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Abstract

These proceedings present the unfolding techniques used so falLil\SAT
Two representative examples are discussed in detail; one using bim-bgsb
rection factors, and the other iterative unfolding.

1 Introduction

The distribution of any observable is distorted due to experimental limitationfldimg is the proce-
dure of estimating the “truth-level” spectrum, i.e., the spectrum that would beurezhwith an ideal
detector and infinite event statistics. A general introduction to unfoldirddatails about various meth-
ods are given in other contributions to this workshop. The focus herébwitin real life examples of
unfolding in ATLAS analyses.

As of early 2011, ATLAS has used two unfolding methods:

i) bin-by-bin correction factors;
ii) the iterative method by D’Agostini [1].

One representative example will be presented from each method. In S2ctiim-by-bin correction

is presented through the inclusive jgt spectrum measurement [2]. In Section 3, D’ Agostini’s itera-
tive method [1] is presented, as it was used to estimate the spectrum oédhmdicle multiplicity in
minimum bias interactions [3].

Both methods have drawbacks. An insightful overview can be found]jraftl in other contri-
butions to this workshop. Bin-by-bin correction has been particularly z#itfor not dealing carefully
with bin correlations, among other things. ATLAS is considering methodsrukln-by-bin in the next
round of analyses where this method was used.

In searches for new physics, ATLAS does not apply any unfoldiegabse it is unnecessary for
making a discovery, or for setting a limit to some model, or for estimating model psgesn&nfolding
can be regarded as useful when the distribution itself (or a binned rnetsoeof) is regarded as the set
of parameters of interest.

2 Bin-by-bin correction factors

Several ATLAS analyses have used the method of bin-by-bin correfetibors [2, 5—-7], mostly because
of its simplicity. The example of inclusive jetr measurement [2] will be discussed. The main result of
this measurement is shown in Fig. 1. In this analysis truth-level corresgorithdron-level.

2.1 Method description

Let T; be the expected number of events in biof the truth-levelpr spectrum, which is obtained from
Monte Carlo (MC). Leading ordery®HiA [8] QCD MC was used in the case of [2], where no event
selection was applied. The truth-leyel spectrum contains jets reconstructed after hadronization, apply-
ing the antik7 clustering algorithm on stable hadrons produced after fragmentationaaindrization.
Detector simulation is not involved in the truth-level spectrum.

Let R; be the expected number of events in baof the measureg spectrum, after event selection
which includes trigger requirements, jet reconstruction inefficiency atpipwprimary vertex require-
ments, jet quality criteria etc. The sam&T®IA QCD MC is used as before, after ATLAS detector
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Fig. 1. The estimated truth-level spectrum of inclusive jet (filled markers) from [2], obtained using bin-by-
bin correction factors, compared to the theoretical ttatlel QCD prediction (red band). The black error bars
represent the statistical uncertainty of the estimatedtap®, and the blue band the total systematic uncertainty,
which is obtained by summing in quadrature individual systéc uncertainties. The dominant contribution comes
from the jet energy scale uncertainty. In each bin the eséidhuth-level spectrum has been divided by the width
of the bin and by the integrated luminosity, whose uncetyditil %) is not included in the blue error band.

simulation, to obtainR;. Jets are reconstructed by applying the samefgntdgorithm on topological
clusters of energy deposited in the calorimeter [9].

Let D; be the actually observed number of events inddfithe measured; spectrum. Whereas
T; and R; are both real numbers after normalizing the MC samples to the integrated lumiobHity
available dataset]D; can only take integer values, because the observed events are did€iittis
assumed thak; is the result of an ideal simulation of all physical processes that ocdinegtroton
collisions' and of the ATLAS detector, thed; is a random integer that follows a Poisson distribution
with meanRk;.

Let
Ci= L s 1
R; @

be the correction factor corresponding to biof the observeg, spectrum. The correction factors used
in [2] are shown in Fig. 2.

1Obviously this is not a good assumption when one acknowledges theifiyssftnew physics, but in measurements such
as the one we discuss here it is presumed that what is measured is [Dst QC
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Fig. 2: The correction factord{;) used in [2]. The statistical uncertainties (black croyaes invisibly small. The
green band represents the total systematic uncertairggpefor the part which is due to jet energy scale, which
is discussed in Section 2.3.4.

The answer returned for birof the truth-levelp spectrum after bin-by-bin correction is

U; is the estimator of’;.

2.1.1 Bias
The estimatof/; has a bias that is easy to compute.

Let’'s consider the possibility that the truth-level spectrum is act@@llyvhich may differ from the
assumed’;. This could happen, for example, if sizable processes other than tredsddd in ¥ THIA
QCD are occurring in nature, or if the modeling of QCD byTRIA is unrealistic. Let’s also assume
that the actual expected spectrum at detector levié),isvhich may differ fromR; for the above reasons,
as well as due to unrealistic modeling of the detector response and of thetigganvolved in event
selection. The bias of the estimaidythen is

Ti
R;

T; T; T, T
Di~T) = g D)~ T = R~ T = (3~ 1 ) B )

<UZ ,’TIL > < Ri 1 Rz Rz R;
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Fig. 3: Sketch of the Neyman construction used to correspond amaasaeumber of data evenf3; to a 68%
confidence interval fof; in the bin-by-bin correction factor method. The definitiaisD;, T;, R;, C; andU; are
given in Sec. 2.1.

2.2 Statistical uncertainty

The Neyman construction shown in Fig. 3 is effectively used to obtain admrde interval foff;, given
C; and the dataD,. Having observed;, the 68% confidence interval (Cl) féf; is approximately

Ci(Di + /D). (4)

This is a fair approximation whep; is large, in which case the Poisson distribution/gfwith mean
R; is similar to a Gaussian of medty and standard deviatiop’R;. Although this approximation fails
in bins with few data, the same formula was used ipalbins, so for all bins it was assumed that the
statistical uncertainty df/; is symmetric and equal to

oy, = CZ\/E (5)

This is the size of the black error bars in Fig. 1.

2.3 Systematic uncertainty
The following main sources of systematic uncertainty were identified in [2]:

i) the correction facto€; is subject to statistical fluctuations due to finite MC event statistics;
i) the amount ofp; smearing in detector simulation may be unrealistic;
i)y the used spectrum df; may be unrealistic;
iv) jet energy scale uncertainty.

The following paragraphs describe how each systematic uncertainty rapagated to the final
estimator of the truth-level spectrum.



Fig. 4: The effect of covariance betwedn and R; in the variance of the correction factéf. The gray circle
indicates the case of zero covariance, and the blue cirelegbke of highly positive correlation.

2.3.1 Finite MC event statistics

The correction factor§’; have some uncertainty due to random fluctuations of the finite MC event statis-
tics available to determin@; and R;. WhenT; fluctuates above its mean, so ddes so the two are
highly correlated (Fig. 45. The statistical uncertainty i’; was computed taking this correlation into
account, as follows:

The N(R;) MC evens which composR; are separated into those that are coming from the same
truth-level bin (V(R; A T;)) and those originating from different truth-level bins (R; A —7T})).3 Sim-
ilarly, the N(7;) MC events which contribute t@; are separated into those that end up in the same
bin after detector simulation and event selectidi({; A R;)), and those that migrate to different bins
(N(T; A —R;)). The variablesV (T; A R;) and N (R; A T;) are identical. So(; can be expressed as a
function of three statistically independent random variables:

T;  N(T; ANR;) + N(T; AN —R;)

Ci=—o = :
R; N(T;ANR;)+ N(R; N T;)

(6)

SinceC; is expressed as a function of three statistically uncorrelated varialiespespagation can be
used where covariance terms are zero. Each one of the three M(peperations has standard deviation

VN,

2.3.2 Jetpr resolution uncertainty

A relative systematic uncertainty of 15% in jet resolution was assumed, based on the results of in-situ
studies [10].

To model the effect of a different; resolution onC;, the jets in MC events were smeared by an
additional amounty, which varied from 0 to 20% of the nominal smearing that is present in ATMAS
For each amount of extra smearing, the valueRp€hange, whileT; is not affected. As a result each
correction facto”; has a dependence on the amount of extra smearing. It was furtherbserved that
in all binsi the correction facto€’; increased about linearly with.

It is possible to increase the smearing of jet by adding to it a random offset of appropriate
variance, but it is not possible to do the opposite, i.e., to reduce the anf@mearing that is nominally
present in the ATLAS MC. This complicates the task of determining the uncgri@ai(;, because the
resolution uncertainty of 15% is symmetric; thepgetresolution could be 15% worse or 15% better than

2Though this was not done in the analysis described here, it may be werttiaming thatZ; and R; could be generated
separately, using different seeds for the pseudo-random nurimbiines MC generator. This would result in statistically inde-
pendent estimators; and R;. In addition to that, sinc&; does not involve detector simulation, it is feasible to generate many
more truth-level MC events, thus estimatifigwith negligible statistical uncertainty, something that unfortunately is not easy
for R;.

3The symbolA is the logical “and”, while is the logical “not”. So,R; A —T; means belonging if; and notin 7;.



its nominal value. The observation th@tdepends linearly on the extra smearing justifies the assumption
that, if the resolution improved,; would decrease, linearly, at the same rate.

Therefore, the systematic uncertainty ©hdue to 15% uncertainty on jet- resolution is de-
termined by noting the increase 6% when resolution is made 15% worse, and by symmetrizing this
variation. For example, if’; changes by +1% when jet resolution is deteriorated by 15%, we assign
to C; a systematic uncertainty ef1%.

2.3.3 Uncertainty in spectrum shape

The correction factors’; depend on the choice @f;, which affects alsar;. If, for example, RTHIA
QCD does not provide a realistic model of the true spectrum, that carlbjasmlessR; andT; are
simultaneously wrong in such a way thBY/ R; remains equal to the (unknown) actual r&fiy R, in

Eq. 3. The use of bins quite wider than the amount of smearing makes it mdyethi&g even iff; is not
modeled right, the rati@; / R; in each bin will be approximately correct. In [2] the bins are safely wider
than jetpy resolution, and their edges are driven by experimental constraintsasudgger thresholds.

To assess the uncertainty from possible wrong modelirifj athe MC events used to determine
C; were re-weighted in multiple ways. Their re-weighting was determined bytitmecsmooth in jet
pr, chosen so as to bracket the variation observed by varying partaitydé&mctions, by including
next-to-leading-order corrections to QCD, as well as the differensergbd betwee®; and R;. For
each set of re-weighted MC events ba@thand R; were re-computed, and so wasfor each bini. The
largest variation observed in ea€hwas taken as a systematic uncertainty.

2.3.4 Jet energy scale uncertainty

By far the dominant uncertainty in the fin} comes from the uncertainty in jet energy scale (JES). All
previous uncertainties, added in quadrature, amount to about 5% tWealacertainty inC;, which is

the error band shown in Fig. 2. The rest0% of uncertainty in the final answer comes from the JES
uncertainty, and it dominates the blue error band in Fig. 1.

To propagate the JES uncertainty, the reconstrugtedf all jets in MC events is shifted by1
standard deviation, the exact size of which is a function gfjeand pseudo-rapidity. That affectsk;
strongly, whileT; doesn’t change, therefo€g varies significantly. By applying ofy; the two alternative
values ofC;, from the positive and the negative JES shift, two extrémegalues are obtained for each
bin ¢, whose distance is considered as the JES uncertairity.on

3 Iterative unfolding

ATLAS used D’ Agostini’s iterative unfolding [1] in the study of minimum bigscollisions [3]. The ex-
ample to be shown is the estimation of the truth-level distribution of the multiplicity abeugparticles.
The result of this analysis is shown in Fig. 5.

3.1 Method description

The full method is clearly described in the original article [1] by D’ Agostirhisparagraph will make
a connection between the quantities in [3] and the notation used in [1].

Let n., be the number of charged particles produced pppaollision. This is the truth-level
guantity whose distribution needs to be estimated. It corresponds to tree*edumentioned in [1].

Let n;,.,. be the number of reconstructed tracks jpacollision, which satisfy the selection criteria
listed in [3]. It corresponds to the “effec® mentioned in [1].

The reconstructed tracks are typically fewer than the actual chargédlgs due to tracking
inefficiency, therefore typically,,., < n.,. Therefore the migrations matrix is highly non-diagonal, and
schematically looks like Fig. 6.
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Re-writing the basic formulas from [1], substitutiGg— n., andE — ng,.k, We get

N(nen) = E(nlch) Z>2N(ntrk)P(nch\ntrk) e(nen) # 0, )
P(nen|nur) = P(ngr|nen) Po(nen) o

Z"ch21 P(ntrk|nch)P0(nch) ’

where the efficiency(n.;) corresponds to the probability of reconstructing at least two tracksjudree
ment related to having a reliable primary vertex reconstruction, for a giuerber of charged particles:

e(nch) = P(ntrk’ > 2|nch)- (9)

The termPy(n.p,) is an arbitrary initial distribution for the truth-level quantity;,. The symbolN (n,)
denotes the population of events wheyg, tracks were reconstructed, and n.;) is the estimator of
the population of events with,, charged particles at truth-level.

3.1.1 |Initial distribution and iterations

In [3], the initial distribution was defined to be the; spectrum predicted byYHIA minimum bias
MC. The reason is that theyRPHIA prediction has been tuned to data from various past experiments, so
it is a reasonable starting point.

In iterative unfolding the number of iterations is decided arbitrarily. Too mitamations result
in bin-by-bin fluctuations in the unfolded spectrum, similar to what one mayrget §imple migration
matrix inversion [4]. Too few iterations increase too much the influence dhthial distribution on the
final answer.

In [3], a convergence criterion was defined to determine when to stofirigrd he criterion was

X2

Nbins

<1, (20)

where )
ns ni,current __ . b,previous

bi

2 : ch ch (11)
— 1,pPrevious

=1 A/ N,

Namely, iterations continued until the latest unfolded spectmffi(°"*) remained statistically consis-
tent with the spectrum from the previous iteratiaff,("***"). It was found that 4 iterations were enough
to meet this convergence criterion.

N,

X2

3.1.2 The terme(ncp)

In principle one should extraetn.;) defined in Eq. 9, directly from the MC events used to populate the
migrations matrix (Fig. 6). However, a decision was made in [3] to use instpacthanetric approxima-
tion of e(nep,).

Making the simplification that each charged particle has the same “avefagtvef’ probability
ecr Of being reconstructed as a track, the probability of having at least womséructed tracks is given
by

f(nch) =1- (1 — Eeff)nc”' —nep(l — Eeff)(nCh_l)eeff. (12)
The unknown parameteg;; was adjusted so as mal¢2) equal to the:(n., = 2) obtained from MC.
The resulting value foe. s is within 4% from the average probability of track reconstruction that is
determined from MC simulation, which indicates thfdt..;,) matches well the MC-drivea(n.) even
for ng, > 2.



After adjustinge. sy as described, the quantif(n.,) from Eq. 12 substitutes(n.) in Eq. 7.
Practically this efficiency becomes 1 for n., > 4, and that is true regardless of usirign.,) or

6(nch)'

3.2 Statistical uncertainty

In Eq. 7, the estimatoN (n.;,) depends on the measuréd(n,,;,), which are the result of indepen-
dent Poisson fluctuations. Simple error propagation would lead to the fotijostamdard deviation for

A

N(nch):

2
UN(nch) = \/Z <6(nlCh)P(nch’ntrk)> N(n”k)_ (13)

The way statistical uncertainty was actually calculated in [3] was

N(nep). (14)

UN(nch) -

Either way, the statistics in all bins ef;,.;, are high enough to make the statistical uncertainty
negligible. In Fig. 5, the statistical error bars are invisible.

3.3 Systematic uncertainty
The following main sources of systematic uncertainty will be discussed:

i) The choice of initial distributionPy(n.p,);
ii) The uncertainty in track reconstruction efficiency;
iii) The uncertainty in MC spectrum.

3.3.1 Choice of initial distribution

The stability of the answer under different choices of initial distribufigt.,) was tested by assuming

a “flat” initial distribution Py(n.,) = 1, and repeating the iterative unfolding procedure. This choice is
obviously physically absurd; its purpose was only to show that evenr@axtieeme choices afy(n.p,)

the answetV (n.;,) doesn't change much.

Starting from a flat initial distribution, the number of iterations required to eaw (Eqg. 10)
increased from4to 7. Tr]e final answer changed by less than 2% in albhin,,, which was taken as a
systematic uncertainty itV (n.p,).

3.3.2 Track reconstruction efficiency uncertainty

The main effect this unfolding is correcting is the inefficiency of trackinigisTnefficiency is reflected in
the probabilities of Eq. 7, and is obtained from MC simulation. If tracking ioigfficy in MC is wrong,
S0 is the obtained spectrum after unfolding.

Fig. 7 shows the track reconstruction efficieney.) in ATLAS simulation.

To propagate the uncertainty ef., into N(nch), the natural thing to do would be to shift sys-
tematicallye;,r, thus changing?(n.,|n«), and see how mucff](nch) would change. Instead, what
was done in [3] was to keep the migration probabilities fixed, and modify the(d&te,.)) on which
iterative unfolding was applied. The way in which the data were modified iithes! next.

Assume an event in data hag.; tracks. Take one of these tracks. jts corresponds to some
efficiencye,.. (Fig. 7). For the sake of clarity, let’s say it correspondsg;tp = 0.80 & 0.05. This e,
gets reduced by 1 standard deviation, so it is brought down to 0.75. iBaettuced,, ., the expected
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Fig. 7: Track reconstruction efficienay,., in ATLAS simulation. The error band represents its systémnaicer-
tainty.

number of tracks |sr x 0.75 ~ 0.94. The track is then randomly kept, with probability 0.94, or
discarded, with probability 0.06. This procedure of efficiency reduaimhrandom removal is repeated
for all n,, tracks of the event. In the end, the event is left wifhy., wheren; , < ng,.

The above procedure is repeated for all data events, redugiptp ;... in each event. Then, the
distribution N (n/, ,.) is unfolded instead oW (n,+ ), which results inV’(n,,) instead ofN (n.).

The above procedure could only remove tracks, not create any. \leovibee,,.,, uncertainty is
symmetric, which means that the actyg). could be also greater than its nominal value. For this reason,
the difference betwee (n.;) and N'(n.,) is symmetrized, and used as a systematic uncertainty in
N(nes). That means, for example, that if in a binaf, the N’ (n.,) was 5% greater thaiV (n.;,), the
uncertainty is set te-5%.

3.3.3 Uncertainty due to spectrum shape

The observed spectrum of track transverse momengéif) disagrees with the MC prediction after full
ATLAS detector simulation, as shown in Fig. 8. This discrepancy is relatecetarfolding fromn,.
to n.n,, because,, is a function ofpt* (Fig. 7). If thepl:® is not realistically modeled, neitherg..

The way this was treated was the following: In each bimgf,, the mear,;,, was found by
looping through all data events in the bin, and corresponding eachveldqész to the value ofe;,.;
obtained from MC (Fig. 7). The same was then done for MC events in bing gfagain corresponding
thepgl"’€ in MC events to values af;,.,. from Fig. 7. In each bin ofi;,.1, the average track reconstruction
efficiency (e;,r.) from data was compared to the same quantity from MC. The 3@%% €4r) COITE-
spondence was used for both data and MC tracks, therefore theedifeem the resultinge,,«) is due
to the differentp’:* distributions.

In each bin ofny,, if (e41) IS larger in data than in MC, then the efficiency in data gets reduced
by the observed difference, in the same stochastic way described in S8@i@n This results in a
different number of tracks;,, < n, for each event in the data. The iterative unfolding is then applied
to N(n},,), and a different estimator of the truth-level spectrum is obtaiédr(.;,)). The difference
between the nominaV (n.;,) andN’(n.;,) is found, and is used as a one-sided systematic uncertainty in
N(nch)'

In n4,, bins where thée,,.;.) in data is smaller than in MC, one would ideally wish to increase the
-k Of the data, but it is not possible to create tracks, as explained in Secti@n h8tead, the,,; of

10
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Fig. 8 The observed spectrum p§:*, compared to the spectrum expected from MC simulation.

data isreducedby the observed difference, as if the data had greatgr) than the MC. This results in

a different data spectrumV (n}, . ), which after unfolding results in a different estimaf§t(n.;). The
difference between the nominé/l(nch) andN’(nch) is found, and instead of using it directly as a one-
sided systematic uncertainty i¥ (nen), We use its opposite, to take into account the fact that the data
€t Was reduced instead of increased.

The above procedure results in an asymmetric systematic uncertainty. géeana lower uncer-
tainty are separately added in quadrature with the other systematic uncestairtieh are symmetric.
This results in two unequal total systematic uncertainties, one suggestiny that) could be above
and the other below its nominal value. This asymmetric systematic uncertainigragsea colored band
in Fig. 5.

4 Concluding remarks

Two examples were shown of how unfolding has been used in ATLASy Waeee chosen to be repre-
sentative of different cases; one is using the bin-by-bin factors teciothe spectrum of a continuous
observable (jepr), whereas the other uses iterative unfolding to estimate the truth-level digiritof
a discrete variablén ;). The systematic uncertainties are quite different, as one analysis deals mainly
with energy smearing, and the other with tracking inefficiency.

As of the time of this workshop, ATLAS has used extensively bin-by-bimezion factors, and
in some cases iterative unfolding. More methods are being consideréatdoz iterations of some of
these analyses.

Unfolding has been used only in analyses where the goal was to estimatte- el distribution.

Unfolding has been deliberately avoided in searches for new phydiesevbias in bins with low statis-
tics can not be afforded, where it can not be assumed that the datanaistent with the MC prediction

11



as is silently assumed in some stages of unfolding, and where Poissondtitstriata are simpler to
evaluate than estimators resulting from unfolding procedures after & sdragbitrary regularization
choices. There are several unfolding methods, in some of which anordake® new physics could
even be reduced, whereas the observed data are unique. Anyadésgossible using directly the data,
without unfolding, and a theoretical prediction that either includes fulladetesimulation, or at least an
approximation of it that amounts to the inverse of unfolding, namely foldingshvtan be done with no
need for regularization. The only task for which unfolding is strictly needehe estimation of a truth-
level spectrum, whose later use to make statistical inferences becomes eabeapbg non-Poissonian
statistics, biases that are hard to estimate, and bin-to-bin correlations.

In none of the analyses where unfolding was used was the full cocarimatrix provided. The
latter would be necessary to correctly compare a truth-level theoretidikction to the result of unfold-
ing. In most cases the comparison between the result of unfolding anduthddvel Standard Model
prediction is made qualitatively, avoiding to provide-&alue that would require proper use of the co-
variances between bins. When a more quantitative comparison is attemptémui [@ike y2 is used only
as a metric to determine if one theory agrees with the data more than anothest bata test statistic to
compute a-value.
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