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Abstract
These proceedings present the unfolding techniques used so far in ATLAS.
Two representative examples are discussed in detail; one using bin-by-bin cor-
rection factors, and the other iterative unfolding.

1 Introduction

The distribution of any observable is distorted due to experimental limitations. Unfolding is the proce-
dure of estimating the “truth-level” spectrum, i.e., the spectrum that would be measured with an ideal
detector and infinite event statistics. A general introduction to unfolding, and details about various meth-
ods are given in other contributions to this workshop. The focus here willbe on real life examples of
unfolding in ATLAS analyses.

As of early 2011, ATLAS has used two unfolding methods:

i) bin-by-bin correction factors;

ii) the iterative method by D’Agostini [1].

One representative example will be presented from each method. In Section2, bin-by-bin correction
is presented through the inclusive jetpT spectrum measurement [2]. In Section 3, D’ Agostini’s itera-
tive method [1] is presented, as it was used to estimate the spectrum of charged particle multiplicity in
minimum bias interactions [3].

Both methods have drawbacks. An insightful overview can be found in [4], and in other contri-
butions to this workshop. Bin-by-bin correction has been particularly criticized for not dealing carefully
with bin correlations, among other things. ATLAS is considering methods beyond bin-by-bin in the next
round of analyses where this method was used.

In searches for new physics, ATLAS does not apply any unfolding, because it is unnecessary for
making a discovery, or for setting a limit to some model, or for estimating model parameters. Unfolding
can be regarded as useful when the distribution itself (or a binned version thereof) is regarded as the set
of parameters of interest.

2 Bin-by-bin correction factors

Several ATLAS analyses have used the method of bin-by-bin correctionfactors [2,5–7], mostly because
of its simplicity. The example of inclusive jetpT measurement [2] will be discussed. The main result of
this measurement is shown in Fig. 1. In this analysis truth-level corresponds to hadron-level.

2.1 Method description

Let Ti be the expected number of events in bini of the truth-levelpT spectrum, which is obtained from
Monte Carlo (MC). Leading order PYTHIA [8] QCD MC was used in the case of [2], where no event
selection was applied. The truth-levelpT spectrum contains jets reconstructed after hadronization, apply-
ing the anti-kT clustering algorithm on stable hadrons produced after fragmentation and hadronization.
Detector simulation is not involved in the truth-level spectrum.

LetRi be the expected number of events in bini of the measuredpT spectrum, after event selection
which includes trigger requirements, jet reconstruction inefficiency at lowpT , primary vertex require-
ments, jet quality criteria etc. The same PYTHIA QCD MC is used as before, after ATLAS detector
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Fig. 1: The estimated truth-level spectrum of inclusive jetpT (filled markers) from [2], obtained using bin-by-
bin correction factors, compared to the theoretical truth-level QCD prediction (red band). The black error bars
represent the statistical uncertainty of the estimated spectrum, and the blue band the total systematic uncertainty,
which is obtained by summing in quadrature individual systematic uncertainties. The dominant contribution comes
from the jet energy scale uncertainty. In each bin the estimated truth-level spectrum has been divided by the width
of the bin and by the integrated luminosity, whose uncertainty (11%) is not included in the blue error band.

simulation, to obtainRi. Jets are reconstructed by applying the same anti-kT algorithm on topological
clusters of energy deposited in the calorimeter [9].

Let Di be the actually observed number of events in bini of the measuredpT spectrum. Whereas
Ti andRi are both real numbers after normalizing the MC samples to the integrated luminosityof the
available dataset,Di can only take integer values, because the observed events are discrete. If it is
assumed thatRi is the result of an ideal simulation of all physical processes that occur atthe proton
collisions1 and of the ATLAS detector, thenDi is a random integer that follows a Poisson distribution
with meanRi.

Let

Ci ≡
Ti

Ri

, (1)

be the correction factor corresponding to bini of the observedpT spectrum. The correction factors used
in [2] are shown in Fig. 2.

1Obviously this is not a good assumption when one acknowledges the possibility of new physics, but in measurements such
as the one we discuss here it is presumed that what is measured is just QCD.
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Fig. 2: The correction factors (Ci) used in [2]. The statistical uncertainties (black crosses) are invisibly small. The
green band represents the total systematic uncertainty, except for the part which is due to jet energy scale, which
is discussed in Section 2.3.4.

The answer returned for bini of the truth-levelpT spectrum after bin-by-bin correction is

Ui ≡ Ci ·Di. (2)

Ui is the estimator ofTi.

2.1.1 Bias

The estimatorUi has a bias that is easy to compute.

Let’s consider the possibility that the truth-level spectrum is actuallyT ′
i , which may differ from the

assumedTi. This could happen, for example, if sizable processes other than those included in PYTHIA

QCD are occurring in nature, or if the modeling of QCD by PYTHIA is unrealistic. Let’s also assume
that the actual expected spectrum at detector level isR′

i, which may differ fromRi for the above reasons,
as well as due to unrealistic modeling of the detector response and of the quantities involved in event
selection. The bias of the estimatorUi then is

〈Ui − T ′
i 〉 = 〈 Ti

Ri

Di − T ′
i 〉 =

Ti

Ri

〈Di〉 − T ′
i =

Ti

Ri

R′
i − T ′

i =

(

Ti

Ri

− T ′
i

R′
i

)

R′
i. (3)
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Fig. 3: Sketch of the Neyman construction used to correspond an observed number of data eventsDi to a 68%
confidence interval forTi in the bin-by-bin correction factor method. The definitionsof Di, Ti, Ri, Ci andUi are
given in Sec. 2.1.

2.2 Statistical uncertainty

The Neyman construction shown in Fig. 3 is effectively used to obtain a confidence interval forTi, given
Ci and the dataDi. Having observedDi, the 68% confidence interval (CI) forUi is approximately

Ci(Di ±
√

Di). (4)

This is a fair approximation whenDi is large, in which case the Poisson distribution ofDi with mean
Ri is similar to a Gaussian of meanRi and standard deviation

√
Ri. Although this approximation fails

in bins with few data, the same formula was used in allpT bins, so for all bins it was assumed that the
statistical uncertainty ofUi is symmetric and equal to

σUi
= Ci

√

Di. (5)

This is the size of the black error bars in Fig. 1.

2.3 Systematic uncertainty

The following main sources of systematic uncertainty were identified in [2]:

i) the correction factorCi is subject to statistical fluctuations due to finite MC event statistics;

ii) the amount ofpT smearing in detector simulation may be unrealistic;

iii) the used spectrum ofTi may be unrealistic;

iv) jet energy scale uncertainty.

The following paragraphs describe how each systematic uncertainty was propagated to the final
estimator of the truth-level spectrum.
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Fig. 4: The effect of covariance betweenTi andRi in the variance of the correction factorCi. The gray circle
indicates the case of zero covariance, and the blue circle the case of highly positive correlation.

2.3.1 Finite MC event statistics

The correction factorsCi have some uncertainty due to random fluctuations of the finite MC event statis-
tics available to determineTi andRi. WhenTi fluctuates above its mean, so doesRi, so the two are
highly correlated (Fig. 4).2 The statistical uncertainty inCi was computed taking this correlation into
account, as follows:

TheN(Ri) MC evens which composeRi are separated into those that are coming from the same
truth-level bin (N(Ri ∧ Ti)) and those originating from different truth-level bins (N(Ri ∧ ¬Ti)).3 Sim-
ilarly, the N(Ti) MC events which contribute toTi are separated into those that end up in the same
bin after detector simulation and event selection (N(Ti ∧ Ri)), and those that migrate to different bins
(N(Ti ∧ ¬Ri)). The variablesN(Ti ∧ Ri) andN(Ri ∧ Ti) are identical. So,Ci can be expressed as a
function of three statistically independent random variables:

Ci =
Ti

Ri

=
N(Ti ∧Ri) +N(Ti ∧ ¬Ri)

N(Ti ∧Ri) +N(Ri ∧ ¬Ti)
. (6)

SinceCi is expressed as a function of three statistically uncorrelated variables, error propagation can be
used where covariance terms are zero. Each one of the three MC eventpopulations has standard deviation√
N .

2.3.2 JetpT resolution uncertainty

A relative systematic uncertainty of 15% in jetpT resolution was assumed, based on the results of in-situ
studies [10].

To model the effect of a differentpT resolution onCi, the jets in MC events were smeared by an
additional amountα, which varied from 0 to 20% of the nominal smearing that is present in ATLASMC.
For each amount of extra smearing, the values ofRi change, whileTi is not affected. As a result each
correction factorCi has a dependence on the amount of extra smearing. It was furthermore observed that
in all binsi the correction factorCi increased about linearly withα.

It is possible to increase the smearing of jetpT by adding to it a random offset of appropriate
variance, but it is not possible to do the opposite, i.e., to reduce the amount of smearing that is nominally
present in the ATLAS MC. This complicates the task of determining the uncertainty onCi, because the
resolution uncertainty of 15% is symmetric; the jetpT resolution could be 15% worse or 15% better than

2Though this was not done in the analysis described here, it may be worth mentioning thatTi andRi could be generated
separately, using different seeds for the pseudo-random numbersin the MC generator. This would result in statistically inde-
pendent estimatorsTi andRi. In addition to that, sinceTi does not involve detector simulation, it is feasible to generate many
more truth-level MC events, thus estimatingTi with negligible statistical uncertainty, something that unfortunately is not easy
for Ri.

3The symbol∧ is the logical “and”, while¬ is the logical “not”. So,Ri ∧ ¬Ti means belonging inRi and notin Ti.
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its nominal value. The observation thatCi depends linearly on the extra smearing justifies the assumption
that, if the resolution improved,Ci would decrease, linearly, at the same rate.

Therefore, the systematic uncertainty onCi due to 15% uncertainty on jetpT resolution is de-
termined by noting the increase ofCi when resolution is made 15% worse, and by symmetrizing this
variation. For example, ifCi changes by +1% when jetpT resolution is deteriorated by 15%, we assign
toCi a systematic uncertainty of±1%.

2.3.3 Uncertainty in spectrum shape

The correction factorsCi depend on the choice ofTi, which affects alsoRi. If, for example, PYTHIA

QCD does not provide a realistic model of the true spectrum, that can biasUi, unlessRi andTi are
simultaneously wrong in such a way thatTi/Ri remains equal to the (unknown) actual ratioT ′

i/R
′
i in

Eq. 3. The use of bins quite wider than the amount of smearing makes it more likely that, even ifTi is not
modeled right, the ratioTi/Ri in each bin will be approximately correct. In [2] the bins are safely wider
than jetpT resolution, and their edges are driven by experimental constraints, such as trigger thresholds.

To assess the uncertainty from possible wrong modeling ofTi, the MC events used to determine
Ci were re-weighted in multiple ways. Their re-weighting was determined by functions smooth in jet
pT , chosen so as to bracket the variation observed by varying parton density functions, by including
next-to-leading-order corrections to QCD, as well as the difference observed betweenDi andRi. For
each set of re-weighted MC events bothTi andRi were re-computed, and so wasCi for each bini. The
largest variation observed in eachCi was taken as a systematic uncertainty.

2.3.4 Jet energy scale uncertainty

By far the dominant uncertainty in the finalUi comes from the uncertainty in jet energy scale (JES). All
previous uncertainties, added in quadrature, amount to about 5% of relative uncertainty inCi, which is
the error band shown in Fig. 2. The rest∼40% of uncertainty in the final answer comes from the JES
uncertainty, and it dominates the blue error band in Fig. 1.

To propagate the JES uncertainty, the reconstructedpT of all jets in MC events is shifted by±1
standard deviation, the exact size of which is a function of jetpT and pseudo-rapidityη. That affectsRi

strongly, whileTi doesn’t change, thereforeCi varies significantly. By applying onDi the two alternative
values ofCi, from the positive and the negative JES shift, two extremeUi values are obtained for each
bin i, whose distance is considered as the JES uncertainty onUi.

3 Iterative unfolding

ATLAS used D’ Agostini’s iterative unfolding [1] in the study of minimum biaspp collisions [3]. The ex-
ample to be shown is the estimation of the truth-level distribution of the multiplicity of charged particles.
The result of this analysis is shown in Fig. 5.

3.1 Method description

The full method is clearly described in the original article [1] by D’ Agostini. This paragraph will make
a connection between the quantities in [3] and the notation used in [1].

Let nch be the number of charged particles produced in app collision. This is the truth-level
quantity whose distribution needs to be estimated. It corresponds to the “cause”C mentioned in [1].

Letntrk be the number of reconstructed tracks in app collision, which satisfy the selection criteria
listed in [3]. It corresponds to the “effect”E mentioned in [1].

The reconstructed tracks are typically fewer than the actual charged particles, due to tracking
inefficiency, therefore typicallyntrk ≤ nch. Therefore the migrations matrix is highly non-diagonal, and
schematically looks like Fig. 6.
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Fig. 5: The estimated spectrum of charged particle multiplicity (filled circles) in minimum biaspp interactions,
from [3]. The statistical uncertainty is smaller than the marker size, and the asymmetric color band represents the
total systematic uncertainty. Various theoretical predictions are overlaid for comparison.

Fig. 6: Schematic representation of migrations matrix. The dark green squares represent higher probability than the
light blue. Initially each matrix element equals the probability of MC events to containnch charged particles and to
haventrk reconstructed tracks that satisfy the criteria listed in [3]. Then, the elements of each row, corresponding
to a fixedntrk, are normalized to have sum 1.
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Re-writing the basic formulas from [1], substitutingC → nch andE → ntrk, we get

N̂(nch) =
1

ǫ(nch)

∑

ntrk≥2

N(ntrk)P (nch|ntrk) ǫ(nch) 6= 0, (7)

P (nch|ntrk) =
P (ntrk|nch)P0(nch)

∑

nch≥1 P (ntrk|nch)P0(nch)
, (8)

where the efficiencyǫ(nch) corresponds to the probability of reconstructing at least two tracks, a require-
ment related to having a reliable primary vertex reconstruction, for a givennumber of charged particles:

ǫ(nch) = P (ntrk ≥ 2|nch). (9)

The termP0(nch) is an arbitrary initial distribution for the truth-level quantitynch. The symbolN(ntrk)
denotes the population of events wherentrk tracks were reconstructed, and̂N(nch) is the estimator of
the population of events withnch charged particles at truth-level.

3.1.1 Initial distribution and iterations

In [3], the initial distribution was defined to be thench spectrum predicted by PYTHIA minimum bias
MC. The reason is that the PYTHIA prediction has been tuned to data from various past experiments, so
it is a reasonable starting point.

In iterative unfolding the number of iterations is decided arbitrarily. Too manyiterations result
in bin-by-bin fluctuations in the unfolded spectrum, similar to what one may get from simple migration
matrix inversion [4]. Too few iterations increase too much the influence of theinitial distribution on the
final answer.

In [3], a convergence criterion was defined to determine when to stop iterating. The criterion was

χ2

Nbins

< 1, (10)

where

χ2 ≡
Nbins
∑

i=1





ni,current
ch − ni,previous

ch
√

ni,previous
ch





2

. (11)

Namely, iterations continued until the latest unfolded spectrum (ncurrent
ch ) remained statistically consis-

tent with the spectrum from the previous iteration (nprevious
ch ). It was found that 4 iterations were enough

to meet this convergence criterion.

3.1.2 The termǫ(nch)

In principle one should extractǫ(nch) defined in Eq. 9, directly from the MC events used to populate the
migrations matrix (Fig. 6). However, a decision was made in [3] to use instead aparametric approxima-
tion of ǫ(nch).

Making the simplification that each charged particle has the same “average effective” probability
ǫeff of being reconstructed as a track, the probability of having at least two reconstructed tracks is given
by

f(nch) = 1− (1− ǫeff )
nch − nch(1− ǫeff )

(nch−1)ǫeff . (12)

The unknown parameterǫeff was adjusted so as makef(2) equal to theǫ(nch = 2) obtained from MC.
The resulting value forǫeff is within 4% from the average probability of track reconstruction that is
determined from MC simulation, which indicates thatf(nch) matches well the MC-drivenǫ(nch) even
for nch > 2.
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After adjustingǫeff as described, the quantityf(nch) from Eq. 12 substitutesǫ(nch) in Eq. 7.
Practically this efficiency becomes≃ 1 for nch > 4, and that is true regardless of usingf(nch) or
ǫ(nch).

3.2 Statistical uncertainty

In Eq. 7, the estimator̂N(nch) depends on the measuredN(ntrk), which are the result of indepen-
dent Poisson fluctuations. Simple error propagation would lead to the following standard deviation for
N̂(nch):

σ
N̂(nch)

=

√

∑

(

1

ǫ(nch)
P (nch|ntrk)

)2

N(ntrk). (13)

The way statistical uncertainty was actually calculated in [3] was

σ
N̂(nch)

=

√

N̂(nch). (14)

Either way, the statistics in all bins ofntrk are high enough to make the statistical uncertainty
negligible. In Fig. 5, the statistical error bars are invisible.

3.3 Systematic uncertainty

The following main sources of systematic uncertainty will be discussed:

i) The choice of initial distributionP0(nch);

ii) The uncertainty in track reconstruction efficiency;

iii) The uncertainty in MC spectrum.

3.3.1 Choice of initial distribution

The stability of the answer under different choices of initial distributionP0(nch) was tested by assuming
a “flat” initial distributionP0(nch) = 1, and repeating the iterative unfolding procedure. This choice is
obviously physically absurd; its purpose was only to show that even under extreme choices ofP0(nch)
the answerN̂(nch) doesn’t change much.

Starting from a flat initial distribution, the number of iterations required to converge (Eq. 10)
increased from 4 to 7. The final answer changed by less than 2% in all bins ofnch, which was taken as a
systematic uncertainty in̂N(nch).

3.3.2 Track reconstruction efficiency uncertainty

The main effect this unfolding is correcting is the inefficiency of tracking. This inefficiency is reflected in
the probabilities of Eq. 7, and is obtained from MC simulation. If tracking inefficiency in MC is wrong,
so is the obtained spectrum after unfolding.

Fig. 7 shows the track reconstruction efficiency (ǫtrk) in ATLAS simulation.

To propagate the uncertainty ofǫtrk into N̂(nch), the natural thing to do would be to shift sys-
tematicallyǫtrk, thus changingP (nch|ntrk), and see how mucĥN(nch) would change. Instead, what
was done in [3] was to keep the migration probabilities fixed, and modify the data(N(chtrk)) on which
iterative unfolding was applied. The way in which the data were modified is described next.

Assume an event in data hasntrk tracks. Take one of these tracks. ItspT corresponds to some
efficiencyǫtrk (Fig. 7). For the sake of clarity, let’s say it corresponds toǫtrk = 0.80 ± 0.05. This ǫtrk
gets reduced by 1 standard deviation, so it is brought down to 0.75. For this reducedǫtrk, the expected
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Fig. 7: Track reconstruction efficiencyǫtrk in ATLAS simulation. The error band represents its systematic uncer-
tainty.

number of tracks is 1
0.80 × 0.75 ≃ 0.94. The track is then randomly kept, with probability 0.94, or

discarded, with probability 0.06. This procedure of efficiency reductionand random removal is repeated
for all ntrk tracks of the event. In the end, the event is left withn′

trk, wheren′
trk ≤ ntrk.

The above procedure is repeated for all data events, reducingntrk to n′
trk in each event. Then, the

distributionN(n′
trk) is unfolded instead ofN(ntrk), which results inN̂ ′(nch) instead ofN̂(nch).

The above procedure could only remove tracks, not create any. However, theǫtrk uncertainty is
symmetric, which means that the actualǫtrk could be also greater than its nominal value. For this reason,
the difference between̂N(nch) and N̂ ′(nch) is symmetrized, and used as a systematic uncertainty in
N̂(nch). That means, for example, that if in a bin ofnch theN̂ ′(nch) was 5% greater than̂N(nch), the
uncertainty is set to±5%.

3.3.3 Uncertainty due to spectrum shape

The observed spectrum of track transverse momentum (ptrkT ) disagrees with the MC prediction after full
ATLAS detector simulation, as shown in Fig. 8. This discrepancy is related to the unfolding fromntrk

to nch, becauseǫtrk is a function ofptrkT (Fig. 7). If theptrkT is not realistically modeled, neither isǫtrk.

The way this was treated was the following: In each bin ofntrk, the meanǫtrk was found by
looping through all data events in the bin, and corresponding each observed ptrkT to the value ofǫtrk
obtained from MC (Fig. 7). The same was then done for MC events in bins ofntrk, again corresponding
theptrkT in MC events to values ofǫtrk from Fig. 7. In each bin ofntrk, the average track reconstruction
efficiency〈ǫtrk〉 from data was compared to the same quantity from MC. The sameptrkT → ǫtrk corre-
spondence was used for both data and MC tracks, therefore the difference in the resulting〈ǫtrk〉 is due
to the differentptrkT distributions.

In each bin ofntrk, if 〈ǫtrk〉 is larger in data than in MC, then the efficiency in data gets reduced
by the observed difference, in the same stochastic way described in Section3.3.2. This results in a
different number of tracksn′

trk ≤ ntrk for each event in the data. The iterative unfolding is then applied
to N(n′

trk), and a different estimator of the truth-level spectrum is obtained (N̂ ′(nch)). The difference
between the nominal̂N(nch) andN̂ ′(nch) is found, and is used as a one-sided systematic uncertainty in
N̂(nch).

In ntrk bins where the〈ǫtrk〉 in data is smaller than in MC, one would ideally wish to increase the
ǫtrk of the data, but it is not possible to create tracks, as explained in Section 3.3.2. Instead, theǫtrk of
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Fig. 8: The observed spectrum ofptrk
T

, compared to the spectrum expected from MC simulation.

data isreducedby the observed difference, as if the data had greater〈ǫtrk〉 than the MC. This results in
a different data spectrumN(n′

trk), which after unfolding results in a different estimatorN̂ ′(nch). The
difference between the nominal̂N(nch) andN̂ ′(nch) is found, and instead of using it directly as a one-
sided systematic uncertainty in̂N(nch), we use its opposite, to take into account the fact that the data
ǫtrk was reduced instead of increased.

The above procedure results in an asymmetric systematic uncertainty. The upper and lower uncer-
tainty are separately added in quadrature with the other systematic uncertainties, which are symmetric.
This results in two unequal total systematic uncertainties, one suggesting thatN(nch) could be above
and the other below its nominal value. This asymmetric systematic uncertainty appears as a colored band
in Fig. 5.

4 Concluding remarks

Two examples were shown of how unfolding has been used in ATLAS. They were chosen to be repre-
sentative of different cases; one is using the bin-by-bin factors to correct the spectrum of a continuous
observable (jetpT ), whereas the other uses iterative unfolding to estimate the truth-level distribution of
a discrete variable(nch). The systematic uncertainties are quite different, as one analysis deals mainly
with energy smearing, and the other with tracking inefficiency.

As of the time of this workshop, ATLAS has used extensively bin-by-bin correction factors, and
in some cases iterative unfolding. More methods are being considered forfuture iterations of some of
these analyses.

Unfolding has been used only in analyses where the goal was to estimate a truth-level distribution.
Unfolding has been deliberately avoided in searches for new physics, where bias in bins with low statis-
tics can not be afforded, where it can not be assumed that the data are consistent with the MC prediction
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as is silently assumed in some stages of unfolding, and where Poisson-distributed data are simpler to
evaluate than estimators resulting from unfolding procedures after a series of arbitrary regularization
choices. There are several unfolding methods, in some of which anomaliesdue to new physics could
even be reduced, whereas the observed data are unique. Any inference is possible using directly the data,
without unfolding, and a theoretical prediction that either includes full detector simulation, or at least an
approximation of it that amounts to the inverse of unfolding, namely folding, which can be done with no
need for regularization. The only task for which unfolding is strictly needed is the estimation of a truth-
level spectrum, whose later use to make statistical inferences becomes complicated by non-Poissonian
statistics, biases that are hard to estimate, and bin-to-bin correlations.

In none of the analyses where unfolding was used was the full covariance matrix provided. The
latter would be necessary to correctly compare a truth-level theoretical prediction to the result of unfold-
ing. In most cases the comparison between the result of unfolding and the truth-level Standard Model
prediction is made qualitatively, avoiding to provide ap-value that would require proper use of the co-
variances between bins. When a more quantitative comparison is attempted, likein [6], aχ2 is used only
as a metric to determine if one theory agrees with the data more than another, butnot as a test statistic to
compute ap-value.
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