

First observation of $\bar{B}^0_s \to D^0 K^{*0}$ and measurement of the ratio $\frac{\mathcal{B}\left(\bar{B}^0_s \to D^0 K^{*0}\right)}{\mathcal{B}\left(\bar{B}^0 \to D^0 \rho^0\right)}$ with LHCb at $\sqrt{s}=7$ TeV

A. Martens¹ on behalf of the LHCb Collaboration

 1 LAL, Université Paris-Sud, CNRS/IN2P3, Orsay, France.

Abstract

In 36 pb⁻¹ of pp collisions at a centre-of-mass energy $\sqrt{s}=7$ TeV, we observe for the first time the decay $\overline{B}_s^0 \to D^0 K^{*0}$. The $\overline{B}_s^0 \to D^0 K^{*0}$ decay mode is a potentially dangerous background for the Cabibbo suppressed decay $B^0 \to \overline{D}^0 K^{*0}$ used in the measurement of the CKM angle γ . A clear signal of 34.5 \pm 6.9 events is obtained with a statistical significance over 9 standard deviations and we measure its branching ratio relative to the $\overline{B}^0 \to D^0 \rho^0$ branching ratio: $\frac{\mathcal{B}(\overline{B}_s^0 \to D^0 K^{*0})}{\mathcal{B}(\overline{B}^0 \to D^0 \rho^0)} = 1.39 \pm 0.31 \text{ (stat)} \pm 0.17 \text{ (syst)} \pm 0.18 (f_d/f_s)$. The $\overline{B}_s^0 \to D^0 K^{*0}$ branching fraction is then $\mathcal{B}(\overline{B}_s^0 \to D^0 K^{*0}) = (4.44 \pm 1.00 \text{ (stat)} \pm 0.55 \text{ (syst)} \pm 0.56 (f_d/f_s) \pm 0.69 (\mathcal{B}(\overline{B}^0 \to D^0 \rho^0))) \cdot 10^{-4}$.

Introduction: context and motivation

Long term plan [2011-201X]

- $B^0 \to D^0 K^{*0}$: interference between diagrams involving $b \to u$ and $b \to c$ transitions.
- ullet CKM unitarity triangle angle γ theoretically clean extraction [1,2] : Standard Model benchmark.

Short term plan [2010-2011]

Understanding background for suppressed $B^0 \to D^0 K^{*0}$ decays: favoured $\overline{B}_s^0 \to D^0 K^{*0}$ in the same final state.

Additional motivations

- $\bar{B}_s^0 \to D^0 K^{*0}$ not yet measured.
- Comparing $\overline{B}_s^0 \to D^0 K^{*0}$ and $B^0 \to \overline{D}^0 K^{*0}$ is a **probe** of SU(3) **breaking** in colour suppressed $B^0 \to D^0 V^0$ decays.

The LHCb detector [3]

• L0 hardware trigger (in 2010, $E_T > 3.6 \text{ GeV}/c$) and HLT B inclusive software trigger.

Analysis Strategy

channel	B decay $\mathcal{B}(in\ 10^{-5})$) total $\mathcal{B}(in\ 10^{-6}\)$	Events produced in LHCb geo. acceptance
$\overline B{}^0\! o D^0 ho^0$	32 ± 5	12 ± 2	20000
$B^0\! ightarrow \overline{D}{}^0K^{*0}$	4.2 ± 0.6	1.1 ± 0.2	1800
$\overline B{}^0_s\! o D^0K^{*0}$	32 to 87	8 to 23	3000 to 9600
$B^0 \rightarrow D^0 K^{*0}$	$\simeq 0.26$	$\simeq 0.07$	110

Selection

- Cancellation of systematics in ratio.
- Selections as similar as possible (p_T , track quality, track impact parameter, B decay topology.
- Mass windows of ρ^0 and K^{*0} equal the Breit-Wigner width (150 MeV/ c^2) and 50 MeV/ c^2)
- Particle Identification (PID) for one V daughter (optimized on data using D^0) is different.

Trigger

- ullet Similar HLT efficiencies for both channels o no specific requirement on HLT.
- Difference only at L0 (E_T threshold).
- Events triggered on the rest of the event, independent of the candidate-B (OtherB) or on the signal only (TOSOnly).
- Do not trust absolute Monte Carlo efficiencies, only ratios.

Extraction of the ratio of branching fractions

$$\frac{\mathcal{B}\left(\overline{B}_{s}^{0} \to D^{0} K^{*0}\right)}{\mathcal{B}\left(\overline{B}^{0} \to D^{0} \rho^{0}\right)} = \frac{1}{\mathcal{B}\left(K^{*0} \to K^{+} \pi^{-}\right)} \frac{f_{d}}{f_{s}} r_{\text{acc.}} r_{\text{sel}} r_{V} r_{\text{PID}}$$

$$\times \frac{N_{\overline{B}_{s}^{0} \to D^{0} K^{*0}}^{\text{sig.}}}{r_{\text{LOHadronTOSOnly}}(N_{\overline{B}^{0} \to D^{0} \rho^{0}}^{\text{LOHadronTOSOnly}} - 0.5 N_{\text{non } \rho^{0}}) + r_{\text{OtherB}}^{-1}(N_{\overline{B}^{0} \to D^{0} \rho^{0}}^{\text{OtherB}} - 0.5 N_{\text{non } \rho^{0}})$$

- Ratio of selection and geometrical acceptance efficiencies from Monte Carlo (except PID).
- PID from data (using D^0 from D^{*0} and reweighting for difference in kinematics).
- Ratio of fragmentation fractions from HFAG [4].
- Relative trigger abundances in OtherB and TOSOnly from data.
- Correction for non- ρ^0 contributions.

Fit result

Yields extraction

- Simultaneous fit of three categories.
- Four species in each category (signal, combinatorial background, partially reconstructed background, signal cross-feed)
- Fix parameters to Monte-Carlo except B^0 mass, core gaussian resolution and exponential slopes (different in D^0K^{*0} and $D^0\rho^0$).
- Cross-feed fractions constrained with Gaussian (use of PID efficiencies calibrated on data).

"Non-resonant" contributions

• 20 % of non- ρ^0 events in the selection while clean K^{*0} mass (using sPlots [5]) \to corrected for the extraction.

Systematics

Source of the uncertainty		
MC statistics $r_{ m acceptance} = 0.955 \pm 0.004$		
MC statistics	1.0 %	
Change in the central value of the vector mass window $r_{ m V}=1.02\pm0.01$	1.0 %	
Difference in p_T distributions of tracks between data vs MC $r_{ m sel.}=0.802\pm0.020$	2.5 %	
Use of the unweighted calibration sample for $\emph{r}_{ ext{PID}}=1.03\pm0.07$		
L0 Hadron threshold influence on $r_{ t TOSOnly} = 1.20 \pm 0.08$		
OtherB triggering efficiency independent on the mode $r_{ exttt{OtherB}} = 1.03 \pm 0.03$		
PDF parameterizations	6.4 %	
Statistical uncertainty on the non- $ ho^0$ component $=30.1\pm7.9$		
Overall relative systematical uncertainty		
HFAG average $rac{f_d}{f_s}=3.71\pm0.47$		

Results

- First observation of $\overline{B}_s^0 \to D^0 K^{*0}$ with $N=34.5\pm 6.9$ (> 9σ from change of likelihood with no signal). • $\frac{\mathcal{B}(\overline{B}_s^0 \to D^0 K^{*0})}{\mathcal{B}(\overline{B}^0 \to D^0 \rho^0)} = 1.39 \pm 0.31 \; (\mathrm{stat}) \pm 0.17 \; (\mathrm{syst}) \pm 0.18 \; (f_d/f_s)$.
- $\mathcal{B}\left(\overline{B}_{s}^{0}\to D^{0}K^{*0}\right)=\left(4.44\pm1.00\;(\mathrm{stat})\pm0.55\;(\mathrm{syst})\pm0.56\;\left(f_{d}/f_{s}\right)\pm0.69\;\left(\mathcal{B}\left(\overline{B}^{0}\to D^{0}\rho^{0}\right)\right)\right)\cdot\;10^{-4}\;[6].$
- Compatible with predictions [7,8,9].

Selected references

- [1] I. Dunietz, *CP violation with self-tagging* B_d *modes, Phys. Lett.* **B270** (1991) 75–80.
- [2] The LHCb Collaboration, Roadmap for selected key measurements of LHCb, [hep-ex/0912.4179].
- [3] The LHCb Collaboration, The LHCb Detector at the LHC, JINST 3, S08005 (2008).
- [4] The Heavy Flavour Averaging Group, Averages of b-hadron, c-hadron, and τ-lepton properties, [hep-ex/1010.1589], http://www.slac.stanford.edu/xorg/hfag/.
- [5] M. Pivk and F. R. Le Diberder, *SPlot: A Statistical tool to unfold data distributions, Nucl. Instrum. Meth.* **A555** (2005) 356–369.
- [6] The Particle Data Group, The Review of Particle Physics, J. Phys. G 37 (2010) 075021.
- [7] P. Colangelo and R. Ferrandes, Model independent analysis of a class of \overline{B}_s^0 decay modes, Phys. Lett. **B627** (2005) 77–81.
- [8] C.-W. Chiang and E. Senaha, *Updated analysis of two-body charmed B meson decays*, *Phys. Rev. D* **75** (2007) 074021.
- [9] R.-H. Li, C.-D. Lü and H. Zou, $B\left(B_s^0\right) \to D_{(s)}P$, $D_{(s)}V$, $D_{(s)}^*P$ and $D_{(s)}^*V$ decays in the perturbative QCD approach, Phys. Rev. D **78** (2008) 014018.