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ABSTRACT: The Large Hadron Collider (LHC) at CERN is a superconducting accelerator and 

proton-proton collider of circumference of 27 km, lying about 100 m underground. Its operation 
relies on 1232 superconducting dipoles with a field of 8.3 T and 392 superconducting 
quadrupoles with a field gradient of 223 T/m powered at 11.8 kA and operating in superfluid 
helium at 1.9 K. This paper describes the cryogenic instrumentation commissioning, the 
challenges and the project organization based on our 2.5 years experience.  
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1. Introduction 

The Large Hadron Collider (LHC) is a 27 km superconducting accelerator and proton-
proton collider designed to reach the unprecedented energy of 7 TeV per beam and luminosity 
of 1034 cm-2s-1 [1,2]. Its operation relies on 1232 superconducting dipoles with a field of 8.3 T 
and 392 superconducting quadrupoles with a field gradient of 223 T/m powered at 11.8 kA and 
operating in superfluid helium at 1.9 K The electrical supply to the superconducting magnets is 
provided by 52 electrical feed boxes (DFB) equipped with 1400 current leads carrying current 
between 120 A and 13 kA, which distribute current to several hundreds of different circuits. The 
electrical power is brought from room temperature to cryogenic temperature by High 
Temperature Superconducting (HTS) current leads, whose lower extremities are immersed in a 
bath of liquid helium, around 4 K. 

The LHC (figure 1) has eight Interaction Points (IPs), separated by eight sectors of about 
3.3 km each. Four of these points are dedicated to the main experiments, two others are used for 
beam cleaning systems capturing off-momentum and halo particles, another for the 
superconducting RF acceleration cavities and one for the beam dumping system. 

Each sector consists of an arc (ARC, 2460 m), with 23 regular cells of 107 m, with a 
dispersion suppressor (DS, 170 m) at each extremity and a long straight section (LSS, 270 m) 
near each IP.  
Every ARC cell contains two sets of 3 steering dipoles (15 m) and 1 focusing/defocusing 
quadrupole (5.5 m). In the LSS there is a wide diversity of dipoles, quadrupoles and multipole 
correctors, with various functionalities. So, while the eight ARCs are almost identical and 
repetitive the long straight sections are very different, which has a significant impact on the 
commissioning procedure.  

The cryogenic system consists of gas storage, warm compressors and refrigerators on the 
surface and cold compressors in underground caverns. A cryogenic distribution line (QRL), 
parallel to the magnets, feeds them with helium through jumper connections (every 107 m in the 
ARC). The operation and monitoring of the LHC require a large amount of cryogenic 
instruments (most of them operating in radioactive environment) with a robust and reliable 
design. The cryogenic control system has to manage about 800 electronic crates and more than 
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16000 sensors (for temperature, pressure and liquid helium level measurements) and actuators 
(valves and heaters), distributed along the LHC circumference and in radiation protected areas. 

The commissioning was performed sector by sector and in parallel without any interference 
related to the vacuum and cryogenic systems and magnet powering [3]. 

 

 
 
Figure 1. LHC points, P1: ATLAS detector, P2: ALICE detector, P3: Collimation system to capture off-momentum 
particles, P4: Radio Frequency superconducting acceleration cavities, P5: CMS detector, P6: Beam abort systems for 
the beams to be extracted safely and deposited onto external dump (absorbing the beam energy), P7: Collimation 
system to control the beam halo, P8: LHCb detector. 

 
 

2. Cryogenic Control System 

The cryogenic instruments, distributed over large distances are accessed by two industrial 
field networks. The Profibus® (by SiemensTM), which is radiation sensitive, is used for the valve 
signals and some special heaters; and the WorldFIP®, which is radiation tolerant, transfers the 
data from sensors and actuators (figure 2). These fieldbuses allow considerable simplification in 
cabling and maintenance and offer the capability of remote diagnosis and configuration [4,5]. 

Per sector, there are eight WorldFIP® network segments per sector that access data at 
1 Mbit/s from most of the thermometers (TT), pressure sensors (PT), level gauges (LT), and 
digital inputs (on-off-valves, end-switches or pressure switches) and transfer the commands for 
driving electrical heaters (EH). There are also five Profibus® network segments (1.5 Mbit/s), 
which are used for the command of on-off valves (QV, PV), for command and feedback of 
analog valves (CV) and of some particular heaters (EH) and to configure and parameterize 
“intelligent” valve positioners via PDM® (a software by SiemensTM). Moreover there are two 
Siemens-S7® Programmable Logic Controllers (PLC) (one for the ARC and DS and the other 
for both LSS) per sector, cycling at 500 ms and running some 250 Closed Control Loops 
(CCLs) as well as 500 alarms and interlocks. Although the Profibus® protocol is integrated with 
the SiemensTM PLCs, the WorldFIP®-PLC communication gateway is provided by dedicated 
Front-End Computers (FECs) running Linux®, where the TT interpolation tables are located. 

The man-machine interface is based on two Supervisory Control and Data Acquisition 
systems (SCADA), built with PVSS®: The CRYO-SCADA, which complies to the CERN-
Unified Industrial Control System (UNICOS) framework, is used by the operators to access data 
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and commands relevant to the cryogenic process, comprises synoptic panels (for navigation, 
monitoring and control of all instruments), alarms and interlocks handling, real-time and 
historical trends, data and event logging and archiving. The Cryogenic Instrumentation Expert 
Tool (CIET) is a tool used by the control experts to remotely monitor, configure, parameterize, 
and reset the WorldFIP® read-out channels.  
 

 
 
Figure 2. Controls architecture for LHC full sector. All valves are accessed through Profibus in protected areas and 
all other instruments accessed through WorldFip. 

 
 

3. Cryogenic Instrumentation 

The LHC magnet cryostats are fed with helium from the cryogenic distribution line (QRL) 
by 208 service modules (SM). A service module consists of two valve boxes (connected to 2-12 
valves) and a jumper connecting the QRL to the LHC magnets. There are 2600 Control Valves 
(CV), which are analog valves using a range of 0 to 100 % and 720 Quench (QV) and Pressure 
Valves (PV), which are digital valves having two states (on/off). Intelligent positioners 
(communicating via Profibus-PA®) are used to control the opening of the cryogenic valves (CV 
analog valves) on the QRL. The electronic units are placed in radiation protected areas (figures 
3, 4), while the radiation insensitive equipment that regulates the compressed air in the valve 
actuators is placed on the corresponding QRL-SM (figure 5) and comprises the potentiometer 
(that reads the stem position) and two piezo-valves (that pressurize and depressurize the 
pneumatic actuator).  

The installation, configuration, initialization testing and troubleshooting of these electronic 
units for all 8 sectors has been completed at the early phase of commissioning.  Before their 
installation in the field, all valve-positioner units were configured and tested in the laboratory, 
and after their installation, a verification procedure took place and pressurized air was supplied. 
The test procedure included already given parameters cross-checking, initialization with 
corresponding valves and electrical connections between positioner unit and pressure regulation 
block, motion direction and extreme positions verification, based on manual operation for each 
analog valve. The digital valves were also verified with a tool simulating the driving signal. The 
final stage of the valve commissioning was the coherence test for the verification of the proper 
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valve response, by sending requests and receiving feedback on the supervisory system at one 
side and checking the valve under test at the other side. 

 
 
 

 

 

 
 

 

 
Figure 3. Rack with electronics for 
on/off (PV, QV) and analog (CV) 
valves for QRL (back and front side).  

 
Figure 4. Drawer with fifteen 
intelligent valve positionners.  

 
Figure 5. QRL Valves (3 types: 
Pneumatic on/off Valves-PV, Control 
Valves-CV, Quench Valve-QV). 

 
 
Beside valves there are 2400 cryogenic heaters used as actuators. They are equipped with a 

resistant wire (25-100 Ohm) with heating power ranging from 25 W to 500 W (DC and/or AC -
at a later stage they were limited to 25 W, consolidating the situation with improved design and 
materials) and they are installed inside the magnet cryostats and on the QRL elements.  

The cryogenic process requires also temperature (TT), pressure (PT) and liquid helium 
level (LT) sensors. CERNOXTM Resistive Temperature Sensor (50±20 Ohm at 300 K) very 
precise (few tens of mK) in low temperature range and Pt100 Platinum Resistance 
Thermometers (~ 100 Ohm at 0 °C) with sufficient accuracy over a wide temperature range 
(from -200 °C to +850 °C) are used as temperature sensors. The 720 pressure sensors are based 
on a metallic membrane, that slightly deforms under the applied pressure and a metal thin-film 
strain gauge, that senses the membrane deformation, incorporated in a resistive bridge topology. 
The 560 level gauges (LT), which are used for the liquid helium level measurements are made 
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of a superconductive wire, connected in series with a small heating resistance. When current is 
applied to the gauge vertically positioned in the helium tank, the heating resistance warms the 
emerged part of the superconductive wire, which passes to the normal resistance state, while the 
immerged part remains into the superconductive state. Hence, a resistance measurement of the 
wire will provide the resistance value of the emerged part, from which the length of the 
immerged part can be calculated.  

Cryogenic instrumentation crates house electronic cards for reading the temperature (TT), 
pressure (PT) and liquid helium level (LT) measurements, supply electrical power to the LHC 
cryogenic heaters (EH) and read the digital valve status. Approximately 800 of them (figures 6, 
7) have been installed, connected and tested underground [6,7]. These crates communicate 
through a fieldbus, based on the WorldFip® protocol.  

  
 
Figure 6. Instrumentation crate under the dipoles. 

 
Figure 7. Instrumentation crates in the radiation 
protected areas. 

 
 

4. Cryogenic Instrumentation Commissioning with MTB 

Two test benches running LabVIEWTM have been developed at CERN to verify the correct 
functionality of the field instrumentation [8, 9]. They have been used at the card manufacturer’s 
premises and at CERN. A portable test system for the WorldFip® crates has been used for in-
situ diagnostics or special tests. The commissioning of the cryogenic instrumentation 
(electronics, cabling, sensors, actuators) in the tunnel was done by three Mobile Test Benches 
(MTB) and an additional one in the lab for parallel problem solving and software upgrades 
(figure 8). The MTB is a valuable tool for finding most problems with cables, sensors and 
connectors (i.e. wrong or not connected cables to the field instrument, wrong 
grounding/shielding in the cables or connectors, bad contacts, short circuits, open circuits, 
blown fuses, damaged cables or connectors, missing connections and mismatches with 
specifications and database, missing info in the database). The MTB is based on a PXI platform, 
running LabVIEWTM application. The PXI® rack houses: 

• An embedded controller by National InstrumentsTM, running Windows XP®. 
• Two FIP® communication cards for the top and bottom level of the crates with different 

FIP® addresses. 
• A 276×8 matrix module by PickeringTM for the switching of connections between the 

MTB instrumentation and the cards/cables under test. 
• One programmable resistor module by PickeringTM for the simulation of the various 

sensors during the card tests. 
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• Various other cards (power supply card, multimeter card). 
Other important components of the MTB are: 

• One KeithleyTM 2400 SourceMeter® for resistance measurements in 2-wire mode and 
current sourcing for the 4-wire measurements. 

• One KeithleyTM 2182 Nanovoltmeter® for accurate voltage sensing for the 4-wire 
measurements. 

• A connector panel, which provides the physical interface between the MTB 
instrumentation and the cards/cables under test. 

• One heater card test box, which houses power relays, used to route power from the 
heater card to the load during the heater card test. 

• One UPS (Unbreakable Power Supply), which supplies all MTB electronics with AC 
mains power (to avoid shut down during short removals from one crate to another). 

The following tests were performed: 
• Consistency test. Purpose of the test is the comparison of matching of the crate 

configuration with the CERN Layout DataBase. 
• Card test. Purpose of the test is the validation of the correct functionality and accuracy 

of each electronic card. This is the only test for which the criteria pass/fail (reference 
values, tolerances, etc) are hard-coded in the MTB software, implemented for every 
card type.  

• Instrument test. Purpose of the test is the verification that each instrument 
(sensor/actuator) is physically present at the machine, correctly wired and properly 
connected and it has the expected resistance value, given the instrument type and the 
machine conditions. The test (for TT, PT, LT) is based on the 4-wire method, which 
uses two pairs of wires, one pair for excitation current application and another pair for 
the voltage drop measurement across the sensor for the noise reduction. 

• Pin-to-Pin test. Purpose of the test is the detection of the electrically measurable errors 
in cable/instrument (short circuits and low insulation resistance) measuring the 
resistance between all pin combinations of a cable connector and the resistance between 
each pin of the connector and ground in 2-wire mode.  

• FIP® test. Purpose of the test is a final cross check of the full readout chain 
(sensor+electronics) as it requires all the cables to be connected back to the crate. The 
FIP functionality is already checked during the card test. During this test the sensor 4-
wire resistance value is returned and comparison with the 4-wire measurement of the 
instrument test takes place. 

Beside these tests, monitoring which is not actually a test, but rather a useful tool before 
testing start, that shows all the measurements the crate performs (crate not powered, missing or 
not connected cable, instrument improperly installed and electronic card not operational) is 
necessary to take place. It provides an overview of all data that the crate feeds to the FIP 
network (sensor measurements, noise levels, card state etc). 

The troubleshooting tools that have been used or developed in order to solve the problems 
arising from MTB and its components are the stand-alone loads (connectors with discrete 
resistors internally connected), digital multimeter matrix relay test and cabling test. Purpose of 
the matrix relay test is to check the MTB matrix for stuck open relays or relays with worn out 
contact based on the all possible paths (relay combinations) measurements and report of all 
paths with resistance value higher than a predefined limit. Purpose of the cabling test is the 
identification of possible short circuits in the MTB wiring including the matrix, the connector 
panel and the MTB cables.  

The MTB project uses Perforce®, a Software Configuration Management (SCM) tool that 
provides a centrally managed storage area for all files of a project, keeps detailed track of the 
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history of each managed file (versions, changes, bug-fixes, comments, etc.) and allows 
collaboration amongst users. More specifically Perforce® helps to manage the LabVIEWTM 
software distribution from the developer team to the operator team, individual crate 
configuration files and also the results for all cryogenic instrumentation crates. All crate data 
stored in layout database. XML® data files (CIDs, FIP® addresses, type of cards, active 
channels, cable numbers, type of sensors etc) are useful to overcome constraints such as size 
and complexity of layout database, network presence and speed at the tunnel. The results are 
stored locally in the corresponding folder of the crate and after the completion of tests are 
submitted to the Perforce® server and MTF - a database that stores the data related to the 
management of the LHC equipment. Information about electronics and instrumentation is stored 
in Layout Database. 

Three mobile test benches have been used, working in parallel, having two shifts per day 
(morning/evening), when necessary.The test duration varied between 2 and 10 hours/crate, 
depending on the crate equipment and complexity. The rate achieved was ~2-3 crates/MTB/shift 
in average for the ARC (tunnel) and ~1 crate/MTB/shift for the LSS (protected areas), while the 
commissioning duration was 2-3 weeks per sector (tunnel) and 1 week for protected areas 
depending on problems. The increased experience accelerated the procedure to this level. The 
extra iterations after the repairs have not been taken into account. Due to the peculiarities of 
LSS the electronic crates in corresponding protected areas needed a higher investment of testing 
time and number of iterations, as shown in figure 9. The average retesting iterations was 1.6 for 
the electronic crates in the tunnel and 2.4 for the ones in the protected areas (PA). 

The most common problems found were related to electronic cards, instruments, cables, 
bad contacts, short circuits, open circuits, wrong grounding, database views refresh state, 
missing info in the database, FIP® communication or components of the MTB itself. Noisy 
channels/cards have been found in the 14 % of the electronic crates in the tunnel and 6 % of the 
corresponding ones in the protected areas. The latter was quite common at the early stages of 
the commissioning and during the commissioning of the Sector 34 (figure 1) that was 
characterized by relatively higher level of humidity. This fact has caused extended testing times, 
not included in the above mentioned estimation. 
 

 

 
 
 
 

 

Figure 8. Mobile Test Bench in action. Figure 9. Percentage of instrumentation crates versus number of 
iterations for the tunnel and the protected areas. 
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5. High Voltage Tests 

The LHC electrical feed boxes (figure 10) are liquid helium cryostats, which support and 
cool the high temperature superconductor current leads operating between 600 A and 13 kA. 
These current leads provide the electrical link between the warm cables (at room temperature) 
and the cold superconducting electrical circuits. In order to monitor those temperatures, two 
thermometers are mounted on each current lead. The fact that some of the wires carrying the 
signals from the TTs are in galvanic connection with the circuits that supply the magnets, 
requires high voltage qualification tests to be performed on the related cables, patch panels and 
electronic cards.  

The aim of the tests is to check for conformance of the entire electrical line related with the 
temperature read-out from the TTs on the DFB current leads. 

The test procedure consists of three main steps: 
• Verification of grounding of the cable shields. 
• Measurement of insulation resistance between all signal wires and the ground, through 

the complete chain. 
• Measurement of insulation resistance between the signal wires of each current lead (8 

active wires + 4 shieldings) and the signal wires of the other current leads. 
For the ground continuity test, the acceptable resistance is below 1 ohm. The duration of all 

the insulation tests is set to one minute and the acceptable maximum leakage current is 60 nA. 
The test voltage is 1.9 kV for the cables related to 13 kA current-leads and 600 V for the others. 

In total 185 cables and 929 channels have been tested. High voltage breakdown has been 
detected at the level of 7.6 %. All the cases have been repaired and in most cases the reason was 
humidity in the cables. In most cases the measured leakage current was below 20 nA.  

 

 
Figure 10. High Voltage tests in one of the 52 DFBs of various types. 
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6. Conclusions 

The cryogenic instrumentation commissioning necessary to ensure that all relevant 
elements work properly, although very demanding in terms of time and manpower investment 
has been successfully completed. The operational performance (within specifications) has 
exceeded 98 % for thermometers and ~100 % for other instruments.  

The MTB was a valuable tool for finding most problems with cards, cables, sensors and 
connectors. It was a relatively complicated tool with long debugging period for exhaustive 
checks. Increased responsibility of the operator for results interpretation/evaluation and 
reporting was necessary for the commissioning of approximately 800 electronic crates and more 
than 12000 cryogenic sensors and actuators. 

Acknowledgment 

   We would like to deeply thank our colleagues from AGH University of Science and 
Technology in Krakow and all the members of the CERN LHC cryogenics instrumentation team 
for their help, contribution and fruitful collaboration.  

Many special thanks go to the cryogenics group leader Mr. L. Tavian for his review of the 
paper and for his continuous support that make this project successful.  

We (the hellenic team) would like to express our gratitude to Prof. E. Gazis, Dr. R. Saban and 
Dr. E. Tsesmelis who gave us the opportunity to work on this project. 

 

References 

[1] LHC Design Report, Vol. I, CERN-2004-003, 4 June 2004 

[2] Evans L and Bryant P 2008 LHC Machine JINST 3 S08001 

[3] Saban R et al 2007 The commissioning of the LHC technical systems PAC07 FROAC03, New 
Mexico, USA  

[4] Gomes et al 2008 The control system for the cryogenics in the LHC tunnel CERN-LHC-PROJECT-
REPORT-1169 ICEC22 Seoul, Korea. 

[5] Fluder C et al 2008 Experience in Configuration, Implementation and Commissioning of a Large 
Scale Control System ICCC2008 Sinaia Romania 

[6]  J. Casas-Cubillos et al 2008 The Radiation Tolerant Electronics for the LHC Cryogenic Controls: 
Basic Design and First Operational Experience TWEPP 2008 Naxos Greece 195-199 

[7] Vauthier N et al 2007 First Experience with the LHC Cryogenic Instrumentation CEC-ICMC2007 
Chattanooga USA AIP Conf.Proc. 985 957-964 

[8] Avramidou R et al 2007 The commissioning of the instrumentation for the LHC tunnel cryogenics, 
IEEE NSS-MIC 2007, Honolulu, Hawaii, USA 

[9] Avramidou R, Fampris X, Gaj W M, Jeanmonod N, Koumparos A and Vottis C 2008 Mobile test 
bench for the LHC cryogenic instrumentation crate commissioning TWEPP 2008 Naxos Greece 
191-194 

http://jinst.sissa.it/LHC/LHCmachine/2008_JINST_3�
http://www.slac.stanford.edu/spires/find/wwwhepau/wwwscan?rawcmd=fin+%22Avramidou%2C%20R%2EM%2E%22�
http://www.slac.stanford.edu/spires/find/wwwhepau/wwwscan?rawcmd=fin+%22Fampris%2C%20X%2E%22�
http://www.slac.stanford.edu/spires/find/wwwhepau/wwwscan?rawcmd=fin+%22Gaj%2C%20W%2EM%2E%22�
http://www.slac.stanford.edu/spires/find/wwwhepau/wwwscan?rawcmd=fin+%22Jeanmonod%2C%20N%2E%22�
http://www.slac.stanford.edu/spires/find/wwwhepau/wwwscan?rawcmd=fin+%22Koumparos%2C%20A%2E%22�
http://www.slac.stanford.edu/spires/find/wwwhepau/wwwscan?rawcmd=fin+%22Vottis%2C%20C%2E%22�


 

 
 

– 10 – 

 


	LHC_Note_final_checkTM.pdf
	Acknowledgment


