid.] 6.
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Re-writing the basic formulas from|[1], substitutiig— n.;, andE — ny,.,, we get

Noa) = —— 5 N Panlns) — elnen) £0, @)

€(en) =,

P(nyre|nen) Po(nen)
P(no e _ ) 8
(nen|nire) > onn>1 P(irklnen) Po(nen) Y

where the efficiency(n.,) corresponds to the probability of reconstructing at leasttracks, a require-
ment related to having a reliable primary vertex reconsimug for a given number of charged patrticles:

6(nch) = P(ntrk > 2‘nch)- (9)

The termPy(n.,) is an arbitrary initial distribution for the truth-level gatity Neh- The symbolN (ny,1)
denotes the population of events wherg; tracks were reconstructed, and(n.,) is the estimator of
the population of events with.;, charged particles at truth-level.

3.1.1 |Initial distribution and iterations

In [3], the initial distribution was defined to be the; spectrum predicted by ¥HIA minimum bias
MC. The reason is that theyRPHIA prediction has been tuned to data from various past expaténso
it is a reasonable starting point.

In iterative unfolding the number of iterations is decidetimarily. Too many iterations result
in bin-by-bin fluctuations in the unfolded spectrum, similawhat one may get from simple migration
matrix inversion|[[4]. Too few iterations increase too mubh influence of the initial distribution on the
final answer.

In [3], a convergence criterion was defined to determine whestop iterating. The criterion was

X2

<1, (10)
Nbins
where
. . 2
Npins ni,current_ 1,previous
i—1 n?f];rekus

Namely, iterations continued until the latest unfoldedcspen (.</""<"*) remained statistically consis-
tent with the spectrum from the previous iteratiorf,(*****). It was found that 4 iterations were enough
to meet this convergence criterion.

3.1.2 The terme(ncn)

In principle one should extraetn.;,) defined in Eq..D, directly from the MC events used to populage t
migrations matrix (Fig.6). However, a decision was madéirt¢ use instead a parametric approxima-
tion of e(nep,).

Making the simplification that each charged particle hasstimae “average effective” probability
ecr¢ Of being reconstructed as a track, the probability of ha@higast two reconstructed tracks is given
by

Flnen) = 1= (1= eepp)"™ = nen(l = ecpp) " Ve (12)
The unknown parameteg sy was adjusted so as make2) equal to the:(n., = 2) obtained from MC.
The resulting value foe. s is within 4% from the average probability of track reconstian that is
determined from MC simulation, which indicates thfdi..;,) matches well the MC-driven(n.;,) even
for ng, > 2.



After adjustinge. ;s as described, the quantitf(n.,) from Eq.[12 substitutes(n.,) in Eq.[7.
Practically this efficiency becomes 1 for n., > 4, and that is true regardless of usiifgn.,) or

6(nch)'

3.2 Statigtical uncertainty

In Eq.[4, the estimatoN(nch) depends on the measuréd(n.,;), which are the result of indepen-
dent Poisson fluctuations. Simple error propagation woesdi Ito the following standard deviation for

A

N(nch):

2
ON(nen) = \/Z (E(nlch) P(nch|ntrk)> N(ng). (13)

The way statistical uncertainty was actually calculatefB8jrwas

TN () = N(nep). (14)

Either way, the statistics in all bins of;,.;, are high enough to make the statistical uncertainty
negligible. In Fig[h, the statistical error bars are inbisi

3.3 Systematic uncertainty
The following main sources of systematic uncertainty wdldiscussed:

i) The choice of initial distributionP(n.y,);
i) The uncertainty in track reconstruction efficiency;
iii) The uncertainty in MC spectrum.

3.3.1 Choice of initial distribution

The stability of the answer under different choices of alitistribution Py (n.;,) was tested by assuming
a “flat” initial distribution Py(n.,) = 1, and repeating the iterative unfolding procedure. Thisehds
obviously physically absurd; its purpose was only to shoat #ven under extreme choices®f(n.,)
the answetV (n.;,) doesn’'t change much.

Starting from a flat initial distribution, the number of itgions required to converge (Eg.]10)
increased from 4 to 7. The final answer changed by less tham28bhins ofn.;, which was taken as a
systematic uncertainty itv (n.y,).

3.3.2 Track reconstruction efficiency uncertainty

The main effect this unfolding is correcting is the ineffitdg of tracking. This inefficiency is reflected in
the probabilities of Eq.]7, and is obtained from MC simulati¢f tracking inefficiency in MC is wrong,
so is the obtained spectrum after unfolding.

Fig.[4 shows the track reconstruction efficieney.) in ATLAS simulation.

To propagate the uncertainty ef.; into N(nch), the natural thing to do would be to shift sys-
tematicallye,r, thus changing?(n.,|n1), and see how much?(nch) would change. Instead, what
was done in[[B] was to keep the migration probabilities fixat] modify the data/{(chs,x)) on which
iterative unfolding was applied. The way in which the dataevmodified is described next.

Assume an event in data hag.;, tracks. Take one of these tracks. g corresponds to some
efficiencye,,.,, (Fig.[d). For the sake of clarity, let's say it corresponds{@ = 0.80 + 0.05. This ez,
gets reduced by 1 standard deviation, so it is brought down%b. For this reduced,,;, the expected



x I — —
W o9b ATLAS Slmulatlon E
0.8 o =
= *® E
075 % =
£y E
060 & =
C . |
0.50 o ~+ MCND E
0.4F =
0.3« =
o.z? Nen22,p.>100 MeV, [n| <25 %
0.1 \s =7 Tev E
ot L | L | 7

1 10

P, [GeV]

Fig. 7: Track reconstruction efficienay,.,. in ATLAS simulation. The error band represents its systématcer-
tainty.

number of tracks |% x 0.75 ~ 0.94. The track is then randomly kept, with probability 0.94, or
discarded, with probability 0.06. This procedure of effimg reduction and random removal is repeated
for all n,, tracks of the event. In the end, the event is left wify, wheren;, ., < ng.

The above procedure is repeated for all data events, reglugip to n;,, in each event. Then, the
distribution N (n},,.) is unfolded instead aW (n,), which results irﬂV’(nch) instead ofN(nch).

The above procedure could only remove tracks, not create ldawever, thee;,;, uncertainty is
symmetric, which means that the actug), could be also greater than its nominal value. For this reason
the difference betweefV (n.;) and N'(n.,) is symmetrized, and used as a systematic uncertainty in
N (nep). That means, for example, that if in a binswf, the N’ (n.;,) was 5% greater thaiv (n;,), the
uncertainty is set te=5%.

3.3.3 Uncertainty due to spectrum shape

The observed spectrum of track transverse momenpé?ﬁ)(disagrees with the MC prediction after full
ATLAS detector simulation, as shown in Fid. 8. This discrepais related to the unfolding from,,.
to n.;, because,,;, is a function ofp'”"’C (Fig.[d). If thep“"’“ is not realistically modeled, neither ds..

The way this was treated was the following: In each bimgf,, the mearg,,;, was found by
looping through all data events in the bin, and correspandiach observeg’itT?"’“ to the value ofe;,.;,
obtained from MC (Fid.J7). The same was then done for MC eviertigns ofn,,.;., again corresponding
thep'fT”C in MC events to values af,,;, from Fig.[4d. In each bin ofi;,.;,, the average track reconstruction
efficiency (e;,;.) from data was compared to the same quantity from MC. The gé?ﬁ% €rr COITE-
spondence was used for both data and MC tracks, therefordiffarence in the resultinde,,«) is due
to the differentp’:* distributions.

In each bin ofny,, if (e41) is larger in data than in MC, then the efficiency in data getisiced
by the observed difference, in the same stochastic way ibescin Sectiori 3.3]2. This results in a
different number of tracks},, < n,, for each event in the data. The iterative unfolding is thepliag
to N(n},,), and a different estimator of the truth-level spectrum itaoted (V/(n.;,)). The difference
bAetween the nomindff(nch) andN’(nch) is found, and is used as a one-sided systematic uncertainty i
N(nch)'

In n4, bins where thée,,;.) in data is smaller than in MC, one would ideally wish to inaeghe
e Of the data, but it is not possible to create tracks, as exgthin Sectiof 3.312. Instead, thg; of

10
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data isreducedby the observed difference, as if the data had gre@igr) than the MC. This results in
a different data spectrunv(n},, ), which after unfolding results in a different estimatyt(n.,). The
difference between the nominal(n.;) and N’(n.;,) is found, and instead of using it directly as a one-
sided systematic uncertainty iN (ner), We use its opposite, to take into account the fact that the da
€11 Was reduced instead of increased.

The above procedure results in an asymmetric systematertamaty. The upper and lower uncer-
tainty are separately added in quadrature with the othdesatic uncertainties, which are symmetric.
This results in two unequal total systematic uncertaintige suggesting tha¥(n.;,) could be above
and the other below its nominal value. This asymmetric sgat& uncertainty appears as a colored band
in Fig.[5.

4 Concluding remarks

Two examples were shown of how unfolding has been used in A.LPhey were chosen to be repre-
sentative of different cases; one is using the bin-by-batdis to correct the spectrum of a continuous
observable (jepr), whereas the other uses iterative unfolding to estimagdrtith-level distribution of

a discrete variablén.;,). The systematic uncertainties are quite different, as ordyais deals mainly
with energy smearing, and the other with tracking inefficien

As of the time of this workshop, ATLAS has used extensively-by-bin correction factors, and
in some cases iterative unfolding. More methods are beimgidered for future iterations of some of
these analyses.

Unfolding has been used only in analyses where the goal westitoate a truth-level distribution.
Unfolding has been deliberately avoided in searches forptgygics, where bias in bins with low statis-
tics can not be afforded, where it can not be assumed thattiasage consistent with the MC prediction

11



as is silently assumed in some stages of unfolding, and weisson-distributed data are simpler to
evaluate than estimators resulting from unfolding proceslafter a series of arbitrary regularization
choices. There are several unfolding methods, in some oflwaihomalies due to new physics could
even be reduced, whereas the observed data are unique. fargnice is possible using directly the data,
without unfolding, and a theoretical prediction that eitieludes full detector simulation, or at least an
approximation of it that amounts to the inverse of unfoldingmely folding, which can be done with no
need for regularization. The only task for which unfoldisgstrictly needed is the estimation of a truth-
level spectrum, whose later use to make statistical infmerfecomes complicated by non-Poissonian
statistics, biases that are hard to estimate, and binfadrirelations.

In none of the analyses where unfolding was used was thedudlr@ance matrix provided. The
latter would be necessary to correctly compare a truthtihamretical prediction to the result of unfold-
ing. In most cases the comparison between the result ofdinfpland the truth-level Standard Model
prediction is made qualitatively, avoiding to provide-aalue that would require proper use of the co-
variances between bins. When a more quantitative compeissattempted, like iri[6], & is used only
as a metric to determine if one theory agrees with the data th@n another, but not as a test statistic to
compute a-value.
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