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ABSTRACT

Differential cross~sections for negative pion scattering on “He have
been measured at five pion kinetic energies between 110 MeV and 260 MeV
in the angular range from 5° to 180°. Total cross-sections have also
been measured at eleven energies between 67 MeV and 285 MeV. The differ—
ential cross-sections have been fitted with a phenomenological expression
for the nuclear scattering amplitude. Conventional phase shifts have been

reconstructed starting from the parameters of the fits.
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INTRODUCTION

This work continues the pion-nucleus scattering studies at the CERN Synchro-

cyclotron, which started with extensive 1--12C measurements [1,2].

Negative pion elastic scattering on *He has been measured at five pion
kinetic energies between 110 MeV and 260 MeV in the angular range from 10° to
nearly 145° in steps of 5° (lab. system). Very forward angular distributiomns
(down to ~ 4°) have also been measured at 110, 180, and 260 MeV and cover the
angular region in which Coulomb and nuclear scattering amplitudes interfere in a
measurable way. The 180° pion scattering cross?sections have been deduced from

measurements made on the forward recoiling o particles.

Besides the angular distributions, total cross—-sections have also been

measured at eleven energies between 67 MeV and 285 MeV.

The experimental methods are reported in the first part of this article,
Since the original pion spectrometer has already been described previously [1,2],
only the modifications made to that set—up are discussed here. In particular,
the important modifications needed to enable the momentum analysis of the recoiling
o particles by the spectrometer, including the installation of low-pressure MWFPC,
are considered in some detail. A brief description of the helium target is also

given.

The elastic differential cross-sections are reported in Section 3 together

with the methods which were used for data-taking and processing.
The same is done for the total cross—sections in Section 4.

In Section 5, a phenomenological parametrization of the nuclear scattering
amplitude is introduced. It explicitly takes into account the position and depth
of the zeros of the amplitude as revealed by the dips.in the experimental angular
distributions. Using this nuclear amplitude, fits of the measured differential
cross—sections, including available low-energy data around 60 MeV, are satisfactory
over the complete angular range at all energies. The calculated parameters are
given in tabular form. In particular, the values of p, the ratio of the real to
the imaginary part of the forward nuclear amplitude, are compared with those pre-
dicted by forward dispersion relations. With the use of the parameters of the
fits, the phase shifts are easily reconstructed. The usual ambiguities of phase-
shift analysis are readily resolved at low energy. Going up in energy, a con-
tinuity argument allows the selection of a set of phase shifts which shows a

reasonably smooth behaviour in the complex plane.




EXPERIMENTAL EQUIPMENT AND METHODS

The double achromatic spectrometer used for the measurements has been des-
cribed previously [1,2]. Thus, only the main changes which were made to the ori-

ginal set~up are mentioned here.

2.1 Helium target

When filled with liquid helium, the target is used in the supercooled mode,
which means that the pressure above the liquid is maintained at a value greater
than the saturated vapour pressure. This makes sure, as was directly observed,
that no inhomogeneities (bubbles) develop inside the liquid, which could lead to
an erroneous evaluation of the density. In order to maintain the system in a
steady supercooled régime, both the pressure and the temperature of the target

have to be kept constant.

As usual, the gross cooling is ensured by liquefying helium inside the target
through good thermal contact with a "cold finger" coming out of a large dewar
containing liquid helium at room pressure (v 4.2°K). A precise feedback tempera-—
ture regulation system allows the maintenance of the temperature at some well-
chosen value, namely (4.46 t 0.02)°K, by enabling a forced circulation of liquid
helium at 4.2°K in a spiral coil surrounding the '"neck" of the target container.
The helium circulation is controlled by the saturated vapour pressure (900 Torr)
of a small quantity of liquid helium contained in a cavity inside the copper
frame of the target itself (gas thermometer). The pressure on the liquid helium
in the target is maintained at (1010 % 10) Torr. The resulting density of the
helium liquid in the target is (0.121 * 0.001)g/cm®.

The target can be rotated around the vertical axis in order to bring its own
axis along the bisectrix of the scattering angle while, through a vertical dis-
placement, the target itself or an empty dummy may be brought into the beam.

Both movements are remotely controlled whilst the target is under high vacuum

conditions.

For the angular distribution measurements, the target container itself con-

sists of a copper frame, with 210 x 40 x 30 mm® inside dimensions, closed by two

windows of 0.13 mm thick mylar each for the very forward measurements and 0.03 mm
thick havar each for the "large-angle' measurements. Havar is a cobalt-base
high-strength alloy*) with a mean Z of 26, which can be manufactured in very thin
foils. These two materials have very different Coulomb differential cross-—
sections. The use of mylar during the forward angle measurements allows a large

over—all background reduction (low Z effect). The use of havar at large angles

*) Patented Hamilton Precision Metals, Lancaster, USA.
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brings most of the spurious scattering due to the windows into the low angular

region (form factor effect).

The same target frame is used for the measurements of forward-emitted o parti-
cles, but the windows are 0.025 mm thick titanium foils. Of course, the target is
filled, in this case, with gaseous helium in order to allow the o particles to leave
the target. At each pion incident momentum, temperature and pressure are chosen
such that the momentum straggling of the outgoing o particles, owing to scattering
at different depths in the target, is of the same order of magnitude as the momentum

acceptance of the spectrometer.

The target used for total cross—section measurements consists of a hollow
copper cylindrical frame, 60 mm long and 80 mm inside diameter, closed by two
0.03 mm thick havar windows. It is filled with liquid helium at the same tempera-

ture and pressure as for the pion-scattering measurements.

The internal pressure in the target makes the windows bulge so that the

effective liquid helium thickness appreciably differs from its nominal value.

A precise measurement of the deformation of the windows at low temperature under
given pressure conditions being rather difficult, the effective thickness is de-
termined from measurements made at room temperature under controlled pressure
conditions on the assembled target. They are extrapolated to low temperature by
merely taking into account the linear dilatation of the various materials. This
process leads to a relative error of #37% on the thickness of the target used for
the angular distribution measurements and to a 17 error on the thickness used for
the total cross—section measurements. This error is the main contribution to the

systematic error on the given cross-sections.

2.2 Angular distribution measurements

2.2.1 Forward angle measurements

The counters, the electronics, and the data-acquisition system are essentially
the same as those used for the measurements on '2C [2]. A sketch of the double
achromatic spectrometer with the positions of the different counters is given in
Fig. 1. As compared to the old set-up [2], only the anticoincidence counter Ké
is modified: the hole is now 30 X 30 mm? and the counter is placed at a distance

of 165 mm from the centre of the target.

The trigger is given by the combination AIK{AzzéBCD and the monitor by
AIK{AZK;. The momentum dispersion of the incident beam is Ap/p = 1.8%. The

over—all angular resolution is 1°.

Each event, after fully coding, is read into an IBM 1130 computer. It is

then classified into seven histograms each corresponding to one of the seven
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channels of the "wall hodoscope" H, (Fig. 1). Each of these seven sixty-three-

channel histograms covers a 107 byte of the scattered pion-momentum spectrum.

2.2.2 Large angle measurements

For the measurements at large angles, the detection system is the same as
above, except for the first electronic slit K; which is removed and for the DISC

Cerenkov counter D which is not used.
In this case the over-all angular resolution is 2°.

2.2.3 Backward scattering

The energy of the forward recoiling o particles ranges from v 20 MeV to
v 45 MeV, corresponding to 110 MeV and 260 MeV incident pions, respectively. Im-—
portant changes are made to the second part of the spectrometer for the identi-

fication of the o particles, namely:

i) The vacuum pipe in the analyser arm is directly connected to the scattering
chamber so that the path of the o particles is entirely kept under high

~vacuum (V 107°% mm Hg) from the target up to the final hodoscope.

ii) The scintillator counter B is replaced by a multiwire proportional chamber

(MWPC) filled with pentane at low pressure (6 mm Hg) [3].

iii) A second MWPC, of the same low-pressure type, is installed just in front of
the final scintillator’hodoscope, in order to perform a rough momentum

analysis.

In order to tune the analyser correctly, a careful study has been made of
the energy losses of the o particles in the target, in its window, and in the
MWPC gas and windows. The whole process has been checked with the 8.8 MeV a line
from a Th B + C + C' source. Moreover, the identification of the o particles is
strengthened by an independent measurement of their time of flight between the

_ two MWPCs.

Owing to the low scattering croés-section and to the use of cold gaseous
helium-in the target (see Section 2.2), whose density is a factor 10 to 50 lower
than that .of liquid helium, the counting rate is extremly low, typically a few

counts per hour. Even at such a low density, there is a large straggling on the

energy loss inside the target and the momentum spectrum of the recoiling o particles

is very broad (v 10%Z) . Three settings of the analysing magnet are necessary to

cover completely the elastic scattering peak.

2.3 Total cross—-section measurements

Total cross-sections are measured in the usual way, i.e. by measuring the

attenuation of the pion beam in a target with a set of transmission counters.
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Five circular scintillation counters, each 6 mm thick and 10 mm apart from one
another, are placed just behind the target, inside the scattering chamber itself.
They cover a solid angle of 0.14, 0.22, 0.30, 0.38, and 0.46 sr, respectively.
They are put in order of increasing dimensions. This greatly simplifies handling

the multiple scattering corrections.

A DISC Cerenkov counter, tuned to detect pions only, is placed in the inci-

dent beam at 102 cm from the centre of the absorption target.

Two small counters, each 1 em in diameter, placed at 16.5 cm and 76.5 cm

from the centre of the target, respectively, are defining the incident beam.

ELASTIC SCATTERING

3.1 Measurements where the pion is detected

3.1.1 Corrections made to the raw data

The seven histograms mentioned previously (Section 2.2.1) are treated sepa-

rately. Corrections are applied for the following effects:

i) Background under the elastic peak due to the scattering of pions on the tar-
get walls. This background is measured with an empty térget at a series of
angles. The counting rate has been found to vary smoothly with the scattering
angle. The background above 30° is negligible, except in the region of the

minima in the cross—sections.

ii) Background under the elastic peak due to pion-decay muons. This background
is deduced from measurements made at small angles with and without the DISC
counter at the end of the beam. It is in good agreement with the result of
a Monte Carlo calculation, which takes into account the exact structure of
the final hodoscope. This background must only be taken into account at

large angles, when no DISC is used in the trigger.

iii) Absorption of the scattered pions in the target and in the various counters.

This effect amounts to 3 to 4%.

iv) Finite angular acceptance of the spectrometer. This correction can be written

as
2 (62)

c. =d_1_ i(@] R [@. 37

Fa " ez 0 a0 (@), T de2 (@), [T

where (dc/dQ)M is the measured cross-section at the scattering angle 6, and
V(G%) is the angular resolution of the analyser. This correction is subtracted
from the measured cross-section in order to get the true cross-section. A

measurement of the angular distribution between -5° and +5°, with the target
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in place, gives the combined finite angular resolution of the two parts of
the spectrometer, including the contribution of the multiple scattering in
the target. The angular width v(8%) so obtained is 1.1° for the small-angle

measurements and 1.7° for the large-angle measurements,

v) Zero angle shift for each channel. The previous measurements also allow
the determination of the true 0° scattering angle for each channel of the

wall hodoscope, separately.

3.1.2 Absolute normalization of the data

The relative normalization of data taken at the same energy but during dif-
ferent runs is obtained by comparing measurements of the cross-sections at the

same fixed reference angles made with great statistical accuracy during each run.

The absolute normalization of the cross-sections is obtained by carrying out

a series of calibration experiments at the same reference angles:

1) Measurement of the individual efficiency of all counters in the analyser
arm. All efficiencies were nearly equal to 100%, except for counter B made
of very thin scintillator (0.4 mm), for which it was found equal to about

85.5%.

ii) Measurement of the solid angle of the analyser with a set of diaphragms of
known aperture. Its value has been found to stay constant with energy and

equal to (3.76 * 0.06) x 107° sr.

iii) Measurement of the incident beam contamination in muons and electrons. This
is known with great precision owing to a DISC counter which is placed about

1 m in front of the target.

The resulting normalization factor, which has been checked by measurements
made on the transmitted beam at 0°, is considered to be accurate to *2.7%. Taking
into account the 3% error on the target thickness (see Section 2.1) the absolute

normalization is believed to be known with a +4% accuracy.

3.2 Measurements where the recoiling o particles are detected

The o particles recoiling in the forward direction have been measured at the
same five energies at which pion scattering has been measured. To check the
method, a measurement of o particles emitted at 16.6° has first been made at one
energy. These correspond to pions scattered at 144°, the largest angle where
scattered pions could be detected in the laboratory. Although all relevant ex-—
perimental corrections and the Jacobian (v 4) are properly taken into account, the
results obtained by the two methods, when expressed in the c.m. system, disagree
by a rather large factor. The same comparison repeated at the other energies has
shown that the ratio of the cross—section measured with pions to that measured

with o particles, could vary between 1.5 and 3.
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A series of calibration measurements has then been undertaken to try to under-

stand this:

i) The solid angle of the analyser has been remeasured with 8.8 MeV q particles_

(Th B + C + C' source). It is found to be equal to the one measured with pions.

ii) The transmission of the analyser has been measured with a thorium source of
known activity and is found equal to one. This is, as explained before, a
good check on the calculations of the energy losses through the whole set of

counters.

iii) The efficiency of the MWPC has been directly measured with o particles of
energy between 25 and 55 MeV produced at the cyclotron of the Institut de

Physique Nucléaire in Lyon. It is found to be always greater than 99%.

iv) The density of the target has been checked by measuring the number of pions
scattered at 30° when the target is filled with gaseous helium and when it
is filled with liquid helium. Their ratio agrees, within the experimental
errors, with the ratio of the corresponding densities as they are deduced

from the known temperature and pressure of the target.

Since all the above tests give expected results, it is supposed that the factor
attached to the o-recoil measurements remains constant, or at least varies rather
little, between 0° and 16.6° (the energy of the o particles varies less than 10%

in this angular range). The following scaling has then been used:

do oy ™ _ [do oy I do oy 1T [[do oy I
= (18 === . -—= - .
[dQ (180 )] 0 (146.8 )J *9139 (0%) a0 (33.27) s
T T 0 o
where 146.8° is the c.m. angle corresponding to the maximum angle in the laboratory

at which the spectrometer could be rotated, namely 144°, and 33.2° is the corres-

ponding angle in the c.m. system for the recoiling o particles.
3.3 Results

The results of the forward angle measurements at 110, 180, and 260 MeV are
given in Table 1, and those of the large—angle measurements at 110, 150, 180, 220,
and 260 MeV are given in Table 2.

The complete set of data is shown in Fig. 2 as a function of ecm’ the . scat-
tering angle in the c.m. system. In Fig. 3, only the "large~angle" data (for the
sake of clarity) are shown versus t/tmax = (1 - cos Gcm)/Z, |t| being the square

of the momentum transfer in the c.m. system. If one subtracts the pure Coulomb
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contribution to the cross—-section for the very forward angle measurements, one

gets

data

i)

ii)

iii)

Fig. 4 where the Coulomb-nuclear interference is clearly displayed.

The differential cross-sections show a smooth continuation of the low-energy

of Block et al. [4] and Crowe et al. [5]. Their main characteristics are:

The angular position of the first minimum is independent of the incident

pion energy.

A second minimum, which is wider than the first ome, appears at 150 MeV and

it moves towards smaller angles as the pion energy increases.

The height of the second maximum decreases by two orders of magnitude by
going through the (3.3) resonance. This is very different from the m-!2C
case [1] where it was found that the first minimum is approximately constant
versus |t| and that the height of the second maximum remains almost constant

versus the pion energy.

TOTAL CROSS—SECTION MEASUREMENTS

4,1

Data analysis

The fraction of the beam going through each transmission counter has been

measured a great number of times (typically 200), a full target measurement al-

ternating each time with an empty target ome. Let Ri be the ratio of these two

sets

i)

ii)

iii)

iv)

. .th
of measurements as obtained for the i counter.

4.1.1 Treatment of the raw data

Each ratio Ri has been corrected for the following effects:

Pion energy loss in the target. This implies that the measured cross-section
is an average over a certain energy domain of the "true" cross-section. This

correction happened to be negligible in our case.
Multiple scattering in the last definition counter and in the target.

Pion disintegration in flight. A Monte Carlo calculation allowed correction
for this effect which amounted at most to some per cent, owing to the DISC

counter.

Absorption in the different transmission counters.

The corrected ratios R; are then converted into partial cross—sections using

the relation O(Qi) = -(1/n) 1n R;, where n is the target thickness in nuclei per

square cm and {; the solid angle subtended by the ith counter.
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4.1.2 Extrapolation to zero scattering angle

The five partial cross—sections O(Qi) obtained above are related to the

total cross-section o, by

T
o (T[] . (ac _Qi do do
O(Qi) i 0T.+ J l:[dQJC (dQ}C-N:I “ j. l:[dQ]tal (dg}lnel:| -
Q. 0
i

nuclear interference, elastic nuclear scattering, and inelastic nuclear scattering,

respectively.

The single Coulomb scattering correction offers no difficulty. The elastic
scattering and Coulomb-nuclear interference contributions are deduced from the
measured angular distributions (at least at some energies; for the others an

interpolation is made (see Section 5) so that they can also be subtracted from

O Having done this, a new value is obtained, namely
Q.
i
, -G - _clc_f]
O‘(Qi)—OT f[dQ daQ .
inel

0

If the values of 0'(91) are plotted versus ti, the square of the four-momentum
transfer for scattering to the edge of the ith transmission counter
(Itil X piabﬂi/ﬂ), it is found that, within the experimental errors, O'(ti) de-
creases linearly with ti’ the slope being small. Thus a linear extrapolation to
zero scattering angle has been made. The slope of the straight line is a measure

o
of [(do/dR) (0%)], ;.
4.2 Results
The results are given in Table 3 and are displayed in Figs. 5 and 6.

Enough positive pions were available at 110 MeV to allow a total cross=—

section measurement. The result is also given in Table 3 and displayed in Fig. 5.

In the same figure are also shown the total elastic cross—sections which
were obtained by integrating the measured angular distributions, and the remaining
total inelastic cross-sections. The total elastic cross—sections at 51, 60, 68,

and 75 MeV were deduced from the data of Crowe et al. [5] (see also Section 5).

.The agreement between our total cross—section results and those obtained by
Wilkin et al. [6] is good at the highest energies, but it becomes very bad at
150 MeV and below (v 10 standard deviations). Nevertheless, the difference be-
tween the 7% and 7~ total cross-sections at 110 MeV is, within the experimental

errors, the same in both experiments. Below 100 MeV our data are in good over-all
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agreement with the preliminary results of Burleson et al. [7]. The dashed curve

is a theoretical prediction by Locher et al. [8].

DATA ANALYSIS AND DISCUSSION

5.1 Parametrization and fits of the differential cross—sections

Figures 3 and 4 clearly show that except for the region where nuclear and
Coulomb amplitudes interfere in a significant manner, the forward nuclear scat-

tering amplitude has an exponential behaviour versus |t]. A good parametrization

,of the nuclear amplitude is obtained in this region with an exponential function

.0f the form a exp (—b|t|/2). On the other hand, it is also clear from these
<

figures that it is omly valid up to t/tmax 0.2, where dips and bumps start show-
ing up. This type of structure can be parametrized by a function of the form

Hj(l - {t]/tj), where tj are complex constants, i.e. poles in the complex plane.
Their real part is linked to the position of the dips and their imaginary part to

the depth of the dips.

It is thus natural to try a global parametrization of the data by just putting

together these two partial parametrizations, i.e. by multiplying such a product

of pole terms by an exponential function of |t . In fact this was first suggested

to us by Germond and Wilkin [9].

5.1.1 Parameters: definition and meégigg

Warning: Henceforth, all quantities mentioned below, unless otherwise stated,
refer to the c¢c.m. system. TFrom now on, also, the notation t for the square of the

momentum transfer will be used, instead of Itl.

If fC (fN) denotes the pure Coulomb (nuclear) scattering amplitude, i.e the

scattering amplitude in the absence of nuclear (Coulomb) interaction, then

do _ -218 2
Eﬁ = fN e + fC s

where 2§ is the relative phase, also called "Bethe phase'', between the two scat-

tering amplitudes,

i) The pure Coulomb amplitude for spin 0 - spin O scattering, is given by

= _on k '
fC(t) = =27 : Fﬂ(t)FA(t) .
N, the effective Coulomb coupling constant, is given by

n-= leZu/Blab >
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where Z, and Z, are the charges of the projectile and of the target nucleus

(2,Z, = -2), respectively; B is the velocity (c = 1) of the projectile

lab
in the laboratory and o the fine structure constant. k and t are the momen-—

tum and the square of the momentum transfer, respectively.

The functions Fﬂ(t) and FA(t) are the pion and the nucleus form factors,

respectively. For Fﬂ(t) the standard form
- 2
Fﬂ(t) = exp [—rﬂt/6]

is used where r. = 0.8 fm is the value taken for the r.m.s. radius of the

pion. For helium the following expression [10] is adopted
= 6
Fuo(t) = [1.0 - 0.9986 x t]° exp [-0.4638 x t] ,
which for small t values is well approximated by

FHe(t) >~ exp [—réet/6j s

where The = 1.67 fm is the r.m.s. radius of helium.

ii) The parametrization of the nuclear scattering amplitude, as introduced above,

is explicitly written

J
£(6) = £,(0) exp [-R!%t/6] I_I M-t/ .

j=1

The forward amplitude fN(O) is written, as usual, as

_x o
£0 (O =4 Otot[l +ol,

where p = Re fN(O)/Im fN(O). The tj are complex constants (poles) and J is

the number of dips in the angular distribution.

For small t values, fN reduces to

J.
~ REYZ)
fN(t) o fN(O) exp { RS /6 + z: (1/tj) te ,

j=1

which allows for the definition of an effective strong interaction r.m.s.

radius

J
2 _ pl2
RZ=R'Z+6Re| ) (1/e,) | -

s
i=
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It is convenient to introduce the notation tj = 2k%(1 - zj), where zj are

new complex constants. R? can then be written

J
2 _pt2 . 3 _ —11
RZ=R!” +7x| ) Re (1 27 -

_j=1 -
iii) The relative phase 2§ is given by [11]

- _ 2 | 2 2 -
28 = n{ln [RZ + x2 + x2 Ye/6] + o.5772} .

5.1.2 Fits of the differential cross—sections: results

Our measured differential cross-sections, together with those of Crowe et al.
[5] at lower energies, have been analysed according to the above-mentioned forma-
lism with only n, R;, and the z, as free parameters. Fitting was done by using
the powerful minimization program MINUIT [12], a Library Program on the CERN
CDC 7600.

The results of the fits are given in Table 4. The values of ot used in
the fits are those measured in this experiment except for the one at 75 MeV,
which was obtained by interpolating our results, and those at 51 and 60 MeV which
result from an extrapolation of our data, assuming that the total cross—section
goes smoothly to zero with T. Since this is a quite arbitrary, although plausible

hypothesis, rather large errors have been taken in both of these cases.

The error quoted for each parameter results from the statistical combination

of three different errors: the standard error given by the program MINUIT (which
2

min
the #47 uncertainty in the absolute scale of the differential cross-sections, and

corresponds to a change of the XZ from X;in to ¥ + 1), the error coming from
the error resulting from the propagation in the fits of the error on the total

cross—sections.

The slight difference (essentially on p) between the values of the raiameters
giveﬁ here, in Table 4, and those given in a previous paper [13] comes from a

small change in the relative phase 28, where R; was taken instead of Rs'
The final parameters can be interpreted as follows:

i) The knowledge of p gives immediately the values of Re fN(O) which are
shown in Fig. 7. The curves shown in the same figure are results of forward-
dispersion-relation calculations made by Wilkin et al. [6] (dashed curve) and by
Batty et al. [14] (full curve). There is a fair agreement between theory and ex-

periment for all but the highest energies, where a rather large discrepancy shows

up.




- 13 -

ii) Starting from the values given in Table 4, it is easy to calculate the

square of the effective r.m.s. strong interaction radius at zero momentum transfer

J
Re (1 - 2z,
R2 = R'2 + 3 2: ( J)
8 s k2 1 -2z,12 °
j=o J
It has been shown by Beiner and Germond [15] and Silbar and Sternheim [16]
that 7T-nucleus elastic scattering can be well described by a simple optical-model
potential if an energy-dependent effective radius is used. For an amplitude
which behaves like Pg(cos 0), the effective radius is given by [16]

2 _p2 .3 1
R —RA+22(SL+1)k2,

where RA is the r.m.s. radius of the nuclear density, or r.m.s. "matter radius",

which in the case of “He is equal to
Ri, = (L.67)% ~ (0.8)% = (1.47)2
In particular for a pure p-wave, the above formula becomes
R = (1.47)2 + 2

In the case of T-nucleus scattering around the 3/2, 3/2 resonance, where the
p-wave is known to play a dominant role, R; is expected to follow rather closely
the above relation. This is actually the case, as may be judged from Fig. 8 where
the calculated values of R; are plotted versus 1/k?. A linear least-squares fit

to the data gives

RZ = (1.631 * 0.075)2 + (3.78 % 0.15)/k? ,
when all points are taken into account (full curve) and
R: = (1.552 + 0.027)% + (4.40 * 0.12)/k?

when only the data between 110 MeV and 260 MeV are fitted (dashed curve). The
agreement with the effective radius formula given above is surprisingly good as a
linear fit supposes that one partial wave enters into account only. It will be
seen later (Section 5.2) that this is not the case. Moreover, the coefficient of
1/k? varies rapidly with &: it is 0, 3, 9, 18, ... for £ =0, 1, 2, 3, ..., re-

spectively.

iii) In Fig. 9 are shown the values of Re tj = 2k? Re (1 - zj) together with
their physical limit (4k®). They show a very regular behaviour, the "trajectory"
of Re t, being nearly parallel to the one of Re t;. The large error bar for

Re t, at 150 MeV reflects the difficulty encountered by the fitting program to
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find the location of the second dip. However, it is quite remarkable that it is
Aimpossible to get a good x? at 150 MeV without introducing a second dip in the

fitting process.

iv) A major difficulty is encountered for the determination of the sign of
Im tj = 2k? Im (1 - zj). Equally good fits are obtained with both signs. The
origin of this ambiguity in sign can be found by developing the expression for

the differential cross-section in the following manner:

do
1Y)
Re f Im f

N
cos (28) +
ol Re £

|
T

I
Hn

sin (28) .

Reading in Fig. 8 the values of R;, it is easy to calculate the value of 2§ in the
region of the first dip (ecm = 75%), It is found that 28 varies between 0.035 at
260 MeV and 0.022 at 51 MeV, which means that cos (28) = 1 and sin (28) = 0.03 in
that energy domain, at the position of the first dip. Using the values of Table 4,
it can also be verified that Im fN/Re fN is of the order of unity in that regiom.
Thus even when lfcl and IfNI are of the same order of magnitude, the cross-section

is insensitive to the sign of Im f_, because the latter appears only in the pro-

s
duct term Im fN sin (28)/Re fN whigh is 'small compared to cos (28). This stresses
again the importance of having a good theoretical estimate for the phase 2§ at
large momentum transfers. In that respect, it is perhaps good to recall that the
expression given above for 28 is well justified theoretically for small t values,

but still lacks justification at high momentum transfers.

Since the sign of Im (1 - zj) is not fixed by the fit, the signs given in
Table 4 are in a certain manner arbitrary, although not entirely so. As a matter
of fact, it will be shown in Section 5.2 that from the preceding analysis it is
possible to reconstruct a phase-shift analysis. The sign ambiguity for the
Im (1 - Zj) is closely related to the well-known ambiguities encountered in stan-
dard phase-shift analysis. However, it is univocally removed at energies up to
110 MeV, because the "recomstructed" s-wave phase shifts fall outside the unitary
circle if the wrong sign is chosen. Above 110 MeV a plausible guess may be ob-
tained by looking at the values of Im t, as a function of T (Fig. 10), using the
argument of- continuity. It is most likely that only two sets of values are physi-
cally acceptable: either all values of Im (1 - z,) are taken with the positive
sign (continuous curve), or they go through zero around about 220 MeV and become
negative at 260 MeV (dashed curve). As the phase shifts resulting from the first
choiée (continuous curve) show a somewhat more regular behaviour (see also

Section 5.2) than with the other one, the signs given in Table 4 are adopted.
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With regard to Im (1 - z,) one gets to the signs given in Table 4 partly by
the continuity argument, partly from the smoothest behaviour observed for the
phase shifts in the complex plane, though the situation is far less clear than for

Im (1 - z,).

5.2 "Reconstructed' phase-shift analysis

5.2.1 Reconstruction of the phase shifts
starting from the phenomenological fit

In a phase-shift analysis of the scattering of spin O particles, the scat-

tering amplitude is approximated by the finite sum

£(8) =

bl

L )
z: (22 + 1) ay Pz(cos 8) .
=0

a, are complex coefficients usually written as a, = [n2 exp (2162) - 1]/21,

where 62 is the (real) phase-shift parameter for the gth

partial wave and nl the
corresponding (real) absorption parameter (0 = Ny < 1. Pl(cos 8) are the usual

Legendre polynomials.

The above expression being composed of a sum of polynomials, it is itself a
polynomial of degree L in cos 6. Thus a phase-shift analysis is based on a de-

velopment in cos 6 of the form

L
£(0) = z: Az cosze .
,Q'=0

This remark is at the origin of Gersten's systematic study of the ambiguities

which are encountered in complex phase-shift analysis [17]

It can be shown that the phenomenological expression for fN given previously
(Section 5.1.1) can readily be written as an expansion in cos 8. To prove this,
it is first noted that the exponential term can be written as exp (-u) exp (u cos 8),

where u = Ré2k2/3, and
exp (u cos 6) = Io(u) + 2 }: Ik(u) cos (k8) ,
k=1

where Ik(u) are (modified) Bessel functions of integer order [18]. Taking into
account the fact that cos (k6) can be represented as a polynomial of the kth

degree in cos 6, it follows that

pl2 _ _ = m
_exp ( RS t/6) = exp (-u) exp (u cos 6) z: bm cos 8 ,
m=0
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where
v b, = e_u
X
-u n+1l .
b, =e = 42 2: O (-1 (W
n=1
[s0]
_ ~u _ n+1 2 -
b,=e 4 ) Ol (wy,
n=1
etc.

In the energy domain considered here, u varies between 0.27 at 51 MeV and
1.78 at 260 MeV, the value u = 1 corresponding nearly to T = 180 MeV. Tables of
exp (-u) Ik(u) are given in Ref. [18].

On the other hand, since t = 2k%(1 - cos 6) and tj are complex constants,
the preduct H;=1(1 - t/tj) is a polynomial of degree J in cos 8., Combining the
two preceding results, it follows that fN can be written as a series of powers in

cos O, i.e.
- k
fN(e) = Z: Ck cos 6 ,
k=09
where-Ck are complex constants.

Comparing this last expression with the expansion in partial waves, it is
clear that if both expressions are to represent the same physical situation for

every cos 0, then they must be limited to the same power L of cos 8§ and
A. = C, for 0=<j<L,

which allows one to express the phase-shift parameters as functions of the para-
meters of the phenomenological fit. For example, for a phase—shift analysis

limited to 5 partial waves (L = 4) the identification glves

’ 8

3, = k315 €
a, =k é% C
d a, =k f% [Cz g Cq)
a, =k (% C, + %- ]
la, = k [co -% c, + %— ] .

5.2.2 Results

A program has been written which does those calculations taking into account

eight partial waves (L=7), As § and n are becoming very small for £>4, only the
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results for the first five partial waves are given in Table 5 and only the first
four are represented in Fig. 11. 1In Fig. 11 are shown also the results of Nordberg

et al. [19 at 24 MeV.

The phase shifts obtained at 51, 60, 68, and 75 MeV are, within the quoted
errors, in good agreement with those obtained by Crowe et al. [5] through a stan-

dard phase-shift analysis.

Concerning the errors given in Table 5, a word of caution is necessary as
the parameters p, Ré, etc., which are implicitly contained in the coefficients Ci’
have been treated as independent variables and the corresponding errors accordingly.
In fact, it is clear that not all the parameters are independent, some of them
being even highly correlated; for example, the correlation coefficient between
p and R; can reach a value as high as v 0.6, However, a complete calculation of
the error propagation, taking into account the correlation coefficients between
all pairs of parameters, is complicated and tedious, and we did not do it. The

quoted errors in Table 5 must be considered as indicative only.

Phase shifts given in Table 5 have been obtained by taking all values posi-
tive for Im (1 - z;) (full curve in Fig. 10), while all Im (1 ~ z,) have been
taken with the negative sign. We have already mentioned (Seétion 5.1.2) that there
is no problem in determining the sign of Im (1 - z,) at and below 110 MeV as the
phase shifts obtained with opposite sign lie outside the unitary circle. This
is no longer true above 110 MeV, where the sign of Im (1 - z,) is affecting
enormously the value of GQ without changing much the value of the absorption
parameter ure This can be seen in Table 6, where we have given a resumé of the
values taken by § and n for the first three partial waves, and for all possible
combinations of the signs of the imaginary coefficients Im (1 - zi) at energies
above 110 MeV. Our choice of signs, which corresponds to the two leftmost columns
in Table 6, is arbitrary, except for the fact that it is the one which gives the
smoothest possible behaviour that can be found for the phase shifts in the complex

plane taking into account the continuity argument for the values taken by Im (1l - zi).
5.3 Discussion

Though lacking in precision, the trajectories of the phase shifts in the
complex plane (Fig. 11) show at least clearly a common tendency to cross the
imaginary axis between 150 and 220 MeV, i.e. in the energy region where the
m-N 3/2 3/2 resonance takes place. Now, this is the behaviour expected for T-N
scattering on a nucleon bound inside a nucleus. As a matter of fact, the partial-
wave expansion for pion scattering on a bound nucleon at the resonance energy,
which involves only the p-wave in the pion-nucleon c.m. system, when transformed

back to the nucleus c.m. system generates partial waves of various £ that behave
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in a manner similar to the original one. So, the particular behaviour of the
trajectories in Fig. 11 is a first indication that what is observed, in fact, is

the formation inside the nucleus of a A;,; which decays before being absorbed.

This conclusion receives further support from the fact mentioned before
“(Section 3.3), namely that the angular position of the first minimum is energy-
independent, and corresponds to ecm % 75°. Simple theoretical arguments involving
transformation from the m-N c.m. system, where the differential cross—section is
minimpm at ecm = 90°, to the m-nucleus c.m, system, allows an explanation of the

angular shift, at least qualitatively.

This conclusion, if confirmed, is of great practical importance. Further
study of m-nucleus scattering around the 3/2 3/2 resonance on a series of light
nuclei will provide knowledge on the formation and propagation of the A, resonance
inside a nucleus. The best targets are the lightest omes, since our previous
measurements on '2C [lj have shown a completely different behaviour of the dif-
ferential cross-section with no apparent sign left of a Ay, formation inside this
nucleus. This difference can be explained by the strong absorption effect of nuc-
lear "matter" on an object like A,,. Carbon has already such a great number of
absorbing centres that Ay, is readily absorbed before decaying. The smaller

number of nucleons in the case of helium leaves it a greater chance to decay.

O0f course, it may be wondered why a "classical" phase-shift analysis was not
performed instead of going first through a phenomenological fit from which phase
shifts are deduced afterwards. There are at least two good reasons for this.
First, the parameters entering the phenomenological fit are less numerous than
those which are needed in a conventional phase~shift analysis: only four para-
meters are necessary up to 110 MeV, and six above in the former case, while 3 to
6 partial waves are necessary between 50 and 260 MeV, which means from 6 to 12
parameters, in the latter. Secondly, the parameters involved in the phenomeno-
logical fit have a well-defined physical meaning. In particular, the complex
© parameters t, are linked to the '"visible" zeros of the scattering amplitude.
Their real parts show a very regular behaviour as a function of energy (cf. Fig. 9)
and their imaginary parts are expected to do the same. This allows one to get
some information on their sign, which is not determined in the £fit, by using the
argument of continuity. The sign ambiguity for Im tj is not a weakness proper
to this type of fit, but is intimately connected with the well-known ambiguities
encountered in phase-shift analysis [16]. Both methods should be considered
rather complementary as it was shown previously that the reconstructed phase
shifts allowed the exclusion of the negative Im t;, at low energies while, in its
turn, a plausible argument about the possible behaviour of Im t, allowed the ex-

clusion of some solutions for the phase shifts.
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The question now arises as to whether the good description of the data with
the phenomenological formula given in Section 5.1 is accidental, and could per-

haps fail at higher energies, or for other nuclei. Our belief is that it is not

accidental. In this respect, a method, which is known as the amplitude zero analy-

sis, was proposed some years ago by Barrelet [20] as an alternative, but equiva-
lent, method to the more conventional phase-shift analysis. The present pheno-
menological formula is closely linked, although not o priori equivalent, to this
formalism. However, a remarkable property of this formula is that in the expan-
sion of the exponential in powers of cos 6, only a few terms are significant at
low energy (typically 3 to 4 at 180 MeV) and their number increases with energy
in a way similar to the number of partial waves necessary with increasing energy.

A careful study of this formula could well be worth the effort.
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Table la

n7-"He differential cross-section at small angles

T = 110 MeV, k = 194.18 MeV/c
O cm T () (2)™
i di cm diz cm
(deg) (MeV/c)? (mb/st) (mb/st)
4.86 271 | 382.0 * 45.0 | 257.0
5.13 301 : 348.0 % 44,0 | 207.0
5.39 333 282.0 * 27.0 | 169.0
5.68 370 231.0 * 21.0 137.0
5.93 404 | 247.0 £ 18.0 | 115.0
6.21 443 200.0 * 15.0 95.5
6.46 479 168.0 + 12.0 81.4
6.75 522 168.0 + 12.0 68.6
7.00 561 159.0 + 11.0 59.2
7.28 608 132.9 + 9.2 50.5
7.53 650 114.3 + 8.0 44,1
7.81 700 121.7 ¢+ 7.9 38.0
8.06 745 112.6 + 6.4 33.5
8.34 798 107.2 + 6.1 29.1
8.59 847 104.7 + 6.5 25.8
8.88 903 95.9 + 5.6 22.7
9.13 955 | 98.6 + 5.6 20.3 |
| 9.4 1014 77.6 + 5.2 17.9 !
| 9.68 | 1073 91.5 + 10.9 16.0 |
10,11 1170 84.4 = 4.7 13.4 ;
L 10.45 1251 | 89.5 + 6.6 11.7
11.20 1436 79.5 + 4.3 8.83
11.51 1517 65.9 = 6.3 7.89
12.26 1721 66.7 £ 4.3 | 6.10
13.28 2016 1 53.8 * 5.6 . 4.40
14.00 2238 | 48.4 £ 5.0 | 3.55
14.88 2527 . 53.1 : 4.7 | 2.76
15.59 2774 | 53.0 t 2.8 2.27
16.47 3094 | 49.1 % 3.3 | 1.81
18.25 3792 41.3 £ 3.4 1.18
19.13 4163 41,9 + 4.8 0.970
20.90 4963 41,2 + 2.1 0.666
21.78 5383 40.4 + 2.6 0.559
26.20 7750 28.8 + 2.4 0.252
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Table la (contd.)

T = 110 MeV, k = 194.18 MeV/c

écm ]tl do {QQJCOUI
. Q. aQ

cm cm
(deg) (MeV/c)? (mb/st) (mb/sr)
27.08 8267 30.5 + 2.6 0.218
28.85 9359 23.8 £+ 1.1 0.165
29.73 9923 24,5 £+ 2.5 0.144
36.77 15001 19.0 = 1.2 0.054
37.64 15694 17.9 £+ 1.6 0.049
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Table 1b
T = 180 MeV, k = 265.45 MeV/c
e €] () (22
) em 4 em
(deg) (MeV/c)? (mb/sr) (mb/sr)
4.70 473 233.0 + 30.0 131.0
5.11 560 190.0 = 25.0 93.7
5.38 620 186.0 =+ 14.0 76.2
5.74 705 161.0 + 17.0 59.8
6.20 824 138.0 = 10.0 42.9
6.42 882 155.8 + 9.8 37.4
6.72 968 146.9 + 9.6 31.0
6.93 1031 122.1 + 7.9 27.3
7.24 1123 139.4 + 8.6 22.9
7.45 1190 138.0 + 8.2 20.4
7.76 1289 129.3 + 7.8 17.3
7.97 1361 112.0 = 6.8 15.5
8.27 1467 126.3 =+ 7.4 13.3
8.49 1544 126.1 + 7.0 12.0
8.79 1656 121.3 £+ 6.0 10.4
9.01 1738 111.8 = 6.2 9.40
9.31 1857 106.9 + 5.5 8.20
9.53 1943 114.3 = 4.7 7.47
9.83 2069 103.2 + 6.2 6.57
10.04 2160 108.6 + 5.7 6.01
10.48 2349 110.2 = 4.2 5.05
11.00 2587 105.9 + 4.1 4,13
11,51 2836 111.7 + 4.2 3.42
11.90 3030 108.9 + 5.3 2,98
12,18 3173 102.8 * 4.1 2,70
12.64 3414 114.8 = 4.5 2.32
12.99 3608 112.7 + 8.5 2.06
13.61 3955 103.2 + 4.3 1.70
15.07 4844 93.4 = 7.4 1.10
15.68 5243 98.3 £+ 4.0 0.931
20.25 8705 78.3 =+ 6.1 0.305
20.86 9234 77.4 = 3,2 0.267
25.42 13641 64.2 £ 4.8 0.108
26.03 14294 61.2 = 2.4 0.096
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Table 1c

T = 260 MeV, k = 339.55 MeV/c

0 e 4o E o Coul
: @ Q
(deg) (MeV/c)? (mb/sr) (mb/sr)
3.92 541 203.0 + 50.0 | 151.0
4,48 | 703 132.0 £ 22.0 88.7
4.76 795 141.0 + 12.0 69.2
5.03 887 95.0 + 14.0 55.5
5.31 989 100.0 £ 7.9 444
5.69 1136 97.9 + 7.7 33.6
6.25 | 1372 89.5 + 3.2 22.8
6.81 1625 91.0 + 3.2 16.2
7.36 | 1898 92.4 + 2.9 11.8
7.91 2193 93.6 + 2.7 8.73
8.46 2508 96.3 + 2.7 6.61
9.01 2845 89.0 + 3.7 5.09
9.56 3202 90.0 + 2.5 3.97
10.11 3581 91.2 + 2.5 |  3.14
10.69 4004 - 89.6 + 2.7 | 2.48
11.17 4370 89.6 + 3.5 ' 2.06
11.79 4868 92.9 + 2.6 1.64
12.29 5280 90.0 + 4.7 ! 1.37
12.90 5822 85.7 + 3.0 | 1.1l
13.44 6310 83.8 = 4.4 | 0.934
13.89 6740 80.2 + 4.1 | 0.808
14.54 7380 86.2 + 4.2 0.662
15.49 8369 86.0 + 5.8 0.500
16.32 9287 78.5 + 3.6 0.395
17.19 10295 72.0 £ 3.6 0.312
17.83 11077 742+ 3.6 0.264
20.97 15277 66.9 £ 4.4 0.123
21.80 16495 63.5 + 2.8 0.101
22.67 17815  61.0 + 2.8 0.084
23.31 18828 ¢ 54.7 + 2.9 0.073
26.45 24128 45.1 + 3.0 0.038
27.27 25633 45.4 = 2.0 0.032
28.14 27249 43.9 £ 1.9 0.027
28.78 28483 41.6 + 3.0 0.024
31.90 34815 32.6 £ 1.6 0.013
32.72 36592 31.9 + 1.0 0.011
33.58 38487 29.9 + 0.93 0.010
34.22 39923 26.7 + 0.90 0.009
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Table 5

reconstructed” phase-shift analysis

Results of the
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Table 6

Dependence of the '"reconstructed" phase-shift parameter
on the sign of Im (1 - Zi)

Im (1 - zl)
Im (1 - z,) + +
T 2 8 n 8 n § n § n
(MeV) (deg) ' (deg) (deg) (deg)
0 -32 .46 -6 | 0.44 30 .73 14 .55
150 1 36 |0.27| -2 |0.03] 19 .06 | 43 10.31
2 7 49 10 .51 3 10.47 0 |0.45
0 40 360 11 [ 0.051 -39 .30 | -30 |o0.10
180 1 21 1 0.11| -38 |0.22 -27 15| 37 [ 0.17
2 0 |0.32 2 |0.32, -3 |0.32| -4 |0.32
0 16 290 -3 |o0.24° -9 |0.27| 13 .26
220 28 10.06| -39 [0.13 =37 {0.11| 35 |0.07
2 -1 |0.26 =2 :0.25| -3 [0.26] -3 l0.26
g 0 36 [ 0.48 ] 36 '0.447 29 :0.37| 32 |o0.38
260 | -37 10.31: -37 !0.38] -37 |0.31| -37 |0.24
2 -16 !0.38  -17 10.39 1 -17 .40 | =17 ] 0.39
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Figure captions

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

1

Sketch of the double achromatic spectrometer with the position of
counters. A,;, A,, B: beam defining counters; A; and A;:
"anticounters'"; H, and H,: 7-channel wall hodoscope and 63-channel
final hodoscope, respectively; D: differential Cerenkov counter

(DISC); T: target position; S: 1lead shielding.

7 ~"He elastic scattering differential cross—sections versus ecm’
the pion scattering angle in the c.m. system. Optical points (%)
on the vertical axis show the value of (k/4m) |Im £|? as deduced
from the measured total cross-sections. Only part of the forward
data are shown for the sake of clarity. The curves result from

fits by a formula given in the text.

T -"He elastic differential cross—sections versus t/tmax =

= (1 - cos Gcm)/Z. The points (*) on the vertical axis are the
optical points. Only the "large" angle data are shown for the sake
of clarity. The curves result from fits by a formula given in the

text.

(dG/dQ)Cm - (dO/dQ)g;Ul versus —-t, the squared four-momentum trans-
fer. The straight lines (dashed curves) are the "pure" nuclear
differential cross-sections. The continuous curves result from

fits by a formula given in the text.

ﬁ“—”He total cross—section, total elastic cross—section and total
inelastic cross—section versus the T~ energy in the laboratory.
Squares, deduced from data of Crowe et al. [5]; crosses,

Wilkin et al. [6].. The solid lines are a guide for the eye

only. The dashed curve is a theoretical prediction by Locher et al.

[8]. The only point measured with 7" at 110 MeV is also displayed.

Elastic differential cross-section at 0° and inelastic differential
cross—section at 0° integrated over all inelastic channels, as a
function of the pion energy in the laboratory. The curves are a

guide for the eye only.

Real part of the forward-scattering amplitude versus T, the pion
kinetic energy in the laboratory. The curves were calculated from
the forward dispersion relation by Wilkin et al. [6] (dashed curve)
and by Batty et al. [14] (full curve).




Fig., 8

Fig. 9

Fig. 10

Fig. 11
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Square of the effective r.m.s. strong interaction radius versus
1/k2, where k is the centre-of-mass momentum. The two straight
lines are the results of a linear least squares fit to all the data
(full line) and to the five lower points only (dashed curve). The
encircled point on the vertical axis is the value of the r.m.s.

matter-radius of “He, squared.

Fitted values for the real part of the parameters t, and t, (see
text) and their physical limit as a function of the pion kinetic

energy in the laboratory.

Fitted values for the imaginary part of the parameter t; (see text),
as a function of the pion kinetic energy in the laboratory.

Opposite sign values are represented above 110 MeV, resulting from

"

a sign ambiguity in that region. Both curves represent a "plausible

behaviour of the imaginary part versus the energy (see text).

Results of the "reconstructed" phase-shift analysis (see text) for
the first four partial waves only. (l: 24 MeV; 2: 51 MeV;

3: 60 MeV; 4: 68 MeV; 5: 75 MeVy; 6: 110 MeV; 7: 150 MeV;
8: 180 MeV; 9: 220 MeV; 10: 260 MeV.)
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