AN INTRODUCTION TO SUPERCONDUCTIVITY

P. Darriulat
CERN, May 98




Contents

1 PREAMBLE 1
1.1 General scope . . . . . . . . ... e e e 1
1.2 Some historical landmarks . . . . .. ... .o Lo 1

2 METALS, NORMAL CONDUCTIVITY 3
2.1 Lattice periodicity, Bloch functions . . . . . ... ... ... ... ... .. 3
2.2 Lattice vibrations, phonons . . . . . . . . . ... ... .. ... ... 5
2.3 Free electron gas, response to an electromagnetic field . . . . . .. .. . .. 8
2.4 Fermion creation and annihilation operators . . . . ... ... .. .. ... 15
2.5 Thermal equilibrium. Free energy and entropy . . . . . . . .. .. .. ... 18

3 SUPERCONDUCTIVITY IN THE ABSENCE OF AN EXTERNAL
FIELD 22
3.1 CoOper pairs . . . . v v v v v e e e e e 22
3.2 'The Frohlich interaction . . . .. .. ... . L Lo oL 25
3.3 The BCSgroundstate . ... .. .. ... ... ... .. ......... 27
3.4 Quasi-particle excitations . . . . . . . ... ... o L. 30
3.5 Excited states, 0 . . . . . .. ... 32
3.6 Dirty superconductors . . . . .. ... ..o 36
3.7 Eliashberg equations, strong coupling . . . . . .. . ... ... .. ... .. 37

4 SUPERCONDUCTIVITY IN WEAK EXTERNAL FIELDS 50
4.1 Persistent currents . . . . . . ... L 50
4.2 Coherenceeffects . . . . . .. .. .. L 51
4.3 Induced transitions . . . . . . . . .. L e 55
44 Meissnereffect . ... .. .. ... 59

5 SUPERCONDUCTIVITY WITH A VARIABLE GAP 68
5.1 Bogolioubov equations . . . . .. .. ... L o 68
5.2 Landau Ginzburg equations . . . .. ... .. ... ... oL 69
5.3 Relevant length scales, typesTand II . . . . . .. . ... ... ... . ... 71
54 Fluxons . . . . . . e 75
5.5 Critical fields . . . . . . . .. L. 81
5.6 Fluxon dynamics . . . . . . . . . . . 95
5.7 Junctions, Josephson effects . . . . . . . .. ... o o L. 103

APPENDIX 110
SUPERCONDUCTING MATERIALS . . .. . . ... . ... ... ..... 110

References 112







1 PREAMBLE

1.1 General scope

It is somewhat ridiculous to write down lecture notes on superconductivity when
so many excellent text books, often written by prestigious physicists, have been available
for decades [1]. The only excuse is the need for a written record for those who actually
attended the course.

The lectures are aimed at an audience of physicists having some familiarity with
non-relativistic quantum mechanics but only little training in solid state physics, as is
often the case for CERN physicists. The only ambition is to demystify a subject which is
sometimes considered difficult to penetrate and to provide enough keys to open the doors
giving access to the relevant literature.

The very short time imparted to the course precludes any pretention at complete-
ness. Only the most important features have been reviewed, leaving major chapters un-
covered. In particular high 7T, superconductivity has been completely left out. The hope
is simply to encourage CERN physicists, who rely so heavily on superconductivity for the
successful operation of their accelerators and detectors, to get some acquaintance with
one of the most fascinating fields of physics.

1.2 Some historical landmarks

Traditionally, a course on superconductivity starts with a review of the developments
which took place over the half century between discovery and understanding. Lack of time
prevents such an approach in the present course, the lines below try to compensate for
this deficiency [2].

In 1911, three years after having achieved the liquefaction of helium, Kamerlingh
Onnes [3] discovered that the resistivity of mercury, which happens to have a critical tem-
perature just below the liquefaction temperature of helium, was becoming unmeasurably
small at low temperatures (Fig. 1.1). It is traditionally considered that solid state physics
was born in 1912 with the discovery of X-ray diffraction by Von Laue, Friedrich and Knip-
ping. The discovery of the first important property of superconductivity, namely a perfect
dc conductivity, was therefore a truly prehistoric event. It took twenty-two years before
the other important property of superconductivity, namely a perfect diamagnetism, was
discovered by Meissner and Ochsenfeld [4]. They observed that a sphere of pure tin, cooled
below critical temperature in the presence of an external magnetic field, would expell the
field from its interior. This was going beyond the property of perfect conductors to resist
the penetration of magnetic field by the generation of eddy currents (Fig. 1.2).

Yet another twenty-four years were necessary for superconductivity to be understood
and for its microscopic theory to be written down by Bardeen, Cooper and Schrieffer [5].
Meanwhile the various pieces of the jigsaw puzzle had been patiently collected and assem-
bled by the London brothers [6], by Gorter and Casimir [7], by Pippard [8], by Ginzburg
and Landau [9] and by many other experimenters and theorists whose contributions have
been essential to the 1957 BCS success. From then on superconductivity has been under-
stood as the effect of the attractive one-phonon-exchange interaction between conducting
electrons, the presence of an energy gap — commensurate with the critical temperature
— between the ground state and the first excited states being the source of the rigidity
of the wave function at low temperatures and the cause for both perfect conductivity and

perfect diamagnetism.




The years which followed have been the golden years of superconductivity with
particularly remarkable contributions from Russian prestigious scientists such as Bogo-
lioubov, Gorkov, Abrikosov and Eliashberg who refined the BCS theory and expressed it
in a very elegant form which found applications in many other fields of physics.

At the same time new superconducting alloys were discovered, the properties of the
mixed phase of type II superconductors were studied, the tunneling effects predicted by
Josephson [10] were experimentally confirmed.

By 1963 it could seem that it was all over and Pippard could say [11] in his con-
cluding talk at the Colgate Conference ‘The success is so remarkable that I almost believe
you would forgive me if I were to say there now remain no problems in superconductivity’
.. and, later in his talk, ‘we are in the process of handing over to engineers the problem
of superconductivity’.

He was nearly right, except for the discovery of high 7. superconductors which took
place in 1986 [12]. Despite the interest triggered by this discovery and the paramount effort
dedicated to the field by the community of solid state physicists, the detailed nature of
the interaction responsible for high T, superconductivity is not yet fully understood.
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Figure 1.1: Perfect conductivity.

Figure 1.2: Perfect diamagnetism.




2 METALS, NORMAL CONDUCTIVITY

The present chapter introduces some basic notions which are essential for the fol-
lowing. It aims at refreshing the memory of the reader who was once introduced to such
notions, or at making the essential points as simply as possible for the reader who was not,
or does not remember having been. Hence its somewhat handwaving and untidy nature.

2.1 Lattice periodicity, Bloch functions

As many other solid bodies, metals are made of small crystals (grains) closely packed
together. As many others of their properties normal- and super-conductivities can be
understood at the crystal level. In the solid metallic state each atom is in practice split
into an ion and one (or more) conduction electron(s). The conduction electrons have wave
functions extending over the whole crystal and the ions occupy the sites of the lattice.
The large mass ratio, m(ion)/m(electron) = 10%, makes it usually possible to ignore the
ions movements and to consider the lattice as rigid. Whether atomic crystals are mono-
or poly-atomic, whether there is a single conduction electron per atom or more, whether
the crystal lattice has one or the other of fourteen possible structures, these are details
which are largely irrelevant to most of the considerations of interest here. The study
of normal- and super-conductivity deals mostly with the conduction electrons and the
states in which they are, making abstraction, as much as possible, of the presence of the
ion lattice. As much of the Coulomb interactions within the set of electrons and ions is
in practice absorbed in the average potential responsible for the global cohesion of the
crystal, the conduction electrons behave as nearly free electrons, having only to obey the
constraints imposed by the crystal symmetries. This is best expressed in terms of Bloch
functions as sketched below.

The reader is familiar with Fourier series expansions of periodic functions of a single
variable. Generalization to three dimensions, as required for crystals, is straightforward.

One dimension Three dimensions
n integer fi = (ny,ne,n3) integers
Periodicity Vo f(z+ An) = f(z) Vi f(r+ Az) = f(r)
A, =na An =3 n; a4

Fourier | f(z) =X cm exp(i A5x) | f(r) =Xa cn exp(i A% - 1)
Series A =ma* AL =3 m;a}
a*a = 27 ai - aj = 2nbig

A lattice periodic function, with the elementary cell spanned by a;, a2, as, can be
analysed in terms of a Fourier series of the form

fr)=>_ Ca+ exp (i A*-71) (2.1)
A*
where A* are vectors of the reciprocal lattice having as a basis a}, a3, a}
arN\a .
af = 2n————>— | and circ. perm.
ap - s A as




The elementary cell of the reciprocal lattice is called the first Brillouin zone (Fig. 2.1).
The mean lattice periodic potential governing the motion of a single conduction

electron can accordingly be written

Ulr) = ; Uge exp (1 A*- 1) (2.2)
Developing the electron state |1) on plane waves
) = Zk: Ck |k) (2.3)
the Schrédinger equation reads
0=(H - E)l¢) = Zk: Cv(H — E)|k) (2.4)

Figure 2.1: Elementary cells of two usual lattices (top) and of their reciprocal lattices
(bottom).

but p2p2
(H — E)|k) = <2m —E)]k)+; U 4

reducing the Schrédinger equation to a system of equations in C (an infinity!)

k+ A% (2.5)

A2 k?
( - E) Ce+ Y Upr Croar =0 (2.6)
2m e




The sum on k in (2.3) reduces to a sum on A*.
For a given wave vector k the electron is therefore in a state (Bloch theorem)

e(r) = ug(r) exp (ik.r)
with ug(r) = X4+ Crna« exp (—i A*- 1) (2.7)
being lattice periodic

The functions ¥(r) are called Bloch functions. The lattice periodic function wux(r) is
obtained by solving the system of equations (2.6). There may be values of E for which
this system has no solution, giving rise to forbidden bands. This is best illustrated by a
one-dimensional toy model with U having the form of a square wave (Kronig-Penney).
It is left as an exercise to the reader (see Fig. 2.2). While the band structure is central
to the study of insulators and semi-conductors, it is of peripheral importance for metals,
where the conduction band is far from being full or empty.
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Figure 2.2: The Kronig-Penney toy model.

The deviation between a Bloch function and its supporting plane wave causes the
dispersion relation E = f(k) to differ from the free electron expression F = Rk%/2 m.
Similarly it implies that the effective mass m* = dp/dv differs from the free electron mass
(p = momentum, v = velocity).

2.2 Lattice vibrations, phonons
Lattice vibrations can be reduced to fundamental modes for which the displacement
65 of an ion around its equilibrium position at site Az takes the form

Once k is given (limited to the first Brillouin zone) 5 can be calculated.

The restoring force exerted on an ion at the origin by another ion at site A and
displaced by 6 can be written, to first order, — C, 6 where Cy, is a third rank tensor
and Cs = C_s. M being the ion mass, the equation of motion is

d2

Mzt; 6n = — %Cm St (2.9)




—Mw2 6ﬁ = — Zﬁﬁz ei(k'Aﬁ’) 67‘7, (210)

or writing
T= % Y T exp (ilk - An)) (2.11)
W=T)6:=0 (2.12)

Writing the eigenvalues of (2.12) ws, the three eigenvectors have the form (o =z, y, 2)
83(k) = 65 (k) exp (ilk - A — wa(k)i]) (2.13)

where the dependence on k is made explicit.
The group velocity
Yy = VW (214)

vanishes at the edges of the Brillouin zone (standing wave). Once quantized the energy of
a mode is

1 1
€= (n + 5) hw = -2—pr26§ (2.15)

where p and V are the density and volume of the sample. A quantum of vibration, Aw, is
called a phonon. It has no momentum but behaves in interactions as if it had a momentum
hk, called the crystal momentum (i.e. ik must be included in the balance equation of the
total momentum).

The dispersion relation w = f(k) (see Fig. 2.3) is related to the density of states
D(w). As it is (27)~2 in k-space for a unit volume of the crystal (see next section)

QD) = —— [ & (2.16
wD(w) = — .
(2m)3 /w )
1.2
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Figure 2.3: Dispersion relation in one dimension (T =Cy).

and, introducing the sound velocity, vy = Vi (w)

D(w) = (2:)3 /S ] dv‘j“ (2.17)




where dS,, is a surface element on the surface S, of constant w in k-space.
For constant v, (Debye approximation) the dispersion relation is simply w = v, k

and S Vo2
TWw w
D(w) = = 2.1
W)= P " = 2o (2.18)
until w reaches the cut-off frequency wp which exhausts the total number of atoms in the
crystal, N )
6m2N\"° wp Vi,

wp is called the Debye frequency (Fig. 2.4).

D (w)

Figure 2.4: D(w) in the Debye approximation.

Experimentally the density of states D(w) is deduced from neutron diffraction and
tunneling experiments and is observed to retain the two above features of an w? depen-
dence at low values of w and a cut-off at the Debye frequency. However, inbetween these
limits, it exhibits a complex structure (Van Hove singularities). Figure 2.5 shows examples
of a2 D(w) where o is the electron-phonon coupling constant with little w dependence.
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Figure 2.5: Examples of a® D(w) vs w.




2.3 Free electron gas, response to an electromagnetic field

Many properties of a metal can be qualitatively understood by considering the
limiting case of a free electron gas with n non-interacting electrons per unit volume. The
reason for such a crude picture to be a sensible approximation to reality is twofold:

i) the dominant rdle played by the Pauli principle which imposes that a state be
occupied by at most two electrons, one with spin up and the other with spin down;

ii) the fact that Bloch functions are relatively modest distortions of their supporting
plane waves.

The hamiltonian decouples in a sum of n individual hamiltonians H; = (k*/2 m) k?
and its eigenstates are simply the product of n single electron plane waves of the form
U, = exp (tk-7) | o) where | @) = |[T) or |]) for the spin part. By convention we
write ¥ as above rather than with (27)~%? factors in front, so its Fourier transform is
ﬁg’ 8(k' — k). Remember that plane waves are not normalizable, a plane wave describing
a density of one particle per unit volume in r-space corresponds to a volume of (27)2 in
k-space.

The ground-state corresponds therefore to all low energy states being occupied by a
pair (T]) up to an energy EF, called the Fermi energy and such that n = 2 (4/3)(rk) /(27)®

K2 k2
Ep = 5 mF (2.20)
k3
n= -?;% (2.21)

Excited states are simply obtained by lifting an electron from the ‘Fermi sea’, F <
Er to E' > Ef, which is most easily achieved when both E and E’ are close to the Fermi
surface (see Fig. 2.6).

kz

Figure 2.6: The Fermi sphere.




Introducing the Fermi velocity vr and the Fermi density of states per unit energy
Nr we have (see Figs. 2.7 and 2.8)

(kr = (37°n)1/3
Er = (K*/2m) (3n%n)*/3

< (2.22)
vp = (h/m) (3n%n)'/3

r o
K

Y

0 E

0 kF F

Figure 2.7: E vs k. Figure 2.8: N vs E.

Note that for n = 1 electron per 10 A3

vp 197 MeV fm 372 1/3 .
_ —— = = J. 10_
Pr = = 511 MoV (10 ST e

which justifics the usc of non-relativistic quantum mechanics.

In real life the Fermi surface, which contains the occupied states of the normal
ground state and on which F = cte = Er may significantly differ from a sphere (see
Fig. 2.9).




Figure 2.9: The Fermi surface of copper.

Response to a constant electric field
In a constant electric field F each electron feels a force
dp

- =€ E (e<0) (2.23)

resulting in a translation of the whole Fermi sphere at uniform velocity in k-space, e %

A current (more properly a current density) j = (ne/m) p is generated with
2

dj _ne
Z=—F (2.24)

(see Fig. 2.10).

Figure 2.10: Translation of the Fermi sphere in the presence of a constant electric field F.

In a perfect conductor each electron would be uniformly accelerated but in a real
conductor collisions with impurities and defects limit this progression. Such collisions can

10




be characterized by a relaxation time 7 such that a state of non-zero current in zero field
(E = 0) would return to equilibrium (5 = 0) according to a law

dj 1 .
J__z 2.25
dt T J (2.25)
(see Fig. 2.11).
F
t-t
Fe“o»;—
i o >t
Figure 2.11: See text.
Combining both effects
dg oE-—j
Y 2.26
dt T ( )
with o = 1‘—%12—7 being the conductivity.
At equilibrium dj/dt = 0
J=0cE  (Ohm's law) (2.27)
Response to a constant magnetic field
In a constant magnetic field H each electron feels an acceleration |
d
LN | (2.28)
dt mc
corresponding to a uniform rotation with frequency w, (cyclotron frequency)
H
we = 22 = 17.6 MHz/G (2.29)
mc

resulting in a zero net current. However in the simultaneous presence of an electric field
the current is affected. In a crossed field configuration (H - E = 0)

j=o0FE cosf with tanf = w, 7 (2.30)

and 7 making an angle § with respect to E in the plane normal to H (Fig. 2.12). This is
the Hall effect.

Figure 2.12: Hall effect.
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Returning to the H = 0 case, the hamiltonian is 2_1—m (p— —g— A)? where A is the
vector potential, H = 75 A.
Indeed, writing

p=muv+ Z A (2.31)
and ) )
_ 1 et o oA
H=g— = (p— A) (2.32)
one can verify that the Hamilton equations hold, i.e.
OH _ dzi
Op; — dt
(2.33)
dp;
%Z;f = —(F+%v-vA)=-F
For a constant magnetic field one can choose
A = H/\T’ = H/\'I"J_
and \ -
e e e
(== A? =pi+ (L + = H?r}) - — 4 (2.34)

The first term decouples the longitudinal motion (parallel to H) and the last term
does not change the energy. However the second term is an harmonic oscillator hamiltonian
in the plane normal to H, with discrete eigenstates equally spaced by Aw.. The energy
spectrum condenses in a set of equally spaced states (Fig. 2.13) and the Fermi sphere in
a set of coaxial cylinders having their axis parallel to H.

AH

Er

P

Figure 2.13: See text.

As this is important in the understanding of the Meissner effect, consider it in more
detail.
Taking

2 h 2.,.27172
h_ 2w_ifo6_W+exH

- U =FEV¥
2m me i dy  2mc?
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Writing

U = p(z) exp (ilky y + k. 2])

ov . o*v 2
a ~ Y TRy
82 R i
oz~ Py e
B, 1 e 2 h? k2
Tm? = {5,77; (ks =% Ho) (E— om )| ¢
o 2:4 I he ky
7 mec 07 eH
R? k2 1
E = 5 + (TL -+ 5) Fiwe
h2 1t 1 2 2 hzk%
am? (§WC[$—$0] —[E— 2m] ¢=0
From which
fic N
e(A) = e(xz) Hy=e — (ky) Hy = fic(ky)d
eH
and e
(p) = hlk)g = = (4)
The current J reads . .
=Sp-S4 =0. (2.35)
m c

The current vanishes as the paramagnetic term J, = (e/m) p exactly cancels the
diamagnetic term Jp = (e2/mc) A.

Finally note that the mismatch near Ep between the last Aw, band and the Fermi
level results in small effects (weak Landau diamagnetism and de Haas-van Alphen effect).

Response to a spatially varying electric field

In a spatially varying electric field Ohm’s law starts failing. Consider electrons
around the phase-space point (r, k) at time ¢. From the remote past its energy has been
shifted hy a quantity AE due to collisions. To evaluate AE it is useful to note that the
action of a force F(r,t) which acted at time ¢t < to (see Fig. 2.11) has been attenuated
at time to by a factor exp [—(to — t)/7] due to the restoring effect of successive collisions.
Namely

to
AE = / v- F(r,t) et/ gt (2.36)

[e ]

= [7 R et g

with Fjy = F - v/v and £ = vT (mean free path).

Rewriting _
AE:/OO e B -re g
0 R

13




with R || v and £ = E(r — R, t — £) and noting that the equilibrium current is

AsAk
/= ?{ s Y
with As = k2AQ on the Fermi sphere and Ak = T8% = ££2
_ &€ R(E - R) ~R/e 33
J= o kb [ S MR (2.37)

This is known as Chambers’ equation and replaces Ohm’s law when the electric field
varies significantly over a mean free path [13]. Such a case is realized with high frequency
electromagnetic waves. Consider a wave (E., H,) incident on the plane (x,y) surface of a
conductor. Inside the conductor Maxwell’s equations imply

8£x=—iwﬂy 8£y=%g‘fx
2
i.e. %—zg—z— = —%71 wdy
Writing J, = 0 E, (Ohm’s law) results in
E.(z)=E(0) ™  with  y— - ;LZ = (3675 (.ua)—l/Q (2.38)
Here ) is the skin depth through which the field penetrates. The surface impedance reads
7,0 11+t o o ix, (2.39)

2 J2)dz o A

where R, is the surface resistance and X, the surface reactance. Here

1/2
R, = (—2ﬂ> — X, . (2.40)

o

Figure 2.14: See text.

For )\ = ¢ or smaller the above calculation is no longer valid. Ohm’s law must be
replaced by Chambers’ equation, resulting in the ‘anomalous skin effect’.
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2.4 Fermion creation and annihilation operators

The use of creation and annihilation operators when dealing with multifermion
states is extremely convenient. For the purpose of the present lectures an elementary
introduction is sufficient.

A n-fermion state where the n fermions occupy single particle states |¥;), i =
1, 2... n must be antisymmetric in the exchange of any two particles. It reads therefore

IWl‘Pz---‘Pn):Z( ) \/—l‘l’zl)l‘%) [ Win) (2.41)

where the sum is over all permutations P changing (1, 2... n) to (i1, %2...%,). This can

also be written as

Such a determinant is called a Slater determinant.
One defines the creation operator for a particle in state [£) as a*(§) such that

O Ty, T, = 6T, T,)
{a+(€)|0> ©) (243)

What is a(§)?

(102 n]a(O)| 012 ... Tn) = (V1Ps. .. pullp1002. .. 0n)” (2.44)

n

= Z{(—)k"l(‘Pklé)Deti;ek(‘I’il%')}*

k=1

= SN i paal T - T)

As this is true for any |10 . .. ¢n), a(£) is the annihilation operator for state |£).
The anticommutation relations

la(e1), alp2)l+ = [a™(p1), a™(p2)]+ =0 (2.45)

are trivially verified. Moreover

a(cpl)a"'(cpg)l\lf Uy ) = (p1]2) | U172 . .. ¥p)
+Z( o1 Vkdpa W1 T . B, L T

at(p2) ale)|01Ps... T =3 (=) " He1|¥e)paPy... ¥, ... Tp)

k
i.e [a(p1), a(p2)]+ = (p1lp2) (2.46)
For an orthonormal |¢) basis
(0e asl, — [a, ai] — 0
i + (2.47)
[aa) aﬁ]+ — Cap

A similar calculation for multiboson states would show that their annihilation and
creation operators obey instead commutation relations of the same form.
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The relations below illustrate the use of creation and annihilation operators in simple
examples.

1122 ... o) = aV(z) a¥(z2) ...aT(2,)]0) (2.48)
lky ko ... kn) = a™ (k1) at(ks) ... a%(kn)|0) (2.49)
la(z), a*(z)]4 = 8*(z — =) (2.50)
[a(k), a*(K")]y = (2)* &° (k — k') (2.51)
- / &z |2) (x|k) = / &z %)) (2.52)
at (k)= /d3x at(z) e (2.53)
d’k ik
at(z) = ony? at(k) e * (2.54)

The particle number operator is

d®k
— 3 ot
N=3 af aa= / &Pz a*(@)a(x) = / Gy @R alk) (2.55)
The total momentum operator is
3
P= / d k hka / d*z a*( v a(z) (2.56)

In a potential V(z) the single particle hamiltonian is

P 52
H'= 5+ Viz) (z|H'2) = (——— v+ V)& (z — ) (2.57)

and the total hamiltonian is then simply

H = / @z a+(x){—h2v2 +V(x)} a(z) (2.58)
(K|HME) = 521“; (21)%63(k — k) + / Bz 6% V(z) %
- 7;2 :; @21)3 63k — &)+ V (k- K) (2.59)
with
7(q) = / Bz V(z) ei® (2.60)
Then
N d3k h2k2 d3q -~
H = [ G 5 00 e+ / 5 | @y V@ 6o+ a) o) (26D

Here the last term is a sum over terms which annihilate a particle of momentum p
and recreate it with momentum p + g

16




V(q)
p p+q

Figure 2.15: See text.

Note that writing

p(z) = a*(z) a(z) (2.62)
one obtains
Nz/ d*z p(x) (2.63)
1% :/ d*z V(z) p(x) (2.64)
Consider now a two-body potential
V® (2, 2;) = VO (x5, 2:) = V(|z; — i) (2.65)
1

@ _L [ 3 3 )

ve == [&z [y la,y) VO @,y) (o (2.66)
1
n _— = 3 3 (2)

VO = g [ [V @) o) p) (2.67)

_ l 3 (2
= Vs [V (2,9) o)

3 3 3.0
V= % (;Z;;s / (;i;; / ((;7.‘_1;3 V(q) at(p+q) a*(® — q) a(p)a(p) (2.68)
Vipip2) = / gTq)g V(g)lpr +4, p2~a) (2.69)
p+qg
~ p'-q
p V(a)
o'

Figure 2.16: See text.

In order to get more familiarity with the algebra of the operators a and a™, consider
the following wave function which will be useful in BCS theory:

|U) = II; (cos By + sin by, af)|0) (2.70)

17




Unless all 6 are 0 modulo %, |¥) is not an eigenstate of N. Let us evaluate the
root mean square deviation of A/ with respect to its mean

Ni|O) =T1Ii...a] a; (cos@; +sinb; af)...|0)
=TII...sin6; a} ... |0) = sind; |V, 1)
but |¥) = cos 6;|¥, ) + sin 6;| ¥, i)
Ny =S {IIM|T) = sin®6; (2.71)
Similarly
|U,i) =cosf; |¥,i7) +sinb; |¥,i5)
(0,40, 7) =sinb; sin; (i # j)

N% = DM = sinb; sind;(¥,i¥, ) (2.72)
i 5
= Y sin®6;+ Y (sind; sin 6;)°
i i

N?) — (N)? = Z_sin2 6, cos?f; < z:sin2 0;

from which follows that

Rms (N) < /(N) (2.73)

If NV is very large its distribution is very narrow and the state |¥) is nearly an
eigenstate of V.

2.5 Thermal equilibrium. Free energy and entropy

Consider a system S with energy levels E, in thermal equilibrium with a bath 5.
The bath is supposed to be very large, to have continuous energy levels with a density of
states 7(E"), and to interact with S in such a way that it only affects the probabilities
P(E,) for S to be in state E, but does not modify the energy spectrum. Moreover
Er = E, + E'is > E, and at thermal equilibrium

P(E,) « 1 (Bt — En) -

The above asumptions are equivalent to the scale invariance statement

"ndE’

n(E' + dE')
n(E")

n(E') « exp (=BE'), B=cte

= cteVF, ie = cte

from which
P(E,) x exp (B[Ew — En]) g PEn

P(En) =21 exp (-0 En)
{ R=3, €Q2Xp (=8 En) (2.74)
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B! measures the spread of S over its excited states, it is the temperature

1

=T 1 meV =116 K (2.75)

In practice one will have to solve the Schrodinger equation of a system at tempera-
ture 7. At T' = 0 the solution minimizes the energy U = (E,). At T # 0 it minimizes a
different quantity, F', called the free energy.

In (B)=—-B8E,—In Q (2.76)

U= (E,) =—ksT In Q+T(—ks(ln B.)) (2.77)

The first term F = —kgT In Q is the free energy and S = —kp(In B,) is the
entropy.

F=U-TS
2.78
Q=oxp (~r)=%n xp (-&x) (278
To see that the P, minimize F', write
U=> P, E, S=-kg{n F) (2.79)
=-kg > P,In P,
OF oU a8
8Pn_apn-—T8Pn_En+kBT (1+In B,) (2.80)
E,+kgT In F,=—kgT In Q (2.81)
oF
As> P,=1, X 6 P,=0
OF
SF =Y 3—]3—5Pn=kBT(1—1n Q) > 6B =0 (2.83)
Note that the heat W obeys dW = T'dS and the heat capacity
aw s
O = i TET . (2.84)

One can now evaluate the population of the states of a free electron gas at temper-
ature T'. There are n} electrons in state &5, n; = 0 or 1, where ¢ labels a particular set of
{n%}. The problem needs to be solved with the additional constraint

N;=) ni=N, (2.85)
J

the total number of particles. This constraint is most easily taken care of by working in
a shifted energy scale, £; — u, where p is called the chemical potential. Writing

Qu=e =3 exp {—/3 > niles - N]} (2.86)

%
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50,25 = Sonj e {8 X ni - ul)

1 J
= ,6 Qu <Nz>
The constraint (N;) = N is replaced by
OF
——=N.
Op
Note that
oy — 0%
it 86 7
Now

ePFe =TI; (1 +exp {—Ble; — ul})

asni =0or 1.

Fo==3 3 In {+em (fle— )

OF, _ &P (—=Ble; — )
de;  1+exp (—Blej — )
1
n;) =
") =T e (B — )
At T =0, p = Er and u differs very little from Er when T increases

72 kAT?

(ni) =

Figures 2.17 and 2.18 illustrate this result.

N

Figure 2.17: See text.

20

(2.87)

(2.88)

(2.89)

(2.90)

(2.91)

(2.92)

(2.93)

(2.94)




1,2

1,0 e
1 xw‘\‘

500 °K
K Q‘% ) T =50.00

Ok

0,8~
%
f(c)

IR\

/
/1A

10 x 1000

0.4 0% o \\
\.
0.2 = i\ﬁg\
' AN
q
N

5 6 7

o
-
N
w
IS

Efk, (10 °K)

Figure 2.18: See text.

To count the amount of excitation it is convenient to introduce the concept of quasi

particles.
Writing the ground state as

|G) =af o ...at |0)
and introducing

by = agfork>kp
= af fork <kp

bk, bily = [6F, 6]+ =0 [bk, B+ = buw
The excited states are |¢) = IL; b}|G)
LIG)=0 N =DNy+ > sgn(&) bf b;

E = Eo + Z sgn(fi) &; b,:l- bi

with
& =¢e€i—Ep .

(2.95)

(2.96)

(2.97)
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3 SUPERCONDUCTIVITY IN THE ABSENCE OF AN EXTERNAL

FIELD
3.1 Cooper pairs [14]

A free electron gas has a ground state such that most electrons are kind of frozen
inside the Fermi sphere. What happens if one adds to it a pair of electrons having an
attractive interaction between them? To give a chance to the pair to be in as low energy
as possible a state, say the pair is at rest and one electron has spin up, the other spin
down. Moreover mimic the presence of the Fermi sphere by imposing (Fig. 3.1) |k| > kr
for each of the electrons in the pair (this is of course perfectly illegitimate, there is no
reason a priori to treat differently the electrons in the sphere and those of the pair). The
pair state can be written as

|¥) = 3" gklk) where |k) means
Ui ey (&1)
(rira Ty =Y gi €% (3.2)
k
k

Figure 3.1: A Cooper pair.

Note that the wave function is antisymmetric, as it should, and depends only on
R = 7, — 7o as the pair is at rest. Define 2n7 as the pair kinetic energy in excess of the
Fermi level 120 p 2

= =Er -+, El%:k—q;z—zhv, n>0 (3.3)

Now switch on a small attractive potential —V between the electrons in the pair.

If it were not for the condition |k| > kr there would be no bound state until V
reaches some threshold =~ k2/2mp?, p being the range of V. This is no longer the case
with the boundary condition |k| > kg.

Indeed, writing the pair energy as

Epair = 2Er — 2/ (i.e.A > 0 means a bound state) (3.4)
(H — Epar) k) = 20 + A] = V) [E) (3.5)
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0= (k|H — Epae| ) = 2(n + A) g = > g (KIVIK) (3.6)
kl
Modelling V' by
(K|V|ky =0 for % <Eror > Ep+e¢

(K|VIk) =cte=V for Er < ¥E < Ep+e (3.7)

m

ek Er

and renaming g, as g(7n)
1

o) = 5oy ¥, 9t M) d (38)

where NV (') is the density of states

g [ o e g [© Y N mdn
[ s N dn= [ st Mo dn' [ 5T (3.9)
_ o [¢ Nmdn
1=V | S a) (3.10)
As e < Ep, N(n)zNF and

5 1 A+e
1=V Np5In— (3.11)
d >0 VYV>0 (3.12)

A= -
exp(2/VNF) -1

However small is V, there is always a bound state. If it had not been for the cut
at Ep, it would not have been possible to take A/(n) out of the integral and N (n) would
have been of the form n'/2, i.e. even for A = 0 the integral would have remained finite
instead of having the log infinity it has here. For V Ng < 1, the so called weak-coupling

approximation, _
A=¢ exp (—2/[V NF]) (3.13)

Note that it cannot be expanded in powers of V.
The wave function g(n) o< 1/(n+ A) for n > 0 vanishes for < 0 (see Fig. 3.2)

A9

Y

Figure 3.2: See text.
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Writing R=17, — 72
o k2dk [+l

itkRcosé
Y(R) /kp N e d(cos 0) (3.14)
g} ‘ 2
W(R) o [ SR K~ dk (3.15)

ke kR k2 —k%+2mA/R®

The second factor in the integral varies from Er/A to 1 when k goes from kp to
00. One can expect important contributions over a range such that kr R >~ Ep /A, ie.

h’UF
Re g —= (3.16)

Nt —

which may be large (Fig. 3.3).

.1
r¥ m \ﬂ\f\‘"‘f\“ﬁ' i
O

g

-

AR
Y

Figure 3.3: See text.

More precisely, one can calculate § = (R2)1/2

S(dg/dk)? [N (dn/dk)*(A+mn)~* dn

2y _
I ==5g = JN(A+n)=2dn (8.17)
~(@), 45 -3(%)
k), /A ~3\A )
giving
_hwe R V3 A
5_.\_/__3_& E_ 5 EF yug (318)
Sal (3.19)

VF V3

The latter equation is a Heisenberg uncertainty relation between the ‘energy gap’ A
and the ‘coherence time’ ¢ /ur. The meaning of these words will become clearer in the next
sections. The existence of a bound state for any small V suggests that the ground state of
a free electron gas becomes unstable in the presence of the tiniest attractive interaction.
The Fermi sphere is indeed full of [k T, —k |] pairs which can be expected to ‘bind’ and to
release an energy A, the free electrons state condensing to a lower energy state of bound
pairs. This is indeed qualitatively what happens in the transition to the superconducting
state.
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3.2 The Fréhlich interaction [15]

Frohlich was first, in 1950, to propose the one-phonon exchange interaction as the
attractive force which would be large enough to overcompensate the repulsive Coulomb
interaction and be responsible for superconductivity. It is sufficient to evaluate it on the
Fermi sphere, i.e. |k| = |K'| = |kr|. Let ¢ be the exchange momentum, ¢ = k' — k,
corresponding to a phonon energy

huw, = fugg, 0 < hwy < Awp (3.20)

in the Debye approximation (see 2.2).

k'=k+q

N
_3

-k
Figure 3.4: Frohlich interaction.

The matrix element calculated between |k) and |£') is simply

___2 |Wq12

" (see Fig. 3.5) (3.21)

where W, is the transition amplitude at each of the electron-phonon vertices.
The Coulomb matrix element between the same states is

A €2

p (3.22)

where ¢ is a phenomenological constant adjusted to simulate the screening effect from the
other electrons as well as from the lattice ions. Frohlich argued that the global interaction,

4r e 2(W, )2
@?+o?  huwg

(wg =g q) (3.23)

is likely to be negative for most superconductors®.

1) Note that the phonon exchange diagram, while formally similar to a photon exchange diagram, is in
fact very different: the exchanged boson has a Debye spectrum in the former case and a bremsstrahlung
spectrum in the latter
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I
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|
q
-K ! -K-q

Figure 3.5: Phonon exchange in the Frohlich interaction.

At the same time, E. Maxwell and C.A. Reynolds et al. [16], (Fig. 3.6) could show
that the critical temperature was indeed a function of the isotopic mass of the lattice ions,

(g o« M™Y/?) (3.24)

which was recognized as a crucial proof of the implication of the lattice in superconduc-
tivity.

It is sometimes said that the attractive interaction has its origin in the slow move-
ment of the ions toward the electron trajectory in its wake, enhancing the presence of the
other electron in the increased Coulomb field. However such a picture (in r-space rather
than k-space) has its limits [17].

4.18 |

Jeo
@ Authors's values (Reynolds et al)

X Maxwell's' values

4,16

Transition temperature (°K}

4.12 | ]
198 200 202 204

Average mass number

Figure 3.6: Isotopic effect of Mercury.
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3.3 The BCS ground state

We now treat the problem of an electron gas perturbed by a small interaction of
the type described in the preceding section. We use an ansatz of the form considered at

the end of Section 2.4, but written for pairs [k T, —k])

| W) = I} (cosfy + sin by b})|0)

(3.25)

with bf = af; a¥y, b = a_k; axy. Note that all factors in (3.25) commute. We refer

energies to the Fermi level
h2k?
=—-F
Sk 2m F

(UIH|T) = (T|2> & b b+ D, Vie bf b))  k#£2
k ¥,
|¥) = cosb|VK) + sin 0| VEk)

= c0s 0 cos 0| V) + cos O sin 6| WK E)
+ sin Gk COS (9g!‘1”€¢> + sin gk sin 03[‘1’]65)

(VIH|T) = 22}; & sin O, (V| UK)

+ Y Vie sinby cos 0,(T|¥HL)
ke
=2 2 &k sin® O + Z Vie sin @ cos by sinb, cosb,
k ke

1
=3 & (1 —cos20) += Y Vi sin26;sin26,
2 4%
Minimizing, 8/860,(V|H|¥) = 0, one obtains:
2 & sin 20, + > Vi cos 20, sin 20, =0  (Vie= Vi)
¢

Ze ng sin 20g

tan 291€=— 25
k

Defining
{ Ap=—3, Vig sinfycosty

e = (A +E)Y?
{ sin 26, = Ax/ex

COS 20k = fk/Ek

(see Fig. 3.7)

(3.26)

(3.27)

(3.28)

(3.29)

(3.30)

(3.31)

(3.32)

(3.33)

(3.34)
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26k/

0 Ex &«

Figure 3.7: BCS ground state.

>

For Ak =0
cos 20, =1 cos?f,=1 & >0
(3.35)
cos 20, =—1 cos?0r=0 & <0
which is the free electron gas ground state.
BCS use the simplified interaction
Vie=-V  for  [&l, [&] < hwp
(3.36)
=0 otherwise
Then
Ar=20 k| > hwp
(3.37)
= VZZ siné, cos 8, ]€k|: !54! < hwp
For || < hwp, Ay is independent of k, it takes a constant value A
Ag
A= VZ — ]fkl < hwp (3.38)
P 2 Ek
e N(£)dE
A=VA / AR\ 3.39
~hwp 2 LV A -+ € ( )
giving
1=V N Argsh (fiwp/A) (3.40)
and .
Wwp
=——2 9 - .
A SV Fwp exp (=1/VNp) (3.41)

where the second expression is written in the weak coupling limit, VNr < 1.
In the region hwp < |&| the free electron gas solution is not affected. But for

x| < hwp
cos O = {2(1 + & //A2 + £2)}1/2

sinf = {3(1 — &/y/ A2+ ER)}?

The width of the transition is = A < fwp.

(3.42)
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Figure 3.8: See text.

The difference between the BCS and normal state ground state energies is

) 1 Ar A
cond - Z §k< Ié. I) Z §k< k)‘z Z Vlce - (343)

% ke €k e

D hwp 2
:2/0 Npﬁi<i—é)d§k+A@A2V{/o -i’i}

Writing ex = A chu, & = A shu and noting that Argsh fiwp/A = 1/VNF and
Ji“p d¢ /e = 1/V Np, one gets

1/VNF A?
Eonda = 2 /0 A2NF shu (shu — chu) du + 72 (3.44)
A2
- lAz,/\/'p{sh2u —2u-— ch2u}é/VNF + A
A% 1, 2 A?
T = 3AWs lexp (—r) — 1+ 5
In the weak coupling limit the second term vanishes and
Fops = SAPN (1 — exp [——on]) ~ ZAZNG (3.45)
con 2 VNF 2
As Nz/n = 3/(2 EF) the energy gain per particle is therefore
Buona/n ~ S0%/Ep | (3.46)

a very small quantity.

The energy gain A2/V due to the pair attraction energy is partly, but only partly,
compensated by the energy loss due to the smearing of the ground state near the Fermi
level,

A?)V — %NNF . (3.47)

The reason for this smearing is the need to ‘unfreeze’ the Fermi sphere in order to make
room for taking advantage of the pair interaction. Indeed, in the free electron gas ground
state the interaction energy vanishes. The quantity

Fy = (U|bf]¥) = sin by, cos by (3.48)
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(see Fig. 3.8) is called the condensation amplitude, it vanishes in the regions where the
pairs do not interact.

What was suspected from the Cooper pair argument of Section 3.1 is now confirmed:
a small Frohlich-type one-phonon-exchange attractive interaction induces condensation
into a lower energy BCS state. One can guess that at temperatures in excess of ~ AJkg
condensation will be prevented by the too large intrinsic smearing of the free electron gas
ground state. This will be verified in Section 3.5. The reason for the BCS ground state
to be superconducting is the existence of a gap which separates it from its excited states
and makes it rigid against small perturbations. This is the subject of the next section.

3.4 Quasi-particle excitations
In deriving (3.34) one might as well have chosen

sin 2'9k = —-Ak/Ek
{ cos 20, = —&/ex (3.49)

but such a solution would have been far from the free electron ground state. Consider an

excited state obtained from the BCS ground state by changing one of the 6 into

0 = 0+ g . (3.50)

The excitation energy (Fig. 3.9) is
(U|H|¥) + (T H|T") (3.51)
= 2& cos 20, + V sin 26 Z sin 26,
¢

& 5 AF
= 222492 2 =2¢.>2A.
Ek Ek
sin20 A sin® cosO
gs. . AT T T *

Figure 3.9: Pair excitations.

The BCS excited states obtained by exciting pair k to the state 6, = § are separated
from the BCS ground state by at least 2 A. The density of excited states is
dé E*

N =Np B* = N 2 = N

der & VE*2 — 4A? (3:52)
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But other excited states can be constructed. By adding to or removing from the BCS
ground state a single particle one does not disturb the pairs in their mutual interactions
and therefore obtains a possible stationary state. Noting that, for |¥) = BCS ground state

ats|¥) = cosfm|¥, m 1)

(3.53)
amy|¥) = —sinbm, |¥, m 1)
we define
Vit = Am Gnp + Bm G—m) (3.54)
the quasi particle creation operator for state m 1
Yt |¥) = (A SIN O + fm €08 O )aT,, [0) (3.55)
must be zero, imposing A sin Op, + pm €08 8 = 0. We take An, = cos Oy e = — SIDOpy,
and
Vhy = c080m Gty —Sin0m Gm)
(3.56)

Vi = €08 0m at) + 50 0m aomt

The « and 4 obey fermion commutation rules and ~|¥) = 0 as it should, i.e. the BCS
ground state is their vacuum [18]

’Y;T'-ZT[\I/> = [Upnt)

Yot [ ¥) = [¥rmy)
The excitation energy receives a contribution & (1 —2 sin®6,) from the kinetic term and
1V sin20m 3 sin20, from the potential term (Fig. 3.10)
E* = &, cos26,, + A sin20, (3.58)
E2 Jem + A% Jem = Em

(3.57)

and
Er=¢,>A

Here again the excitation energy for a quasi particle m is € and the energy gap is A, the
density of excited states being

Ne B*/VEZ —AZ . (3.59)

0 &k 2

Figure 3.10: Quasi particle excitation energy.
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In practice, when working at constant total number of particles, the lowest exci-
tations imply two quasi-particles (Fig. 3.11) and the corresponding gap is 2 A as found
earlier for pair excitations. In fact it is easy to check that v 71, changes 6, to 6 £3,
i.e. it corresponds to the excitation of a pair from the BCS ground state with excitation
energy E* =2 ep,.

________ —_é_
S S

Figure 3.11: Creation of a particle-hole excitation.

3.5 Excited states, T # 0
Away from T = 0 quasi-particle excitations take place with a probability fi

fe = (Vdw) =1— (wvid) (3.60)

where spin indices have been omitted (fi; = fx)).
The free energy F' = (V|H|¥) — T'S, with

S=—2kz S{fe In fi+(1—f) In(1— fi)} (3.61)
k

must be minimized to define 6, and fi. For fi = 1 the effect of the excitation is to change
0x into 0r + 7, i.e. to change the signs of cos 20, and sin 26;. For fr =0

(IHIT) = 3 & (1—cos 26) +5 3 Vie sin20x sin 20, (362)
k ke
As the +'s are linear in the a’s, cos 20, and sin 26, must simply be multiplied by
(I=fe) x (D + fe x(-1)=1-2f

and for any fx

(UIHIT) = ¥ & (1 - cos 20k[1 — 2f]) (3.63)

1
+Z Z Vie sin 20y sin 26, (1 —2 fi)(1 —2 fo)
ke

OF 0
56, =0= 30, (V|H|T)
reads
2 & sin 26; + cos 26, E Vie sin 26, (1 -2 f,) =0 (3.64)
)
Redefining
Ak = - Zg V]gg sin 0;; COs 6g(1 -2 fg)
{ ex = (AL + &0 (369)
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gives, as before,
sin 20k = Ak/ek cos 20k = Ek/ak : (366)

i.e. the only change in the wave function is a modulation of the gap by a factor (1 —2f%).
Writing 0F/08 fi, = 0 one gets

0

a7 (U|H|P) = 2 & cos 20y + 24, sin 20 (3.67)
k

5] Je

— §S=-2kg 1 3.68

Of BT fr (3.68)
and finally

& cos 20x + Ay sin 20, +kp T In 7 fkf =0 (3.69)
— Jk
ie.
1
Je (3.70)

- 1+exp (ex/ksT) '
This is the usual fermion distribution for energy e, however € depends on Ag

which in turn depends on fi, namely on T
The expression (3.65) for Ay simplifies in the BCS approximation

A [P A L2
v =N ‘/_h“’D A 2€ d (3.71)
I fuwp d¢ _
NV /0 W/ETZ (1-27) (3.72)
with f given by (3.70) and € = /A2 + &2 For A =0
1 . fiwp if— B 9
NeVo — /0 £ e (g/kBT)) (3.73)
. hwp g —Cié-_
B /o th o %aT €
giving finally (Fig. 3.12)
A(T =0)= 176 kg T,
{ kg T.~1.14 hwp exp (—1/Np V) (3.74)
A 1 5 o0,

Theory >
A

o Indium A
a Tin &

s Lead
0.2 Oi4 0.6 018 1
T/Te

A=3.2KT V1 T Tg —

0 Te T

Figure 3.12: Temperature dependence of the gap.
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Figure 3.13: Temperature dependence of the electronic specific heat.

Similarly, near 7,

A(T) =32 kg T, \/1-T/T. (3.75)

Replacing (3.66) into (3.63)

_« (e + &) (ex — &)*
(VIHIY) = ; e Jr— 2o (1 - fx) (3.76)
and replacing (3.70) into (3.61)
S = —2kg Z In fr+ fx exp (Ek/kBT) é?k/k?BT (3.77)

k

One is now ready to calculate any thermodynamical quantity, e.g. the specific heat (elec-
tronic of course)

as

C=T = (3.78)
C=—-2k Tz:f(l—f)f-k——l—i Sk (3.79)
BE o SRS TR e kg dT \T '
But
EkdEk = Ak dAk = AdA (380)
in the BCS approximation and
2 5 dA
¢ = kBT2 ; fk(l - fk){ek ~-TA Ef
C = o [ 1 0= 1) & -TaZp) d

In the last bracket €2 corresponds to the normal state and TA dA/dT is the supercon-
ducting contribution. The specific heat varies (Fig. 3.13) like kg exp (—1.76 T¢ /T) at low
temperature and displays a discontinuity, AC/C = 1.43, at T = T, with respect to the
normal state specific heat C, « k% T/Ep.
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Figure 3.14: Temperature dependence of the thermodynamical critical field.

Finally, anticipating on the fact that a superconductor expels the magnetic field from
its interior, by equating the magnetic field energy density H 2/8m and the condensation
energy at T = 0, Feona = 1/2 N7 A2, one sees that when H reaches H,. thus obtained
superconductivity can no longer be maintained. H, is called the thermodynamical critical
field

H? =41 A2 Np (3.81)

Repeating the calculation at T" # 0 gives the 7' dependence of H,, which is close to

the approximate form
H.(T) ~ H. (0){1L — (T'/Tc)*} (3.82)

(see Fig. 3.14).

In practice, however, it may happen that between a lower critical field H, < H.
and an upper critical field H,, > H, the field be only partially expelled from the interior
of the superconductor. This will be discussed in Chapter 4.

Figures 3.15 and 3.16 below illustrate respectively

— the deviation of (H.(T)/H,(0))? from its approximate form 1 — (T'/Tc)?
— the deviation of C/yTc, where = is the coefficient of T for C in the normal state,
from the empirical law 3 (T'/Tc)®

12 —
1.0 1

081 Xy -

(He / Ho)?

0.6 | ~ —

04+ ~ —

0.2 |- 3 —

0 0.2 0.4 0.6 0.8 1
(T/Te)?

Figure 3.15: See text.
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3.6 Dirty superconductors [19]

Superconductivity is observed to be surprizingly insensitive to the presence of im-
purities and defects. The reason is time reversal invariance in the scattering process which
imposes that both electrons of a pair be scattered the same way and which preserves the
coherence of the Cooper pair (Fig. 3.17).

D 4

Figure 3.17: See text.

Such will not be the case for magnetic scattering centres which have a non-zero
spin-flip component. Magnetic impurities are indeed observed to quickly destroy super-
conductivity.

Time reversal invariance implies that the eigenstates of an electron gas containing
impurities will be constructed from single electron states of the form

lno) = Zk: (nlk) |ko) (3.83)
Ino)r = fk_: (kln) | -k —0)

where the matrix elements (n|k) are those which solve the scattering problem. Of course
one does not know how to calculate them but they must exist. The |no) and |no)r are
energy eigenstates with E, = E,r. Moreover > . {(k|n)(nlk) = 1.

The BCS calculation can be repeated with |n nr) pairs replacing |k T — k& |)
pairs and all results are preserved as long as the pair interaction remains attractive. The
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Froéhlich matrix element

_ W _
(Ex = E,= EF)
is now replaced by
k’ I f 2 W 2
q

namely the effective interaction is now averaged over some broad region of the Fermi
sphere. In the BCS approximation of a constant V' this does not matter and the interaction
is unchanged. In real life, however, the plane waves |ko) must be replaced by Bloch
functions and the Fermi surface is no longer a sphere. Averaging the interaction over the
Fermi sphere will in fact make it more plausible that the BCS approximation be valid.
But it will result in a slightly lower effective interaction, therefore in slightly lower values
of A and T..

3.7 Eliashberg equations, strong coupling

Giving up the simplicity of the BCS approximation is at high cost in terms of
arithmetic complication and often results in relatively modest modifications of the final
result. It does however provide a deeper insight in the underlying physics and a spectacular
confirmation of its detailed understanding. The most elaborate generalization of the BCS
theory is expressed in terms of the Eliashberg equations [20]

A(iwn)Z(Gwn) = 7T X (Amen — LA (iwn) /A (iwnm)
Z(iwn) = 14 (7T /wn) Som Amen Wimn/A(iwm) (3.86)
A (iwn,) = (Wi + A%(iw,))Y?

These are coupled non-linear equations defining a gap function A and a renormal-
ization function Z which are the basic components of the Green’s function from which
they are derived. Before expanding on the meaning of A and Z it is necessary to define
Aand p*.

)\ is related to the phonon mediated attraction between two electrons near the Fermi

surface
w) wdw

2/ o) F
Am—n = w? + (w - wm)2

where w is the frequency of the exchanged phonon, a(w) measures the electron-phonon
coupling at the electron-phonon vertex and F(w) is the phonon density of states. wris
the Coulomb pseudo-potential opposing superconductivity (it is cut-off at some frequency

We)-

(3.87)

Solving the Eliashberg equations for the simple interaction

{ Am—n =X for |wn|, |wm| < we (3.88)

=0 otherwise
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yields

Z(iwn) =14+ A
A(iwyn) = Apcs(T)  for |wa| < we (3.89)
=0 otherwise

where Agcs (T) is the temperature-dependent BCS gap calculated for

*

A= U
1+A

NV = (3.90) -

Other than taking explicit account of the Coulomb repulsion, via p*, and of the
spectral dependence of the phonon-exchange interaction, via a? F(w), the Eliashberg
equations take also proper account of the retarded nature of the interaction and of the
mass renormalization terms which are present in both the normal and superconducting
states and which were neglected in the BCS approximation (where only terms of the form
Vie b} br had been retained).

Tunneling data are efficient in measuring o? F(w) and p* from the current-voltage
characteristics of S-N tunnel junctions (superconductor and normal metal separated by a
thin oxide layer). The result can be compared with direct calculations or with experiments,
such as neutron scattering, which produce information on the phonon spectral density.

Excellent agreement is usually observed. See Figs. 3.18 to 3.26 and Ref. [21].
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Figure 3.18: Phonon density of states for Pb.
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Figure 3.19: See text.
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Figure 3.20: See text.
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Solving the Eliashberg equations is often done iteratively. An important concept in
the game is that of functional derivatives which measure the sensitivity of a given quantity
to a localized change (i.e. at some value of w) of a? F(w).

Eliashberg equations have been used [21] to get some global feeling of the changes
they imply with respect to the BCS approximation. Examples are reviewed below.

Critical temperature (see Fig. 8.27)
The Allen and Dynes relation reads

(3.91)

kgT, = ftn exp(

1.04 (1+ )
)

A — pr(1+0.62))

where wy, is a parameter which enters many expressions obtained from (simplified) Eliash-
berg equations,

B 9 qeo a?F(w)
Wi, = €Xp {X /0 In (w) ” dw} (3.92)
Approximating o?F(w) by a 6-function at some tuned value of w yields
2A ~1.04 (1+ A)
e — .93
Te=12x eXp(,\ —w (¥ 0.62/\)) (3.93)
with -
A= / o? F(w) dw (3.94)
0
and for 1.2 < A <24 T.~0.148 A
Gap (see Fig. 8.28)
2/ .\’ w
0 c In
=353¢1+125{ — | 1 3.95
T 3 3{ + 5(w1n> n<2 Tc>} (3.95)
Isotope effect (see Fig. 3.29)
M dT, 1 .
T dM_-iforu =90 (3.96)

as in the BCS approximation. However deviations are observed at low values of A\ when
u* deviates from zero.
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Figure 3.29: Isotope effect.

Critical thermodynamical field and electronic specific heat (Figs. 8.50 to 3.56)

D(t) = Ho(T)/H.(0) — (1 — (T/T¢)?) is illustrated on Fig. 3.30 and the electronic
specific heat on Figs. 3.31 and 3.32. Figures 3.33 to 3.36 illustrate regularities. In particular

Csc—Cn

T = ft-tg  t=T/L

f o= 143 (1+53 (To/wm)® In (wWin/3T0))

g = —3.77 (1 +117 (Te/win)® (win/2-9T¢))
2
'ﬁ%z:%j 0.168 (1 — 12.2(T./wi)? In (win/3T))
H_(0)

—— 0.576 T, (1 — 13.4(T./wi)? In (win/3.5T¢

Finally Fig. 3.37 illustrates the T, dependence of the jump at V(A) in the super-
current of a junction.
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4 SUPERCONDUCTIVITY IN WEAK EXTERNAL FIELDS

4.1 Persistent currents
We consider a superconductor in which a constant electric field E is applied during

a time t. As
1 04

E=—-
c Ot

(4.1)

A being the vector potential,
1 t
_EA:/C; E dt, ie. A= —c Bt =cte. (4.2)

The hamiltonian is obtained from the zero field case by simply adding —¢ A = e E¢
to each momentum. But the BCS groundstate is only trivially affected by a translation
in momentum space, as the Frohlich interaction depends only on the difference between
momenta. Therefore the BCS ground state becomes

I, (oS Om + sin O, b1 )]0) (4.3)

with B
e
b ke = Okt OFmkoy a0d ko = — (4.4)

While the potential energy is unaffected the kinetic energy increases as

P2k B2k +ko)?  Ri(—k4ko)? B s g0
2 e =2 (k +k2) (4.5)

i.e. each pair acquires an additional kinetic energy (R*/m) k2 (Fig. 4.1)

k0=eEt/ﬁ

AE

\

Figure 4.1: AE = 2% kokp.

As in the case of a perfect normal conductor the new state corresponds to a per-
sistent current coherently carried by all conduction electrons (which remain paired in the
superconducting case). The difference is that in the case of a real life normal conductor
collisions induce transitions between excited states from the leading edge of the Fermi
sphere to its trailing edge, thereby limiting the amount of translation in k-space which
the Fermi sphere can afford. In the superconducting case, however, the gap prevents such
transitions to occur as long as ko is small enough.
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To bring a pair (kr + ko, — kp + ko) from the leading edge to the trailing edge
(—kr + ko, —kr + ko) costs 2 A (to break the pair) —AE with (Fig. 4.2)

2
_ﬁ"; AE = 2(k% + k2) — 2(—kr + ko) = 4krko (4.6)

The condition for persistent current becomes

h2 A A
A>— kpko, le pg < —, Jo < E —_—. (47)
m VF m vUp
- ee— ¥
[ 212
Tekg/m AE
2A
2A
ﬁzkglm
A

Figure 4.2: See text.

A more realistic evaluation of the critical current will be given in Section 5.6.

While the argument is solid at T' = 0 it becomes a bit more handwaving for T' #
0. It is customary to state that the Cooper pairs shunt any possible current carried
by quasiparticles. Namely excited states carry a zero total momentum, as is intuitively
reasonable but not trivially obvious. The only effect of a non vanishing temperature is to
lower the critical current

Jo (T) = Jo (0) A (T)/A (0) . (4.8)

4.2 Coherence effects

Consider a superconductor interacting with a field of frequency w inducing transi-
tions between a state of energy F to a state of energy K + fiw. The transition probability
is

P = / N(E) f(E) |M|? N(E + hw) dE (4.9)
_ / N(E + hw) f(E +hw) |M|> N(E) dE

where the second term subtracts the transitions F + fuv — E. Each term is summed over
initial states (density of states N times occupation f at temperature T') and proportional
to the density of available final states and to the square |M|? of the transition matrix
element. Therefore

P= / \M|? (F(E) — f(E + hw)) N(E) N(E + hw) dE (4.10)
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In the normal conducting case |M|? is simply |(k'c’|M|ko)|?, each contribution
ko — k'o’ being independent from each other. However, in the superconducting case, care
must be taken to account for the coherence between ko — k'c’ and —k — o — —k' — o".

Namely, a transition from a quasiparticle k T to a quasiparticle k' T may proceed in
two ways: transfer of the k T electron to the empty k' state or transfer of a —k' | electron
from a Cooper pair in k' to the singly occupied k state (Fig. 4.3)

e _a | 4 TS
/t’ /‘1“ ‘Ij‘t’\ T
_$, k 4 p L A
1 N v T
N (E + hw)
mere {f(E+‘hm)
ho

{ N (E)

E

f(E)
Figure 4.3: See text.

These amplitudes are coherent and must be added before taking the modulus
squared. In most cases

[(E'o’'|M|ko)| = [(—k — o|M| - ' — o)

ie. (K'o'|Mlko) =sgn(—k —o|M| -k — o) . (4.11)

Restricting the discussion to sgn = real = £1 and to no spin-flip, (k'¢c’|M lko) =
Mkk’éo'a'
M=3" Mu (af ar+sgnaly ap) (4.12)
kk!
with, as usual, ax = ax T and a_x = a—x |. Here the Miw are taken between Bloch
functions of the normal state and need to be transformed to a basis of quasi-particle
states using the transformation equations

af = cosOny; +sinbnm Yom
(4.13)
Omn = €OSO0mY—m — sinb,vt

giving

(cos O v + sin O y—k ) (cos Oy vk + sin Ok v

sgn(cos O 7T, — sin Ok Ye)(cos Ok Y-k — sinbp vib)

(cos O cos By — sgn sinfp sinOx) (Ve + sgnye Y-v)
(sin 6 cosfy + sgn cosbx sinbw)(Yevly + sgn Y—kYk)
cos (Ok + sgn Ok ) (i e + 580 Y7-w) (4.14)
sin (0r +sgn ) (Ve ¥ +sgn Y- W) -

af ar +sgn a¥y a_w

.+.

+

Il

+
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Using (2.3.10) one obtains

2

2 (B +sgnbp) = %(1 + —1%7 sgnEAXE-,
(4.15)

1 2

sin®(fx +sgn Op) = %(1 — E€§E_' +sgn _EAET)
When replacing in the expression of P, the £¢' terms drop (once summed in the
integral) and one is left with

P= [ Ml (/(E) = f(E+w)) N(B) N(E +he)

{11 S ___‘9_2___}_{_11 S ___9.2___
2| T EE + hw) & B(E — hw)

1 1 —-————————A2 L 1 ————A—2———— 4.16
*5[ 58 Flhw — J [“gnE(—nw—m]} (4.16)

where the four terms in the curly bracket correspond to T Ve Yk Y-k v vE, and
~_w 7Yk Tespectively, i.e. the curly bracket reduces to

A2

L= S ErE )

(4.17)

for E = A to oo for the first and fourth terms and for E = —oo to —A — hw for the
middle terms. Writing / / + /

E(E + hw) E(F + hw) — sgn A?
m\ﬂE+hw)2—A2 E(E + hw)
(4.18)
and changing from F to B’ = E+ hw /2 which symmetrizes the integrand with respect to
changes from E to —F

oo (B () —senA)(f(E- ) - f(E+ 2
= iMI2NF 2 /A+Tuu/2 (E- %u_;)z _ A?]\2[(E + _hiui)z — A?]1/2

P= [ M (f(B)-f(E+hw) N

dE  (4.19)

and finally, writinga =% and E=A+a+z

[(z + A)(z + A + 2a) — sgn A*]dz
[z(z + 20)(z +20)(z + 2A + 2a)]/2

P = 2|M?N% /0 [ (A+z)—f(A+2a+z)] (4.20)
with
f(E)=1/(1+exp (E/kgT)) - (4.21)
We have made the (reasonable) assumption that |M > can be taken out of the
integral.
For a = 0 the fraction reduces to
(z+ A)? —sgn A?
z(z + 2A)

(4.22)

53

dE




2

2
ie = =+1 = ————— fi =-1 .
ie 1 for sgn = +1 and 1+x(x+2A) or sgn (4.23)
P, = 2|M|* N2 / R 2a dx = 2|M|* N2 f(A)hw (4.24)
o OE Atz
while rod
o 2A? Of \ "
= P, — 2|M]>N? —_— -5 4.2
L= 2AMPNE | ac(x+2A)( 5‘E>A+x (4.25)
which is dominated by the logarithmic divergence near x = 0:
o0 of dx
/o ~A 5 8E' 2a x

As soon as o # 0 the integral converges, but the effect will be a rise of P_ as soon
as T < Tg (which will then be quickly compensated by the contribution of f at low
temperatures) in contrast with Py which drops as soon as T' < T¢. This is illustrated in
(Fig. 4.4) below

1 T i I I I |
| (Ps-Pn)/Pn

Figure 4.4: Temperature dependence of Py and F_.

More generally, for A > a,

2
—ompene [T 002t
P, = 2|M[2N2 /0 (1+0(55))205 7 N dz (4.26)
o2
Py = 2MP'NE hwf(8) (1 + O(55))
o?
Py =2F, f(A)(1+0(%3)) (4.27)
where P, is the normal state transition rate (A = 0) and, assuming in addition kT < A,
oo hw dx
P_ =~ 2|M|°N; exp (—[A+ z]/kT) = A ———
MENE [ A+ al/KT) F5 A~
o~ A/KT o=t v '
~ 2l M[EN2 hw S—— A / du (4.28)
\/u v+ 2a/kT)
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4.3 Induced transitions

The developments of the preceding section have many experimental applications.
Here we consider only three: ultrasonic attenuation, nuclear relaxation and absorption of
microwaves.

At low temperatures, ultrasonic waves are absorbed by the perturbation induced
on quasi-particles from the local distortion of the lattice field (typically a few meV for a
permil local expansion of the lattice). This perturbation has sgn= +1 and relation (4.27)
gives a good fit to the data with a sudden drop of the attenuation when crossing T¢ from

above (Fig. 4.5)

20

odb/cm

T(K)

Figure 4.5: Ultrasonic attenuation.

On the contrary nuclear relaxation corresponds to sgn = —1. It results from the
interaction between the lattice nuclear spins and the quasi-particles, the frequency of
relevance being that governing spin-precession in the local nuclear environment. At low
temperatures the relaxation rate is dominated by the exponential in Eq. (4.28).

However, when crossing T from above, the logarithm in Eq. (4.25) causes a sudden
increase of the attenuation which is experimentally observed (Fig. 4.6) . This contrasting
behaviour of ultrasonic attenuation and nuclear relaxation is a spectacular illustration of
coherence and a major success of the BCS theory.

The absorption of microwaves has also sgn = —1. The surface resistance obeys a

temperature dependence of the form

— —A/kgT 4.2
e (A/ksT) (429)
when both kT and hw are well below A, as predicted by Eq. (4.28). Detailed calculations
of the frequency and mean free path dependences of the surface resistance [22] give good fit
to the data (Figs. 4.7 to 4.12). At high frequencies one can reach fiw = 24, and observe
the disappearance of superconductivity. At T' = 0 (no quasi-particles) this is the only
absorption mechanism and the ratio of superconducting to normal state conductivities
takes the simple analytical form (Aw > 24,)
01 Ao 2A0
i 2— - 2(—) K 4.
(1+252) B(E) - 252 K(b) (4.30)

On
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Figure 4.6: Nuclear relaxation.

with
k=200 — hw|/|2A0 + Aw| (4.31)
Moreover one has for any fiw
g9 . 1 2A0 ’ 2A0 '
m—2{[hw+1} E(K)+[hw —1} K (K (4.32)

with k¥ = /1 — k2, E and K are elliptic integrals and o, o3 are the real and imaginary
parts of the complex conductivity.
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Figure 4.7: See text.
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4.4 Meissner effect
The response of a free electron gas to a constant and uniform magnetic field H

results in a quantification of the energy levels in the plane normal to H of the form
(n + $)hwe with the cyclotron frequency we = He/mc. As a result, the current

e e
J={—{p—~ A)) (4.33)
vanishes, the contributions from p and A cancelling each other (see relation 2.35). In
the superconducting state, to the extent that Awc < A, ie. H < (mc/he) A, the
condensation will be inhibited and the wave function will stay at its A = 0 value for
which J = 0. Then the current J = —(e?/mc){A) does not vanish and exactly cancels
the field inside the sample. As hwe = 1.16 X 105 meV per Gauss of H and A is in the
meV range the condition on H reads H < 10° Gauss, less restrictive than the condition
H < He.

In order to better understand the mechanism of the Meissner effect, consider a
sample with a flat surface in the y, z plane (Fig 4.13). To mimic the external field, one
can introduce a current sheet Jeg on the sample surface and call Jsc the supercurrent.
Then

4
—071 (Joxt + Js0) = VaAH = VaVa A= — V2 A (4.34)

where the first equation is from Maxwell, the second from H = yAA and the third from
the choice of gauge V- A=0.

Taking
c
Jext - g Hext 6(3;) (435)
corresponds to a boundary condition on the sample surface
H=Hywy . (4.36)
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It is convenient at this stage to take Fourier transforms
? / %7 A(k) dk = — / k2 A(K) €% dk

and 4
—k? A(k) = ——075 o (B) + K (k) A(k)

with the Kernel K (k) defined from

Jsok) = == K(k) A(k)

A X

0 _ z
A / J , A
H Aeff

y Y

Figure 4.13: See text.

Then
Jext (k)

4
Alk) === K(k) + k2

(4.37)

(4.38)

(4.39)

(4.40)

But the Fourier transform of 8(x) is 1/27 50 Jext(k) = (c/47®) Hext and finally

_}_ H ext

A= ww+ e

(4.41)

Defining the penetration of the field inside the sample as a penetration depth

1
H ext

From H = JAA H,(k) = —ik A,(k)

'\eﬂ’ =

/0 ¥ H) ds

1

ik.-x

Hz)= [ : Hy(k) €% dk = —i / ”

Ze Hext
- —o0 T K(k) + k2

n  K(k)+k?

o Hew [~ kdk o Hy qe
=2 =2 | K(k)+k2/o sin hedz = 2-2* | RR) + 72

[ A== [ [ i o K

2 o dk
Aeﬁ_%/o K(k) + k2
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kdk

dk

(4.42)

(4.43)

(4.44)




This result [23] is for specular scattering at the surface, as implicitely implied by
the current sheet boundary condition. For diffuse scattering one obtains

s
et = 4.45
T em 1+ KRk (4.45)

Both expressions are singular at k& = 0 if K (k) < 0 and for Aes to be finite one needs
K(k) > 0 when k — 0. Namely as long as the kernel K (k) defining the supercurrent is

positive the field cannot penetrate into the sample beyond = Aeg and there is a Meissner

effect.

Long before the kernel K (k) was calculated by BCS one used to classify the super-
conductors in two families. The London family obeyed the simple London equation [6]
K(k) = cte = 57

L 4 9
1 e
Kilk)===

L( ) >\2L mC2

The Pippard family [8] obeyed instead a non-local relation between current and
vector potential with a form similar to the Chambers’ equation (2.37), the mean-free
path £ being replaced by a coherence length {p ~ 0.15 hvr/keTlc

(4.46)

1 3 [zexp (—R/&p +ikx)
X Inér / 7 dxdydz (4.47)

which reduces to Kp(k) = Kz(k) when £p — 0. Metals for which {p < Az were called
London superconductors, metals for which {p > A were called Pippard superconductors.
Moreover, as T deviated from 0, Az was observed to evolve approximately as [7]

Kp(k) =

T
A(T) = A ({1 = [ (4.48)
c
Finally £p was observed to vary approximately as
1 1 1
— = 4= 4.49
€P £P clean £ ( )

when the mean-free path was decreased, with the result that dirty superconductors were
ultimately all of the London family. These early results (Fig. 4.14) will get clarified as we
now proceed with the BCS calculation of the kernel K (k)

London Theory

J(K

1 Ak < Pippard theory

ALc
E=&p

3
Ep

é < E..P - ~ Kk

[ i
0 VEp Ve k

Figure 4.14: Schematic illustration of the London and Pippard models. Here Ap =
4dl /2.
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In this BCS calculation we allow for T to deviate from 0 and for He to deviate
from uniformity.
Treating the interaction with the field as a perturbation to first order in A

[A v+ v - Al alr) (4.50)

:—/ dr a+(7'

with? a(r) = Sk are € 7o) and using the gauge condition 7.A =0

eh _
Hy=— drab , et T Ak apy €7 Epor
k! o (o4

mc Iclc’ oo’

eh

=— Y a}y ak"{/ dr e'i(k‘k')”A(r)}-k (4.51)

me po

and writing k = kK’ — ¢ and Fourier transforming

H=2 5 afise ane Ak (452)
The total current reads
J(r) = Jp(r)+ Jp(r) with
Jp(r) = £ Tiwe Girge Gho €797 (2k+q) (4.53)
Ip(r) = =& Tkeo Glige ko €797 A

and the piece of wave function added by Hy4 is

6=3 g ) (4.54)

where the |1;) are the unperturbed states having unperturbed energies E;.
After some arithmetics one obtains

2

Jp(r) = =55 A(r)
Tplr) = £ Tig (2k+) Al=g) €7 Lk, erro) 2
with L(e, €') = 1{1_6_]:_6 I [ & :;,AO:I—I—{:J [1+£€ :;,AO}}
(4.55)
Fourier transforming Jp(r) gives
2h2
Ie@) = So v [ QE+0) k- AQ) L, (4:56)

2) Up to powers of (2r) all along.
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and

( 2
fmgo T = B5(1- %) 4@
o 2 2A2]1/2
1— AL :2/ dy — P [+ B Ao
T 1 2 ZA2|1/2)2
or equivalently Ax = Ag (1 + —AB—O %%Q)
and A = M _ AT )2 and §=1/ksT
\ ne C
AL ne? 1
As g0 Jp() + (@) = —3= — Alg) = == 40) (4.58)
T mMC cAT
AsT — 0 AT — AL
{ AsT — T, Ay — 00 (4759)

Therefore the Meissner effect always occurs for T < T with a penetration depth

increasing from Az at 7= 0 to oo at T ="T..

Not restricting any longer the discussion to ¢ — 0, one finds for the current a general

non-local expression ¢ la Pippard

_ —3rA K3(R,T)R(A(r") - R) B )
I) = o / dr - (R=r—1) (4.60)
and
Ar AT (L, AT 2A(T) (= ., . 2R 1-2f(E")
=T _ 4.61
KRBT =3 A0) {thszT 7 /0 de s T eE (461)
which is a kernel (Fig. 4.15) very close to
exp (-2 (4.62)
o
with
. ﬁ’UF i h’UF
o= A = 0187 (4.63)

called the BCS coherence length.
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Figure 4.15: The BCS kernel.

The Kernel K; (R, T) is negligibly dependent on temperature and the BCS coher-
ence length is very close to the Pippard coherence length (0.18 instead of 0.15). Both are
related to the extension of a Cooper pair calculated in (3.18),

h’l)p .

™
fnaive = \/g A % 50 .

(4.64)
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0.4
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tanh
02F A=(T [50(0) 2| \ .

0 ! ! | | | !
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t=T/Tc

Figure 4.16: Temperature dependence of the BCS penetration depth in the limit & > A

Having calculated the current versus vector potential relation one can now calculate
the penetration depth A(T) using (4.44 and 4.45). In the London limit (§ < A) A(T)
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reduces to Az at T = 0 (for a free electron gas) and depends on T as

A 1/2
A(T) = Ar (A—T> .
L

(4.65)

In the Pippard limit the temperature dependence of \(T) is displayed in Fig. 4.16 and

found very close from the two fluid model result [7].
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Figure 4.17: In general the penetration depth A(T) is related to AL(T) = AL (%f) as

shown in the figure.

In the presence of impurities A and §o are modified approximately as

{ X2 () = X(o0) {1+ 2

&) =& (o0) + 47

(4.66)
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Calculations using the Eliashberg equations show relatively modest deviations with
respect to the BCS results. Figure 4.18 illustrates results on the penetration depth.
Defining

oo 2
Wi = €xp (—; /0 lnwa i(w) dw) (4.67)

as in (3.92) (here )\ is the coefficient in the Eliashberg equations, not the penetration
depth!) one can find rather general expressions describing the deviation with respect to

BCS

0.10.

[AO)/A®]1Z-(-tY
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~0.25 4

2
Figure 4.18: Deviation of i}\‘((—i? from the two fluid model for the BCS approximation,

for V5Si data and related Eliashberg calculations.

) 2
SAL(Te)/AL(Te) = 146(%’;) In (3_“3?“>

s 20 = 1+5(%) (g )+ 04( &)

q O AT/ A(Te) = 1—2.5(%}; 1n<f%g,z> (4.68)
2
5&0)/60) = 1+11(& 1n(1%,3.z)+ 1,5<_gﬁ)

(
semysm - (&
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and, defining yz = 1/A%, one finds (Fig. 4.19)

2
yL(O) T T, Win
I 05{1—-2—= 11—} 1 4.69
TelyL(To)| 0 { Win om ) T\ 45T, (4.69)
and (Fig. 4.20)
Tc Tc g Win
T.) = 1. 1—-0.83—= —-0.75t— | 1 4.70
aoem) =1osfi-oslons( ) n( )} @
T T T T T T 1.35 T T T T T T
QS0+ -
V= 1IKE
London limit
QAsk— "\. - 1.30 ]
\n
sl 1.25 .
== \
ase o U i
'\.;’:' 1.20 .
Q30| "’. \-\’\ =
e/ 15
© o0t 0% oR Gk am o 6o 016  o2a
Figure 4.19: See text. Te/ o

Figure 4.20: See text.

67




5 SUPERCONDUCTIVITY WITH A VARIABLE GAP

5.1 Bogolioubov equations [24]

In Section 3.3 we saw that the pair interaction Y., Vie bf br reduces to a single
particle potential energy, >, A bf when calculated in the BCS ground state. This suggests
a Hartree Fock approach using a potential of the form

Vur = U(CLZT Okt + afkl a_kl) + A aZ’T afkl + A* Okt k)| (51)

where allowance has been made for A to be complex and where U accounts for renormal-
ization effects which had been neglected in the BCS approximation.

While retaining the basic BCS approximation (Vg = —V for |, |&| < B wp),
such a generalization would make it possible to take proper account of the effect of the
lattice (Bloch functions), of impurities and of a possible external field (electromagnetic
or whatever). In order to do so it is convenient to work in the {r} rather than {k}
representation, i.e. to use operators

Gra =Y €% Ga (5.2)
k

where a stands for the spin index.
Then the Hamiltonian can be written

H = Hy+H;

Hy = [dr X, a;'-a(—ﬁ‘;%z‘i‘v;xt‘l”% -—EF) Gra (5.3)
H = —% [ dr Tup af, af5 aop are

where the pair interaction has been split off and will be approximated by a Hartree Fock

potential of the form given above.
The procedure consists in minimizing the free energy calculated with H = Ho + H;

on a set of eigenstates of Hy + Vyr used as trial functions.
Having solved the eigenvalue problem of Hy + Vi one can write

HO + VHF = Eg.s. + Z En ’Yr-:_a Tn (54)

where E, , is the ground state energy and +;f, creates a quasiparticle (na) of excitation
energy E,. Then, using

{ art = Xn Tnt un('r) - ’Yr_r*,-l U:;(’f‘)
(5.5)

Qr, = En Tn| Un(T) +’Y:TU:1(T)
one can write (Bogolioubov equations)
un(r) \ _ [ Ho+U A Un (T)
En ( vn(r) ) = ( A —H;-U ) ( vn(r) (5.6)

Given A and U the Bogolioubov equations allow for calculating the eigenfunctions and
eigenvalues of Hy + Vgr and the functions u, and v, play the réle of cos 6, and sin 6,
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in the simple BCS approach. Then, minimizing the free energy F = {(Hy+ H;) —TS one
obtains the self-consistency relations which define U and A from u, and v,

U —V S {un(r)? fo+ lon(n)P(1 = f2)}
{ v Un (5.7)

o

V S (1=2 fa) vi(r) ualr)

with, as usual, f, = 1/(1 +exp [E./ksT)).

Taken together, the Bogolioubov equations and the self-consistency equations are
the solution of the problem. By construction they reduce to the results of Section 3.3 in
the free electron gas case when neglecting renormalization terms.

For V = 0 the Bogolioubov equations reduce to

En un(r) = Ho un(r)
{ —E:n vn(r) = H:v;(r) (5.8)

i.e. u, and v} are both Hy eigenstates with respectively positive and negative eigenvalues.
For the normal metal, with a vector potential A,

& ¢ (r) = Ho ¢, (r) (5.9)

and the solution of the Bogolioubov equations is

[ unlr) = B 620

oalr) = Bgle22 ) (5:10)

™

\ E.= |§'n|

5.2 Landau Ginzburg equations [9], [25]

The developments of the preceding section are quite general and introduce a pair
potential A(r) which can be expected to generalize the condensation amplitude introduced
in (3.48) and to serve as a kind of wave function for the Cooper pairs. This can be made
explicit in situations where A(r) becomes small, e.g. when T'— T, or H — H, or in the
vicinity of the boundary with a normal conducting or insulating medium. In such cases a
perturbative expansion in terms of A (rather than A as was done in 3.4) is appropriate.
Working on the ¢ basis

unlr) = LR 040) & T Tm S40)

(5.11)
w(r) = Lol g0 4 S o 420)
Inserting these expressions in the Bogolioubov equations yields
o = gty [ AW ¢80 G () dr
(5.12)

= €n] + &n .
Unm = 2T§nl(l€n|+§m) /A (r) ¢rfz1("') #z("') dr
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and the pair potential obeys the integral equation

A(r) = / KA(r, ') A()dr (5.13)
with
A N — (1 "' 2f(|£nl)) { !€n| + ‘En |£n| — fn }
KA ) =V S B ) 6 0) 610) 0 O e e e

(5.14)

which, after some arithmetics, reduces to

Bén (] Bbm

Ky = Ly SR B ) g1 o) 639

The A dependence of K# can be made explicit if A can be taken constant over the
range of the kernel K 4. Then, as

1 e
HO:Q—;’L—(I)—EA)2+%—EF (516)

the wave functions ¢ are obtained from the Bloch functions ¢2 by a simple phase rotation
corresponding to the constant translation in p by ¢ A

$40) = ) exp (52 1) (5.17)

Moreover, it will be useful to push the perturbative expansion further, which intro-
duces another kernel K'(r,r/,7", ") whcih we do not calculate explicitely here.
The pair potential can now be expressed as

AE) = [K@r)AG) ep(-o A =i
+ / K'(r, e, 7" v A () A" A" dr' dr" dr™ (5.18)

Assuming that A(r) = A(r)exp (=22 A - r) varies slowly over the range of the
kernel one can expand it in Taylor series

A6) = B(r)+ (=) VAR + 5 D =i’ =)y 220 sz (519)
and, noling that
VA(r) = exp (——— A.r) (p 2%)A(T) (5.20)

h
where (p — 2¢ A) corresponds to the current of a charge 2 e (Cooper pair) particle, and
after some arithmetics, one finds

A(r) = AoA(r) + BolA(r)PA(r) + Co(V — 2— APA(r) (5.21)

with
Ao = [K(r,7)dr

By = [ K'(r,7',r", 7™} dr' dr" dr" (5.22)
Co = % [ K(rr)(r—r)*dr
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which can be rewriten as

—92e A)2 2
{(p 5 7‘; ) + 2200 (1—-A4p— BOIA(r)IZ)} A(r) =0 (5.23)
which looks like a Schrodinger equation for a charge 2 e. The presence of 2 e instead of
e is non-trivial, at variance with the possibility of introducing 2 m instead of m at the
price of an ad hoc renormalization.

Similarly, one finds for the current

2
7)o 2 e (At A@) - L Arr)aw) 4 (5.24)
m 1 mc
again corresponding to a charge 2 e particle. For A (1) to be interpreted as a wave function,
it should be properly normalized, which is not the case in the above expressions. Hence
the proportionality (rather than equality) sign in Eq. (5.24).

The Ginzburg-Landau equations [9] were postulated in 1950, long before BCS. The
interpretation of A(r) as a pair potential and its relation to the energy gap was not clear
by then and the wave-function was named the ‘order parameter’. The Ginzburg-Landau
equations, 5.23 and 5.24, clarify the meaning of the interpretation of A(r) as a pair wave
function. For this to be possible, two conditions must be realized: A (r) must be small
enough and A (r) and A (r) must vary slowly enough. These restrictions are made clearer
in the next section.

5.3 Relevant length scales, types I and 1I

Explicit calculations of the Ginzburg-Landau kernels K (r,r") and K'(r,r’,7",7")
show that their range is &~ & in the clean limit. This comes about because the coherence
time near T, is h/kp T, corresponding to a coherence length

’Uph

o & - (5.25)
The same argument applies to the BCS kernel. However, while the Ginzburg-Landau
kernels are density correlation functions (relating ¢¢* factors) the BCS kernel is a velocity
correlation function (relating ¢* 7 ¢ factors). In the dirty limit the density correlation
is conserved at each scattering but the velocity correlation is destroyed. As a result the
range of the BCS Kernel reduces to £ in the dirty limit while that of the Ginzburg Landau

kernels is only reduced by a random walk factor ~ /¢ /& bringing the kernel range to
\/ &l (5.26)
(see Table on next page).

In the absence of field, for A =0 and A = real constant, Eq. (5.23) reduces to

A = AgA + ByA® (5.27)

but from (3.71) it also reduces to

i /AT
W e (5.28)

A=NpV /:“D A
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Relevant length scales

Penetration depths A= [ H(z)dz/H(0) (4.42)
Kernel K J(k) = —(c/4m) K (k) A(k) (4.39)
Specular [23] A= (2/m) [;° dk/(K(k)+ k?) (4.44)
Diffuse [23] A=n/ [ In (1+ K(k)/k*)dk (4.45)
London [6] Kp(k) = ;% =dmn e2/(m ?) (4.46)
Pippard [8] Kp = Chambers (Kz, &) (4.47)
Gorter-Casimir [7] A2 (t) =A% (1 -4t (4.48)
BCS [5] Kpcs = Chambers (K1, &) (4.61)
(hk1)
A2(t) = A2 (1+ BdA/[AdB)) (4.57)
A(0) = XA /(20) , £ &o
9 <1
= (0.6421)* &/(40) , £< &
A2(8) = (1+7&o/[24]) (4.66)
Coherence lengths
Definition of £(T) { (p - M) 2+ b (1 ~0.107 {41 /0) }A =0 (5.32)
Cooper pair [14] (RHYV? = hwp/ (V3 A) (3.18)
Pippard (8] ¢, = 0.15 hop/(kpT.), £= o0 (4.47)
&1(0) = &5 (00) + £ (4.49)
BCS [5] g0 = 0.18 twp/ (ks T.) (4.63)
(hk 1)
&HO =& (o) + 7 (4.66)
Ginzburg-Landau [9][25] (6 < 1)
V() = 0.74 & £> &
(5.33)
= 0.85 /&? L&
k=096 A/ (£=c0) =0.75 A\ /¢ (£ < &) (5.37,38)

t=T/T, 0=1-1 h = Heyx/H, (type 1) = Heyxy/H.o (type II)
Chambers (K, ¢) = Chambers convolution of range £ (2.37)
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By equating the coefficients of A and A3 in the two above expressions, it is easy to
evaluate Ao and Bo. In fact, using Eq. (5.25) one finds

11477, wp Tc _ Tc——T
Ao = NrV hl(—];‘;f— ‘f)"l‘f'NFV ln(1+ 7 )
.- T
Ay = 1+NpV T T.—- T < T, (5.29)

For Bo, (5.27) gives A? = (1 — Ao)/Bo but from Eg. (3.75) A? = (3.2 kg T.)%(1 —
T/T:) giving
By = —0.107 Np V/(kg T.)? (5.30)
(Note that 0.107 = 7 {(3)/8n? where ( is the Riemann zeta function).
The calculation of C, is less straightforward and depends on the purity of the sample.
It gives as a result

1 2
2 Cy = Np V 0.107 = RUr ) _ 110 Np V€2 (5.31)
3 \kz T.

in the pure case. In the dirty limit £2 is replaced by 1.454 &f.
It is now possible to rewrite Eq. 5.23 as

{[-Y--—ZEA] +—l—<1_o.1o7 Z. ‘A(T)'z)}m):o (5.32)

i ke £2(T) T.—T (ks T.)?
with
‘/TC; T E(T) = 0.74 & in the pure case
= 0.85 /&£ in the dirty limit. (5.33)

The space variation of the pair potential is therefore governed, in the absence of
field, by a scale £(T') which diverges like (Ic — T )=1/2 when T approaches T, and which is
proportional to & in the pure case. In the preceding section we noted that the penetration
depth was close to

B 8 dA\"?
A(T) = AL (1 + 3 (5.34)
Near T, (3.75) A = 3.2 kg T.,/1 — % and
A1 dT g dT
A= 3T.-T' B T’ (5:35)

giving

MT) ~ A(T) = Ary /5(—7-,%—?7 T,-T<T, (5.36)

Both £(T) and A(T) diverge the same way when T approaches T, but their ratio
remains constant. This ratio is called the Ginzburg-Landau parameter
MDD 1 A AL

= T 0T B 0.96 - (5.37)
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for a pure metal. In the dirty limit

A
n_0757f (5.38)
The Ginzburg-Landau parameter plays an essential réle in differentiating between
London and Pippard superconductors. Developing the free energy in powers of A (assumed

= cte, A=0)

F= i fn A (5.39)
0
it should be minimal with respect to variations of A
8F i n fn A" = (5.40)
This equation must be identical to 5.21 up to a factor, implying that
17:55+M<A’ A? + B°A4 ) (5.41)

where one can easily verify that p = % The original Ginzburg-Landau approach was in
fact to start from such a postulated expression of the free energy. As F = F,, for A =0

T.—-T
Ie

A2
F=F, +NFA2( —0.107 m)Jr (5.42)

F,, — F is minimal for 2A? = 32-(ksT.)? —L by construction and its minimum

value is
1 Np o (T-—T
'Emm%n)(n) (5.43)

which, by definition of the thermodynamical critical field must equal H? /87

HAT) =\ 2=F (ks T)(TL;C——T—) (5.44)

which can be rewritten as

NTED)HAT) = 7 o go (ko T (5.45)

and replacing & and Az by their values in (4.46) and (4.63) one obtains useful relations

H(T) = %o with ¢o = _éL_Q
21v/2 E(T)MT) ¢ (5.46)
K = 2v2 £ H(T) X(T)

Consider a superconductor which has been driven to its normal conducting state by
a strong enough external magnetic field H. By decreasing H one will restore supercon-
ductivity. If the whole sample were to switch in a single shot, the transition would occur
when H = H,(T). It may be, however, that some regions switch before H reaches H.(T)
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if this is energetically more favourable. At the time of switching A is very small and one
can use the linear part of (5.23)

1 e\ B A1

Moreover A is small enough for the supercurrents to have a negligible effect, i.e. H =
Hot = VAA. Equation (5.47) is then a Schridinger equation for a free particle of mass
m and charge 2 e in an external field H. The transition will take place when the particle
energy, (2/m) (4o — 1)/(2 Cb), equals the cyclotron energy, fiw./2 = (eh/mc) H, i.e.

Ag—1 T.—-T 1 T4)?
O _~—p _ 0T 1 (5.48)

e =homr == 7702 = ""1T10 27

and, using (5.46), 1/€%(T) = 2v/2 (e/fic) He(T)x one obtains

E (0.74)2
e 1.10

H= W2 — Hy(T)
hc

H =xv2 H, (T) (5.49)

For kv/2 > 1 the transition will occur at a field Hep = k2 He(T) > H.(T), called
the upper critical field, and the sample will be only partially superconducting until H
reaches the lower critical field H;. The next sections study this transition state in more
detail.

5.4 Fluxons

When H reaches Hy = xv/2 H,, the field penetrates in some regions of the sample.
What happens in the vicinity of the boundary between the normal conducting (V) and
superconducting (S) regions? There will be a loss of condensation energy over a distance
~ £ but a gain of magnetic energy over a range ~ . For a type II (x > 1/+/2) super-
conductor, as considered here, the balance will be positive and the equilibrium state will
maximize the total area of the N —S separation for a given volume. For a same penetration
over a radius ), one can imagine having small S-filaments in an N-environment or small
N-filaments in a S-environment (Fig. 5.1). The latter solution yields a loss of condensation
energy typically ~ 2  times smaller than the former and is therefore prefered.

(0 (e

Figure 5.1: See text.

One would then conclude from this simple argument that the field penetrates in
the form of a huge number of very tiny filaments. However there is a lower limit to the
magnetic flux carried by each single filament which we now examine.
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The Bogolioubov equations

Enun = ( (p—“A> +%+U_EF>un+AUn

2 (5.50)
Bave = Otua—((p+4) +V5+U = Er) o
should give solutions which should not depend on the choice of gauge, i.e. which should
not change when the vector potential A is incremented by a term wx(r), a gauge trans-
formation which does not affect H = 7oA. For A = 0 such a change of gauge changes
pte A=2y+£ Ainto
E.(vi%ivx) + EA (5.51)
and therefore u, into u, exp (ix(r)) and v, into vy,exp (—izgx(r)).

This result remains valid when A # 0 as long as A is changed into Aexp (2 x(r)).
Namely the wave functions and the pair potential are gauge covariant while the elgenvalues
are gauge invariant. However the pair potential must be a single valued function of r, even
if x(r) is not.

Consider now a filament and a contour C around it, at a distance > A, such that C
is free of magnetic field and of super currents (Fig. 5.2). For some particular gauge A = 6
=0on C.

@]

Figure 5.2: See text.
Writing A = |A|exp (i6) let
I:hv0—2—z-A (5.52)

Adding x to A multiplies A by exp (2i%x) and increments therefore 76 by 2% V
leaving 7 invariant. Therefore [, Z.d¢, which vanishes for the particular gauge A =60 =
also vanishes for any other gauge and

7

Z:/vede /Ade (5.53)

The integral on the left-hand side is % times the phase change of A after one turn, which
must be an integer multiple of 27. The integral on the right-hand side is the magnetic
flux ¢ carried by the filament. Hence

fic he

¢ = 2nT=nd, do=5

. .54
2e 2e (5.54)
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The magnetic flux carried by a filament must be an integer multiple of the elemen-
tary fluxoid

h
¢o = 52 ~ 20.7 Gauss microns® . (5.55)

This quantity is large enough to be measurable [26] and the validity of the above result
has been confirmed experimentally (see Fig. 5.3)

Filaments which carry a flux ¢, will therefore populate the mixed phase (also called
Schubnikov phase from the name of the physicist who discovered its existence in 1936
[27]). They are called fluxons or vortices.

The radial structure of a fluxon is characterized by a normal conducting hard core
of radius =~ ¢ and a field penetration over a range = A, the core being surrounded by
super currents which shield the outside space from the core field. In the limiting case
where A > ¢ the fluxon energy per unit length reads

mv? H?
and, as Ya H =% J
_ 1 2 2 2
B=_— / (H? + )2 (VAH)Y} dr . (5.57)

Note that minimizing E with respect to H gives the London equation and modelling the
hard core with a delta function §(x)8(y) one obtains

E= ( ;;L)z 1n(—2) . (5.58)

The quadratic dependence on ¢ shows that when doubling the flux, ¢o — 2¢o, it is more
economic to have two filaments (2 ¢2) rather than a single filament with twice the flux
(44), confirming the nucleation into fluxons.

In the same approximation of infinitely thin cores, the interaction energy between
two parallel fluxons distant by r is

= 7o o(3)
Eimt = 5~ 53 Kol 5 (5.59)

which decreases as J=exp (—%) for 7> A.

As it is repulsive, it implies that the fluxons arrange themselves in a triangular
lattice, which is the configuration minimizing the interaction energy. This result was
predicted by Abrikosov [28] in 1956 before the publication of the BCS theory. Its validity
has been confirmed by various experiments such as slow neutron diffraction and, most
spectacularly, by decoration experiments (see Figs. 5.4 to 5.6). In cases where & is close
to 1/+/2 nucleation may however occur in a non-uniform manner (but where it occurs
it does it in the form of a fluxon lattice, see Figs. 5.7 and 5.8). This is at variance with
the situation of type I superconductors where partial penetration may also occur on a
macroscopic scale, in particular as a result of geometry, but where nucleation into fluxons
does not happen (Figs. 5.9 and 5.10).
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Figure 5.3: Experimental evidence for flux quantization. A small cylinder is cooled below
T. in a field H, along its axis. The trapped flux is measured by oscillating the hollow
cylinder and measuring the induced current. Top left: Doll and Nébauer arrangement,
Top right: their data. Bottom: Deaver and Fairbank data. They used a tin cylinder ¢,
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5.5 Critical fields
From relation (5.46) ¢o = 27v/2 H.\¢ and using (5.49) one has

%o
c2 = 2 c = .
Ho=rV2He= 500 (5.60)

which implies that the fluxon cores are closely packed against each other when the field
starts penetrating at H = H,. When H decreases the fluxon lattice gets more diluted
and the flux ¢, spreads over a broader area saturating at
N2 Po
~ wA* with a core field & — . (5.61)
TA2
When H reaches H; all fluxons have been expelled and the Meissner state is com-
plete. While 7%\"7 gives the scale of H, an exact calculation is not straightforward and
requires a model for the fluxon energy.
For a é-function core Abrikosov finds

_ ¢o
Ha = 7755 (In 5+ 0.08) (5.62)

In the limit A > £, (T. —T) < T, £> £ one has therefore

( _ 0 N H
H - 4‘%\7 (n 5+ 0.08) = - (in K +0.08)
H, = 72—0
€ 22 A€
< (5.63)
R
HCQ = 5?1%57 = Hc \/i K
Hcl ch = H3 (ln I€+008)
| Ho/Hsy = 2 x%/(In &+ 0.08)

More realistic and general expressions are examined below.
In the mixed phase of type II superconductors it is convenient to define an ‘induction’
B, the macroscopic average of the penetrating field, and a magnetization

m=2-H (5.64)
47
see Fig. 5.11. The free energy difference between normal and superconducting states is
_ R\2
F,—F, = _(_Ii__l_?_)_ (5.65)
8
giving
0 B—-H
57 Fn—F)=——=M. (5.66)
As . 5 T2
c2 9 _ _ _ ch _ 4
|7 dH gz (Fam B = [P - F2 = (567)
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Heo H2
MdH = -== .
i dH = —2*, (5.68)

independent of k.
The area under the magnetization curve between 0 and He is an invariant and is
the same as for a type I superconductor having the same value of H..

H -4nM

H N !
¢ orma TYPEI
Meissner
T
Te
H
Hc2
Normal
TYPE I
H
©1  Meissner
0 T

Figure 5.11: See text.

The slope of the magnetization curve near H = H can be calculated in the
Ginzburg-Landau regime once the structure of the fluxon lattice is known. One finds

oM 1

OH chz 4 Ba (262 — 1) (5:69)

where the Abrikosov parameter 84 depends only on the structure of the fluxon lattice and
is 1.16 for a triangular lattice. When relaxing the conditions under which the Ginzburg~
Landau equation is valid it is convenient to introduce two generalized Ginzburg-Landau

parameters. One
k1(T) = He(T)/V2H(T) (5.70)

and another r2(T") such that

oM 1

OH |y, 4Bs @B D) o)

Both &1(T) and #2(T) tend to x when T — T.. In the same spirit one introduces
k3(T) obeying
H(T)
V2 k(T

The Ginzburg-Landau equations have been generalized to apply to the whole tem-
perature range and to include dirty superconductors [29]. This is straightforward in the
vicinity of He(T) where the small value of A justifies the perturbative treatment and, in
the case where £ < £, the penetration depth increases faster than the coherence length

Ha(T) = In ks(T) . (5.72)
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when impurities are added, allowing for a London treatment when necessary. In the vicin-
ity of H,, however, the problem is more difficult, as A is large. There, progress has
required a deeper understanding of the structure of a vertex line and of its free energy.
The main results are summarized below in terms of approximate expressions of the gen-
eralized Ginzburg-Landau parameters in the clean and dirty limits fort= —,_,"’,—; < T, or for
=1-txT,.

Dirty limit (Figs. 5.12 to 5.14)

k1 <1

ki/k | 1.20(1 — 0.06t%) 1+0.1360
ki/k | (all t's) 1.25 — 0.30¢% + 0.05t* (5.73)

ke/k | 0.69(1+10.33) | 1—0.856

o\ 1/2
Ka/k | 1.53 (1 - 2[=] ) 1+ 0.0320

Clean limit
1/ | 1.25 (140.65 t?Int) | 1+0.41 6

ko/k | 1.22 (In1/t)Y/2 | 142369

More general results are illustrated in Figs. 5.15 to 5.17. Figures 5.18 to 5.22 illustrate
results on the structure of an isolated vertex and the dependences on & of the hard core
radius, rx, and of the field penetration range, rx, are displayed in Figs. 5.23 and 5.24.
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Figure 5.12: Dirty limit.
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Figures 5.25 and 5.26 display results spanning the whole range of mean-free path.
There A is
0.882 &/t , h* = Hea/(—dHe/dt)|e=1 (5.74)

and k* = r1(t)/k1(1)

The same authors [29] study spin effects which are usually unimportant. In a normal
metal the parameter of relevance is the Pauli paramagnetic susceptibility of the conduction
electrons near the Fermi surface

3Npp?
2 Erp

x = (4= Bohr magneton). (5.75)

Electrons inside the Fermi sphere do not contribute as they cannot align, all states being

occupied. In the superconducting metal one introduces the mean-free times for spin-
independent and spin-orbit scattering respectively, 7, and 72, and

rl=ml 4t (5.76)

Results and comparisons to experimental data are shown in Figs. 5.27 and 5.28

— 1
(h* as in Fig. 5.25,a = 3/47 Ep, Aso = 3T 7’2) (6.77)
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Figure 5.25: See text.
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Calculations using the Eliashberg equations have been made, to account for strong
coupling. The main effect is a renormalization of various parameters by powers of (1+ ).
Using a two square-wells approximation as was done in Section 3.7 one finds regularities
allowing for general empiric relations. Defining hc2(T) = Hpo(T)/%a2 (T,) and k(T) =
w1(T)/ka(Te),

;o 2
R (0) = 0.69 (1 —15L +2.0(§:) ln(a‘é—’lﬂi>)
2
pean(0) = 0.727 (1 —2.7(52) ln(—ﬂ“—>)
e ) BT (5.78)
pdiy(Q) = 1.2 (1+2.3(g§) ln(ﬁ%))
2
| A=) = 1.26 (1 + 12(5%) m(zﬂ%))
Also the following universal relation
2/
chz(: = 2.9 k{5 — 0.13 (5.79)

is found to apply.

These results are illustrated in Figs. 5.29 to 5.33.

Figure 5.34 shows the results of a full Eliashberg calculation using aF?%(w) from
tunneling data and comparing it to the result of a simple renormalization by the proper

(1 + A)* factors.
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5.6 Fluxon dynamics [30]

In Eq. (4.7) we calculated a critical current density Je = e ;A; above which depairing
takes place. However this critical depairing current is largely irrelevant. Long before the
current density reaches J. the field produced by the current will exceed H, (or Hc) and
at least part of the conductor will become normal. For example, in the simple case of a
cylindrical type I wire carrying a current density J the field at a distance r from the axis
(Fig. 5.35) is 22 Jr, implying a critical current density

cH,.

5} R = wire radius (5.80)

Je=

much smaller than the depairing critical current calculated in Eq. 4.7 which is in fact
(using Egs. 4.46, 3.81 and 2.22)

1 cH,
—_— 5.81
243 2wAL (5:81)

As soon as R > )\ the relevant critical current is that of Eq. 5.80. Actually, when
J exceeds J, the conductor does not switch to the normal state in its totality but only in
an outer shell and partially in the inner core.

Figure 5.35: Type I cylindrical conductor of radius R. The grey regions are superconduct-
ing, the others are normal H(r) = He.

Such a simple example illustrates the relevance of critical magnefic fields in cal-
culating critical currents and how easily a simple geometry can lead to rather complex
configurations.

In order to achieve high critical current densities, one is led in practice to use type
II superconductors. The problem is then to understand the fluxon dynamics in the mixed
phase in the presence of a transport current. It is essentially governed by two mechanisms:
viscous flow and pinning.

A clear qualitative picture of the mechanism of viscous flow is given by Bardeen
and Stephen [31].

They consider an isolated fluxon in a superconducting slab where a constant current
Jr is established (Fig. 5.36).

95




S Vs

7
fluxons v - -
f - - f

leave fuxons

enter
Jr

Figure 5.36: Bardeen-Stephen model of viscous flow.

The fluxon is modelled by a cylindrical normal conducting core of radius a, around it
there are supercurrents obeying London equation, i.e. the slab is a London superconductor
outside the core (and its boundary): if dissipation occurs it can only be inside the core
and/or at its boundary. The fluxon may be generated by the transport current itself (He
is exceeded) but this is irrelevant: the fluxon is sufficiently isolated from other fluxons
(in particular a possible gradient in the fluxon lattice density is ignored as it would have
no effect). Moreover the transport current is supposed to be small enough to leave the
structure of supercurrents unchanged as it sets the fluxon into motion. The Lorentz force
exerted on the fluxon is % Jrado, inducing a velocity V; parallel to it (i.e. the Hall effect
is neglected). The velocity of the supercurrents, V5, is accordingly shifted

Vs
ot

€
==V We=-v (Vs Vo) - — VinH (5.82)

The second term is simply the acceleration produced by a moving field, it is relatively
small. The first term however can be rewritten as

V.
F-—mat——evgo-—eE (5.83)

i.e. it corresponds to an electric field E derived from a scalar potential (Fig. 5.37).

p="V; Vi, E==Ve (5:84)

The field E is uniform inside the core and parallel to the transport current

_ AV

Einside - 26(12

(5.85)

It is dipolar outside the core and corresponds to a static charge distribution on the core
boundary

sin @ (5.86)
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Figure 5.37: Force field in the fluxon core region induced by a fluxon velocity V5.

As E = — v/ (2V} - Vs) is porportional to Vy, the energy dissipation is proportional
to V7?, implying that the presence of E causes the fluxon motion to become viscous and
the Lorentz force is opposed by the viscous drag:

1
- Jra ¢o=—n V; (5.87)

The value of the viscosity coefficient 7 is obtained by calculating the energy dissi-
pation inside the core and on the boundary

p= Zme (——h—)2 (1 4o ) (5.89)

m  \2a2 hic

In Eq. (5.88) 7 describes the electron-lattice relaxation time. As soon as Vy # 0
current flows through the normal core of the fluxon (but when V; = 0 the current avoids
the Huxon core). There is therefore a constant depairing and repairing going on in the
core and at its boundary, the relevant time constant for this is = Vg It~ K’ much smaller
than V a, as it should for the model to make sense. Finally we note that about half of
the dlss1pat10n occurs within the normal core and about half in the transition region just
outside the core (in real life the sharp core boundary is smeared over =~ one coherence
length).

In actual experimental situations one has to face much more complex situations
than described by this simple model, in particular because of less ideal geometries, but
the relevant underlying physics is all contained in the model.

In order to reach high critical currents in type II superconductors it is therefore
essential to stop the fluxons from moving. As long as V; = 0 there is no energy dissipation
and the fluxons are bypassed by the supercurrents. This is possible by pinning the fluxon
lattice, the second essential topic in the game.
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That pinning a fluxon is possible is evident when one considers the effect of a thin
cylindrical hole of radius p on a parallel fluxon at distance r (p < r < A) (Fig. 5.38). The |
r-dependence of the free energy is easily calculated to be of the form

x In [l— gz-] +n Ko(r) (5.89)

where n is the number of fluxons previously trapped in the hole and K, is the Hankel
function

AF

%
o W
q L n=1
p
7T ° ; >
n=0

Figure 5.38: See text.

A hole acts as an attractive pin but as soon as it has trapped a fluxon it acts as
a repulsive pin. The force needed to free a trapped fluxon is ~ 1 H? £(T)(n = 0) which
means a depinning current density (using Eq. 5.87) of the order of the depairing one (Eq.
5.81)

cH2¢ cH,
J DX €2 — .
2¢0 4427\

In practice impurities, defects, surface imperfections, etc... are potential pinning
sites. There exists an abondant literature on this subject (see [30] for references). But
the interaction between a pin and a single fluxon is not the only ingredient in the un-
derstanding of the pinning of a lattice. Indeed, if the lattice is rigid (which it is when it
is dense enough) it will feel a zero total pinning force if the pinning sites are randomly
distributed. Understanding the pinning of the lattice implies therefore understanding how
it can deform. Figure 5.39 gives a good feeling for the complexity of the problem. The
string of originally equally spaced weights f; linked by springs represent the fluxon lattice
(even though the forces between fluxons are repulsive). The weights slide on a rail with
randomly distributed valleys F; which represent the pinning centres, more precisely their
potentials. Pulling on the string with a force F' will cause the string to jump to a new
equilibrium position if F exceeds some depinning force Fj. Then, for F > Fp, the string
is free to move. Of course F' mimics the Lorentz force induced by the transport current.
This picture gives a feeling for the dependence of F}, on the density of pins, on the depth
and breadth of their potentials, on the distance between fluxons and on the elasticity
of the fluxon lattice. In three dimensions, the increased degree of freedom in the fluxon
lattice movement comes together with additional elasticity parameters (essentially shear
and tilt) and with the possibility to bend the fluxons (depending on the line tension). To
first order in the fluxon displacements (¢ labels the fluxons)

(5.90)

U,;(Z) = 'T'i(Z) - R;= (uxi; Uyi, 0)
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from their ideal positions R; = (X;, Y;, z), the elastic energy reads
1 d*k .
Facsic =5 [, g5 Ualk) daalk) up(k) (5.91)

where
—uk) =8 T dz u(z) e
- Q ﬂ =, Y
— the integral is on the first Brillouin zone of the reciprocal fluxon lattice

- (I)zy - (I)yz: = (Cll - CGS)KzKy
&,, = Ci1 K2+ Ces K2+ Cuy K + ar(K)
q)yy = 066 Kg + Cu K,g + 044 Kzz + OZL(K)

fy 2 t3 fq fs

P
Py 2 P3 Pa M P
5 6

Figure 5.39: See text.

Here Cy1, Css and Cyy are the elastic moduli for uniaxial compression, shear and
tilt respectively. ar(K) is the so-called Labusch parameter [32] which describes the elastic
interaction of the fluxon lattice with the pinning potential.

The literature is full of calculations of the depinning force (per unit volume) Fp, all of
them being approximate and rarely much more illuminating than Fig. 5.39 is. Returning
to Eq. 5.87 one sees that the fluxon lattice does not move until the transport current
reaches the critical value (see Fig. 5.40)

_chp
1 go
where 7 is the fluxon density per unit area, F, the depinning force per unit volume and
J, the current density. When the transport current Jr exceeds J. the fluxon lattice is set

in motion and its viscous flow is governed by the viscosity coefficient 7 (Eq. 5.88). Using
Egs. 2.26 and 5.63 we can rewrite

J, (5.92)

1 H
N =0n Heo ¢0/02 (1 + 5 ch) (5.93)

AV

0 Je

Figure 5.40: See text.
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When measuring the voltage-current curve one finds a resistivity p such that
Power = p J2 =n n V} (5.94)
and using V; = Jré¢o/(nc) from Eq. 5.87

1 7nc
- = 5.95
p ndh (5.95)

o=
and replacing 7 by its expression (5.93) and n¢o by H one finds

H,
%= 0wy
(5.96)
_ H 1 H
== 1 /0+3 )

Namely when changing J, by changing F, one maintains the same universal relation Eq.
(5.96) between p/p, and H/H, (see Fig. 5.41)

10° ! T T 1 1 T T T—T
8 . pes
. Kim et al [31]
Nbg, T80.9
‘o T/Te =9.92, 0.64, 0.35 =
° Nbqo.s Tag s
2 T/Te=0.33 B
& Nbo.25 T8o.25
c T/Te =0.62
€ L /Te |
«xU 8 ]
s [ —
ar- —
/7
2+ Ve -
/s
//
1072 } R { b1
10-2 R 2 4 & 8,0
H/H¢2

Figure 5.41: See text.

Moreover, as 77 and p depend essentially on Hee (Eq. 5.93), changes in the pinning
which do not affect H,o significantly will result in large changes in J. but modest changes

in p (Fig. 5.42).
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Figure 5.42: Pioneer data of Strnad et al. (PRL13 (1964)794) V vs. I for two NbTa samples
containing different amounts of defects.

The approximate relation p/pn =~ H/He corresponds to the fact that the dissipation
is associated with the normal cores which indeed occupy a fraction ~ H/H. of the
conductor area.

In the neighbourhood of the transition the sharp corner depicted in Fig. 5.40 is
rounded by a number of effects. The most important is related to thermally induced
transitions and is named flux creep. It becomes particularly important for high T; super-
conductors but its study goes beyond the scope of these lectures.

For geometries more general than the slab geometry considered above the situation
is still governed by the critical state Eq. 5.92

BJ.=cF, (5.97)

Here B = n ¢y gives the average local field inside the conductor. Equation (5.97) is
written for currents normal to the field (otherwise it would read BaJc = cFp).

When currents and/or fields are changed shielding currents adapt to maintain the
Meissner state until they reach J. defined by (5.97). At which point fluxons nucleate on
the conductor surface and migrate inside as J is further increased. When the trend is
reversed the pinned fluxons will not move until J reaches —Jc, implying an hysteresis
effect directly porportional to the critical current. This simple description is refered to as
the Bean model [33].

Figure 5.43 is a standard illustration.

% /Bl
z POGEE—

N DL
(’ —V/— NN

Figure 5.43: B penetration in a slab.
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Before closing this section a few words on microwaves are in order. Keeping the
simple geometry of Fig. 5.40, one replaces the transport current by the magnetic compo-
nent of an electromagnetic wave incident on the sample surface. The external field is large
enough to penetrate the sample in the form of fluxons while the RF field is supposed to
be < Hcl-

Consider first the case of perfect pinning. Here, contrary to the DC case, one expects
dissipation from the normal fluxon cores (even though they do not move).

The surface resistance will have the form

H
o, fw) (5.98)

Rs:-Rm,

where H/H is the fraction of the sample area occupied by normal fluxon cores and where
f(w) is the frequency dependence calculated in 4.3 for quasi particles (see Fig. 5.44). If
instead the fluxons are perfectly free to move one expects R, to stay at the DC value
when w is increased, i.e.

H

H c2

R,= R, (5.99)

(see Fig. 5.45). Inbetween these extreme cases one expects a transition of the form [34]

H w?
. = — —— 5.1
Ro = Fn Hyp w2+ w? (5.100)
with
Je
Wy X -77 (5101)

where 7 is the viscosity coefficient (Eq. 5.888) and J. the critical current (Eq. 5.92). Such
transitions have been observed (Fig 5.46)
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Figure 5.44: Frequency dependence of the surface resistance of quasi-particles.
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Figure 5.46: Low frequency transitions (Ref. [34])

5.7 Junctions, Josephson effects

This section deals with junctions of the MIM’ type where M and M’ are metals,
either in the normal state (N, N°) or in the superconducting state (S, S’) and Iis a thin (10
to 50 A) layer of insulator (usually an oxide of M or M’). The current I flowing through
a junction in response to an applied voltage V is expected to be proportional to

[ #(E=V) p(BHFE-V)~ f(E)} dE (5.102)

where p and g’ are the densities of states in M and M’ and f the usual Fermi function.
As illustrated in Fig. 5.47 different types of V-1 characteristics are expected in the NIN’,

NIS’ and SIS’ cases.
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Figure 5.47: See text.

Early experiments [35] have shown that quasi-particle tunneling through the insu-

lating barrier was indeed proceding as expected from Eq. 5.101 (Figs. 5.48 to 5.50). For
T = 0, in the SIN’ case, Eq. (5.101) reduces to & = 0 for V' < A and
for V > A (see Fig. 5.48). More generally V' versus I curves provide a way to measure
accurately the gap A(T') and the quasi-particle density of states, p.
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Figure 5.49: SIN’.
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Figure 5.50: SIS’.

With improving experimental accuracy finer structure can be observed which is
related to o? F(w) and allows for it to be measured [36]. This was already mentioned in
Section 3.7. Pioneer data are illustrated below (Figs. 5.51 and 5.52).

105




V-A (mV)
20 25 30 35 40 45

1.02 F AL -Pb
z 101} a 04K
> 1
T 1.00 L /7N
: \TEaYe
,\i” 0.99 + Al ','
% 0.98 L phonon !
= ~~_ Spectrum |
— 097+ \\\ * 1 :

\\sN Il 1
0.96 - ‘-“sl l_‘s\

N\
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Figure 5.52: =% (I5/Iy) (A), ps/pn (B), &*F(w) (C) for lead.
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Early tunneling experiments failed to observe supercurrent tunneling before its ex-
istence was predicted by Josephson [10]. But soon after, the Josephson’s effects were

experimentally confirmed [37].

Consider a junction of the SIS’ type, the thickness of I being much smaller than
the coherence lengths and penetration depths in each of S and §'.

In each of S and &', A and A’ obey the Ginzburg Landau equations and the effect
of the barrier (if it is transparent enough!) is simply to correlate the boundary conditions
on A and A’ at the barrier (Fig. 5.53).

For A = 0 and z being the axis normal to the barrier this correlation can be written

as

A = mp A+ma %%'
(5.103)
!
3 s
where the m;; are real coefficients. The current J flowing across the barrier is (Eq. 5.24)
28 Im (A*g—%) and, noting that Im (A*A’) = mj2 Im (A*%2

J=20 L \Aa sin (0 - 6) (5.104)

m Mio

S 0 (N) S 7

Figure 5.53: See text.

Note that from J = J', i.e. Im (A*%2) = Im (A’*%—AZ') one obtains

M11Moz — MiaMer = 1 (5.105)
Relation 5.104 expresses the fact that a current
J=Jpsin (6 —90) (5.106)
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with

2%k 1
Jo=26m 1A (5.107)
m mi2

flows through the barrier without voltage across it, i.e. the barrier behaves as being
superconducting.

The phase change across the barrier is a well defined quantity, depending solely on
the barrier properties. It locks the phase on one side with respect to that on the other
side. If T is the transmission coefficient across the barrier Fn“lﬁ is of the order of T'//£ for S
=5

When A deviates from zero, the same conclusion is reached by using (Eq. 5.24).
Note that the gauge invariant quantity introduced in (Eq. 5.52), Z=h v 6 — 2 A obeys
the relation

7= pe (Y - Zan)=Zjapz (5.108)
m ] c m

In both (5.106) and (5.108) it is the change of the phase of A which governs the
presence of currents. When A deviates from zero 176 must be replaced by 76 — 2 A and
relation (5.105) is accordingly modified.

Taking A = (0, 0,—zH,) inside the barrier gives a magnetic field H = Ya4 =
(0, Hy, 0) inside the barrier. Then 6’ — @ needs to be replaced by (V6 — 2 A)-df across
the barrier = 6’ — 0 + 220 Az where Az is the average depth over which to integrate,
Az =~ X+ X (neglecting the barrier thickness). Hence

/
J = Jpsin (0’ -0+ %/lj_ﬁ;}‘—)]{—gx) (5.109)

Such modulations are indeed observed (Figs. 5.54 and 5.55) in various configura-
tions. In particular geometries with two junctions allow for the observation of quantum
interference effects over large distances (SQUID).
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Figure 5.54: A single junction.
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Figure 5.55: Interference with two junctions (1 and 2) and magnetic field in A.

Consider now a SIS’ junction across which a voltage V' is applied, V = [ Edz. Writ-
ing J = Josin¢ with ¢ = [[V0 — (2¢/hc) A] dz we have d¢/dt = —(2e/hc) [ dA/dt dz =
+2e/k [ Edz. For a constant V, ¢ is a linear function of time,

2
b=0 -0+ ~7:§Vt (5.110)
This implies the superposition of an ac current on the Josephson dc current, of

frequency w given by v
2
w= —%- — 484 MHz for V — 1pV (5.111)

This has allowed for a very accurate measurement of % and, indirectly, of the fine
structure constant [38].
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— Some elements under pressure (Si, Ge, ...).
— Fullerides (alkali doped Cgp compounds).

APPENDIX

SUPERCONDUCTING MATERIALS

Known superconductors (see tables below for selected examples) include:
— Some elements (in particular transition elements with an incomplete d-shell).

— Binary alloys and compounds.

— Intermetallic compounds (mostly A-15).

— Chevrel phases.
— Organic (TMTSF); X and (BEDT-TTF), X with low dimensionality.

— High T, oxides. They are characterized by a very strong anisotropy (layered struc-
tures) a low coherence length and a large H; (in addition to their large T¢!). At room
temperature they are insulators which have become metallic by doping. They are
not described by a free electron gas model. The Coulomb interaction is important.

d-wave pairing is likely to play an important réle.

Elements Te B,
Al 1.18 K | 0.105 kG
Ti 0.39 0.100
A% 5.38 1.42
Zn 0.875 0.053
Ga 1.091 0.051
Zr 0.546 0.047
Nb 9.20 1.98
Mo 0.92 0.095
Tc 7.77 1.41
Ru 0.51 0.070
Cd 0.56 0.030
In 3.404 0.293
Sn 3.722 0.309
La 6.00 1.10
Ta 4.483 0.830
\'% 0.012 | 0.00107
Re 1.698 0.198
Os 0.655 0.065
Ir 0.14 0.019
Hg 4.153 0.412
Tl 2.39 0.171
Pb 7.193 0.803
Th 1.368 | 0.00162
Pa 1.4 -
U 0.68 -

Oxides Tc
NbO 1
TiO 2
SI‘TiOg_m 0.7
K,WO0O; 6
KZMOO;:, 4
K.ReOs | 4
Li Ti204 | 13
Ba PbBiOj | 13
Binary alloys | Tc | Be
Nb-Ti 9 | 140
A-15 Compounds | Te | Be
V3 Al 9.6 | —
V; Ga 15.4 | 230
V3 Si 17.1 | 230
V3 Ge 7 -
V3 Sn 4.3 -
Nb; Al 18.9 | 330
Nb; Ga 20.3 | 340
Nbs Si 180 | -
Nbs Ge 23 | 380
Nbs Sn 18.3 | 240




High Tc cuprates

Tec

Lag__zMxCllO4_y 38
M = Ba,Sr,Ca
x ~ 0.15, y small
Ndy_,CeCuQy_y (electron doped) 30
Ba;_.K;BiOj3 (isotropic, cubic) 30
Pngrng_zCaxCugOg 70
R1Bao.cuz+m06+m
R:Y,La, Nd, Sm, Eu, Ho, Er, Tm, Lu
m =1 (‘123’) 92
m = 1.5 (‘247) 95
m = 2 (‘124°) 82
Bi28r2ca.n_1cun02n+4

=1 (‘2201°) ~ 10
n = 2 (2212’) 85
n = 3 (2223’) 110
TlsBagCan—1CurO2nt4
n =1 (2201°) 85
n = 2 (2212’) 105
n = 3 (‘2223’) 125

Chevrel phases | Tc | Be
Sn Mo6 S8 12 | 340
Pb Mo6 S8 15 | 600
La Mo6 S8 7 1450
Sn Mo6 Se8 | 4.8 -
Pb Mo6 Se® | 3.6 | 38
La Mo6 Se8 11 | 50

Fullerides | Tc

Rb082 Cso 33
K3 Cs{) 18
Rbs Cso | 30
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