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Abstract

The knowledge of the magnetic �eld generated by the main magnets of the
CERN Proton Synchrotron (PS) is essential for getting better control over
optical parameters of the beam. However, it is not possible in practice to
predict the synchrotron working point for every set of linear and nonlinear
magnetic �eld. A �nite element analysis of the �eld was used for this purpose.

The ANSYS software was used to perform 2D and 3D calculations of the
magnetic �eld. The in�uence of the iron packing factor on results was inves-
tigated and the 2D solution for various currents sets was compared with the
experimental data. The 3D model was used for analysing the �eld along the
beam trajectory.

Finally, the magnetic �eld obtained with the 2D analysis was decomposed
into multipolar terms and applied in an accelerators design software, MAD, in
order to recreate the basic parameters of the accelerator optics. Several limiting
factors that could caused discrepancies compared to measured parameters were
identi�ed.
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Chapter 1

Introduction

1.1 CERN

CERN [9] (the acronym for the French: Conseil Européen pour la Recherche
Nucléaire) is the European Organization for Nuclear Research, situated on the
Swiss-French border near Geneva. It was founded in 1954 under the convention
signed by 12 European countries, as one of the �rst scienti�c joint ventures
in Europe. Today there are 20 member states and additional 8 countries or
international organizations that have a status of member state.

Figure 1.1: CERN accelerator complex [9].
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Chapter 1. Introduction 2

For over 50 years CERN, which is considered to be the world's largest par-
ticle physics laboratory, has been providing the scientist with tools needed for
exploration of physics fundamentals. Particle accelerators, detectors and other
infrastructure are used by physicists to accelerate particles to high energies and
through their collisions gain knowledge about the structure of matter. With
the Large Hadron Collider (LHC), the newest addition to CERN accelerators
chain, acquiring that knowledge may become possible. With the total collision
energy of 14 TeV the LHC, in which the proton beams were successfully cir-
culated for the �rst time on 10 September 2008, will allow to accelerate and
collide protons and heavy ions.

1.2 CERN Proton Synchrotron

The Proton Synchrotron (PS) was the �rst synchrotron at CERN, designed to
accelerate particles up to 26 GeV. It has started operation in 1959 and for many
years it served as main accelerator in CERN's particle physics programme.
However, since the 1970s, when new accelerators had been added to CERN
complex, the PS has been supplying other machines with particles. Thanks
to its versatility, the PS plays a key role in CERN injection chain shown in
Fig. 1.1, being able to accelerate various types of particles and ions. Protons
and ions initially accelerated in linear accelerators (LINAC2 and LINAC3) are
transferred to the Proton Synchrotron Booster (PSB) and the Low-Energy Ion
Ring (LEIR), respectively. The next step is the PS from which particles are
injected to the Super Proton Synchrotron (SPS) and further to the LHC.

Figure 1.2: The Proton Synchrotron tunnel [9].
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1.3 Aim of the thesis

The aim of the present work is to develop and apply the �nite element model
of the main PS magnets, which are shown in Fig. 1.2. The knowledge of mag-
netic �eld is essential for the particle dynamics calculation and future Proton
Synchrotron upgrades. However, it is not possible in practice to perform mea-
surements of the �eld for each set of currents feeding the magnets, so the �eld
analysis is performed with the numerical calculation, which is less time and
resource consuming.

The 2D magnetic analysis is performed using ANSYS1 [1] software, but
the model allows only to calculate the reference value of the �eld and its
components in the magnet cross-section. For the calculation of the fringe �elds
at the ends of the magnet and in the junction between the two magnet halves
an attempt of creating a 3D model is undertaken. For that purpose the ANSYS
Workbench environment is used.

The obtained magnetic �eld is decomposed into its multipolar terms to mo-
del the machine lattice with the accelerator design software, such as MAD [17].
The goal of this step is to recreate basic parameters of the accelerators optics,
such as tune or chromaticity, to verify if the two models, the developed magnet
model and the existing optical model of the Proton Synchrotron, can be used
together in beam dynamics calculation.

1developed by ANSYS, Inc.



Chapter 2

Electromagnetism and particle

motion basics

2.1 Maxwell's equation in magnetostatic �elds

The low frequency domain of magnetism is described by:

• Amper's law
rot H = J, (2.1)

• Faraday's law

rot E = −∂B
∂t
, (2.2)

• Gauss's law
div B = 0. (2.3)

However, in magnetostatics the quantities are independent of time (∂/∂t = 0)
and the Maxwell equations are reduced to

rot H = J,

div B = 0,

with the constitutive relation that describes the behaviour of magnetic mate-
rials

B = µH, (2.4)

where B is the magnetic �ux density, H is the magnetic �eld intensity, µ is
the magnetic permeability of the medium and J is the electric current density.

To obtain well-posed magnetic boundary value problem the foregoing set
of equations has to be completed with appropriate boundary conditions on
the enclosing boundary of the analysed domain and material interface boun-
daries. Fig. 2.1 shows the sketch of the domain Ω of the PS magnet problem.
It is divided into two subdomains: Ωi the iron region and Ωa the air region

4



Chapter 2. Electromagnetism and particle motion basics 5

(Ω = Ωi ∪ Ωa) connected together with the interface Γai. The domain Ω is
enclosed by piecewise smooth boundary Γ = ∂Ω. Two disjoint smooth boun-
daries are included in Γ: boundary denoted ΓB with the normal component of
the magnetic �ux density prescribed and ΓH with the tangential component
of the magnetic �eld intensity constrained (Γ = ΓB ∪ ΓH).

With the assumption that no surface electric current density is presented
on Γai, the boundary conditions are given by

(Ha −Hi)× nai = [H× n]ai = 0 on Γai, (2.5)

(Ba −Bi) · nai = [B · n]ai = 0 on Γai (2.6)

and the homogeneous boundary conditions imposed on the enclosing boundary
are as follows:

H× n = 0 on ΓH , (2.7)

B · n = 0 on ΓB, (2.8)

where n denotes the normal vector on the domain boundary.

Ωi µi

Ωa µ0

ΓB

ΓBΓB

Γai

ΓH

�J µ0 ⊗J µ0

Figure 2.1: Domains and boundaries in PS magnet problem.

2.2 Total vector potential formulation

The most suitable approach for calculation of the magnetostatic �elds in a
domain with electric current density sources is the total vector potential for-
mulation. By meaning of Helmholtz decomposition of a smooth vector �eld

F = − div G( div F) + rot G( rot F) (2.9)
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the divergence-free magnetic �eld B can be written

B = rot G( rot B) = rot A in Ω, (2.10)

where A is the vector potential and G represents the Newtonian potential
operator. Use of Eq. (2.10) and constitutive equation B = µH in Amper's
law (2.1) yields the following form of partial di�erential equation

rot
1
µ

rot A = J in Ω. (2.11)

However, the Maxwell equations are invariant with respect to the gauge trans-
formation, so a gradient of any smooth scalar �eld ψ added to vector potential

A→ A′ : A′ = A + gradψ (2.12)

does not change the magnetic �eld density B. To guarantee the uniqueness
of the boundary value problem solution an additional constraint called the
Coulomb gauge has to be employed

div A′ = 0. (2.13)

The Coulomb gauge can be included in Eq. (2.11) as a penalty term [20]

rot
1
µ

rot A− grad
1
µ

div A = J in Ω, (2.14)

with the set of appropriate boundary condition [25] on the enclosing boundaries

A · n = 0 on ΓH , (2.15)
1
µ

( rot A)× n = 0 on ΓH , (2.16)

1
µ

div A = 0 on ΓB, (2.17)

n× (A× n) = 0 on ΓB, (2.18)

and interface boundary[
1
µ

( rot A)× n
]
ai

= 0 on Γai, (2.19)[
1
µ

div A
]
ai

= 0 on Γai, (2.20)

[A]ai = 0 on Γai. (2.21)
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2.3 Multipole expansion of a 2D magnetic �eld

From the solution of de�ned above total vector potential problem the total
magnetic �eld vector B can be derived. However, this form of the �eld is in-
appropriate for certain applications, thus it has to be decomposed into its
multipole terms. Multipole expansion of the �eld in the beam vicinity is es-
pecially required in beam dynamics, which determines the trajectory of the
particle in the magnetic �eld.

To obtain the solution the problem has to be written by means of Laplace
operator, de�ned over a vector �eld,

∇2A = grad div A− rot rot A. (2.22)

Eq. (2.14) in free space has a form

∇2A = −µ0J in Ωa, (2.23)

however, in two-dimensional case the vector potential A and current density
vector J have only z-component, thus Eq. (2.23) is reduced to the scalar Pois-
son equation

∇2Az = −µ0Jz in Ωa. (2.24)

Multipole expansion will be performed in source-free region, where Eq. (2.24)
becomes the Laplace equation

∇2Az = 0 in Ωa,J = 0. (2.25)

The Laplace equation in polar coordinates

∂2Az
∂r2

+
1
r2

∂2Az
∂ϕ2

+
1
r

∂Az
∂r

= 0 in Ωa,J = 0. (2.26)

can be solved using the variables separation method. Potential Az in Eq. (2.26)
can be replaced by the product of two function with separate variables

Az(r, ϕ) = w(r)v(ϕ) (2.27)

and after di�erentiating and regrouping, both sides of equation are equal to
non-zero separation constant n2

1
w(r)

(
r2∂

2w(r)
∂r2

+ r
∂w(r)
∂r

)
= n2 = − 1

v(ϕ)
∂2v(ϕ)
∂ϕ2

(2.28)

This gives a set of two ordinary di�erential equations with separate variables

r2∂
2w(r)
∂r2

+ r
∂w(r)
∂r

− n2w(r) = 0 (2.29)
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∂2v(ϕ)
∂ϕ2

+ n2v(ϕ) = 0 (2.30)

The solution of Eqs. (2.29) and (2.30) have the following form

w(r) = Ern + Fr−n (2.31)

v(ϕ) = G sinnϕ+H cosnϕ (2.32)

however, with the boundary condition imposed on the potential, that is �nite
at r = 0 and periodic in angular coordinate ϕ [13], the general solution is a
series expansion of potential Az

Az(r, ϕ) =
∞∑
n=1

rn(Cn sinnϕ−Dn cosnϕ). (2.33)

Components of the �eld B in polar coordinates are obtained as below

Br(r, ϕ) =
1
r

∂Az
∂ϕ

=
∞∑
n=1

nrn−1(Cn cosnϕ+Dn sinnϕ), (2.34)

Bϕ(r, ϕ) = −∂Az
∂r

=
∞∑
n=1

nrn−1(Cn sinnϕ−Dn cosnϕ). (2.35)

This shows that the magnetic �eld can be locally expressed with the series
of n-fold rotational symmetric �elds. Constants Cn and Dn are coe�cients of
the skew and the normal multipole, respectively, where the skew multipole is
rotated by π/(2n) with respect to the normal multipole component.

The knowledge of the �ux distribution generated by magnets is crucial to
perform the analysis of the particle motion, since di�erent orders of multipoles
have various in�uence on the beam parameters. Pure dipole, quadrupole and
sextupole �elds, generated with magnets of appropriate pole shape to respec-
tively bend, focus the beam and adjust its chromaticity, are shown in Fig. 2.2.

Dipole Quadrupole Sextupole Combined-function
magnet

N

S

S

N

N

S

N

S

N

S

S

N

N

S

Figure 2.2: Schematic pole shapes of magnets.
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Multipole Skew magnets Normal magnets

Dipole, n=1 Bx = C1 Bx = 0
By = 0 By = D1

Quadrupole, n=2 Bx = 2C2x Bx = 2D2y
By = −2C2y By = 2D2x

Sextupole, n=3 Bx = 3C3(x2 − y2) Bx = 6D3xy
By = −6C3xy By = 3D3(x2 − y2)

Octupole, n=4 Bx = 4C4(x3 − 3xy2) Bx = 4D4(3x2y − y3)
By = −4C4(3x2y − y3) By = 4D4(x3 − 3xy2)

Decapole, n=5 Bx = 5C5(x4 − 6x2y2 + y4) Bx = 20D5(x3y − xy3)
By = −20C5(x3y − xy3) By = 5D5(x4 − 6x2y2 + y4)

Table 2.1: Multipole �elds in skew and normal magnets.

Magnetic �eld components transformed to Cartesian coordinates, more conve-
nient for beam optics, are written in Table 2.1. However, it is usually impossible
to generate pure multipole �eld in a real-world magnets, because not all of un-
wanted components can be eliminated and they have to be minimized in the
design process of the magnet.

There are also magnets designed to generate both the dipole and the
quadrupole �eld components called combined-function magnets. Such design,
which was also used in the CERN Proton Synchrotron, allows to make accel-
erator equipment more compact but makes the machine tuning more di�cult
compared to separate quadrupole and dipole magnets, which is why it is no
longer used in most present-day accelerators.

2.4 Beam optics basics1

A particle accelerator lattice is a set of bending and focusing magnets. The
design of the lattice is done to keep the particles close to desired reference
path. In synchrotrons this path is called the reference orbit and it is de�ned
by bending magnets.

The motion of a charged particle in the electromagnetic �eld (E,B) is
governed by the Lorentz force

F =
dp
dt

= eE +
e

c
(v ×B), (2.36)

1The accelerator physics goes beyond the aim of this study. Only a very brief introduction
is given here.
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real particle trajectory

reference orbit

x

y

s

x

y

ρ(s)

σ

Figure 2.3: Coordinate system.

where p = γmv is the relativistic momentum, v is the velocity, m is the mass,
γ = 1/

√
1− v2/c2 is the relativistic Lorentz factor with c the speed of light.

2.4.1 Coordinate system

It is convenient to describe the beam dynamics in an orthogonal, right-handed
coordinate system (x,y, s) shown in Fig. 2.3. In such coordinate system, the
vector s is tangential to the reference path and the system follows the reference
particle travelling along it. Particle motion takes place in two planes that can
be distinguished in the coordinate system: transversal and longitudinal. In the
transversal plane, the particles that are moving along the reference orbit with
di�erent transverse momentum make small-amplitude oscillations around the
orbit. These transverse oscillations, which are called the betatron oscillations,
are governed by the Hill equation described in Section 2.4.3.

2.4.2 Bending and alternating-gradient focusing

The reference particle in a synchrotron is circulating along the closed orbit
within the horizontal mid-plane, where y = 0. In this plane, when purely
vertical magnetic �eld is taken into account, the curvature and the bending
radius for the particle trajectory are

κx =
e

cp
By (2.37)

and
1
ρx

=
∣∣∣∣ ecpBy

∣∣∣∣ . (2.38)

Particle beams, similar to light rays, have a natural divergence and a ten-
dency to spread out. To prevent particles from deviating, the focusing lenses,
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such as quadrupole magnets, can be used. In such magnets, the de�ection of
the particle trajectory increases linearly with the distance from the reference
orbit and can be expressed by means of the focusing strength

k =
e

cp
g =

e

cp

∂By
∂x

, (2.39)

where g = ∂By/∂x is the �eld gradient. The magnetic �eld of such a quadrupole
has the form

e

cp
Bx = ky,

e

cp
By = kx.

(2.40)

However, the quadrupole magnets are focusing the beam in one plane while
defocusing it in the other one, thus the alternating-gradient focusing has to
be used. From the light optics it is known that the combined focal length of
two lenses with the focal lengths f1 and f2, separated by a distance d can be
written as

1
f

=
1
f1

+
1
f2
− d

f1f2
(2.41)

in a speci�c case when f1 = −f2 the total focal length is positive and equal
f = f2

1 /d which indicates that it is possible to select the focal lengths in such
a way to make the set of lenses focusing. The same principle can be referred
to a quadrupole doublet. When �eld gradients g are chosen appropriately the
doublet is focusing in both horizontal and vertical planes as shown in Fig. 2.4.

2.4.3 Equation of motion

The general equation for transverse motion of charged particles in electromag-
netic �eld is called the Hill equation. It can be derived from Lorentz force (2.36)
and its linear unperturbed form is

x′′ +Kx(s)x = 0,
y′′ +Ky(s)y = 0,

(2.42)

where x′′ and y′′ are second derivatives with respect to s, Kx and Ky are
s-dependent functions of �eld strength coe�cients. In the synchrotrons with
combined-function magnets, which de�ect only in horizontal plane, these func-
tions are periodical and given by

Kx(s) = κ2
x(s) + k(s),

Ky(s) = −k(s).
(2.43)

The solution of the Hill equation (2.42) satis�es the Floquet theorem [18]
and can be expressed as

u(s) =
√
εβ(s) cos (ψ(s) + φ), (2.44)



Chapter 2. Electromagnetism and particle motion basics 12

focusing defocusing
quadrupole quadrupole

horizontal plane

vertical plane

s

s

d

−g g

g −g

Figure 2.4: Quadrupole doublet.

where u stands for x or y, ε is the beam emittance, β(s) is called betatron func-
tion, which expresses the amplitude modulation due to periodically changing
focusing strength, and ψ(s) is the phase advance also dependent on focusing
strength and φ is a constant dependent on the initial conditions,. This solution,
together with u′(s), describes the betatron oscillation of a particle around the
reference orbit in the plane uu′.

Eq. (2.42) is derived for a particle with design momentum p0. However,
circulating beams are never perfectly mono-energetic. For particles that have
non-zero momentum spread ∆p, a momentum deviation δ = ∆p/p0 has to be
taken into consideration. The perturbed equation of motion has following form

u′′ +K(s)u =
δ

ρ
. (2.45)

The solution of Eq. (2.45) can be obtained using Green's function method,
detailed description of which can be found in [28].

2.4.4 Beam parameters

The physical parameters which describe the beam behaviour in a synchrotron:

• Tune which is a parameter de�ned as the number of betatron oscilla-
tion in one machine revolution. If we suppose that an accelerator has a
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circumference C, the betatron tune is

Q =
1

2π

∫ s+C

s

ds

β(s)
(2.46)

and can be written both for the horizontal and the vertical oscillations.
This parameter depends on the betatron function β(s) so it can be con-
trolled with the focusing strength of the quadrupole magnets.

• Chromaticity which is the variation of betatron tune with the momen-
tum and in relative form it is de�ned as

ξ =
∆Q/Q
∆p/p0

. (2.47)

The beam chromaticity can be controlled by sextupole magnets.
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The �nite element method in

2D magnetostatics

The �nite element method is one of the most e�ective and versatile numeri-
cal techniques of approximate solving di�erential equations that model many
problems in the �eld of physics and engineering.

In this method the geometrical domain of the problem is subdivided into
smaller subdomains, called �nite elements, in which the unknown variables
are approximated using known linear or, if necessary, higher order functions.
The governing equations are integrated over each element and then assem-
bled together along with associated boundary conditions into a set of linear
equations that can be solved using linear algebra techniques. These equations
are formulated using variational methods, which are based on a minimization
of a particular functional that describes the phenomena, or residual methods,
that are established directly from the physical equations and notion of these
methods is to minimize the residual.

3.1 Finite element discretization

The 2D domain of the boundary value problem is discretized with �nite element
mesh, that should accurately represent the shape of the domain. The mesh is
constructed of triangular or quadrilateral elements, that can be used together
in the same mash as well.

Depending on the chosen element type the proper interpolation functions
must be developed. These functions must satisfy certain key requirements:

• they must guarantee continuity of unknown variables across boundaries
between elements,

• they must be di�erentiable up to the order n − 1, where n is the order
of the governing di�erential equation,

14
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• they must be complete polynomials.

Development of the interpolation functions will be performed for bilinear
quadrilateral element, which is shown in Fig. 3.1. The element will be consid-
ered isoparametric, thus the interpolation functions, which are used to inter-
polate the primary unknown quantity, are identical to shape functions which
are used for mapping the shape and position of the element between local and
global coordinating system.

y

x
1 2

3

4

1 2

34

(-1,-1) (1,-1)

(1,1)(-1,1)

ξ

η

Figure 3.1: Quadrilateral element in xy-plane and ξη-plane.

A general shape function in local coordinating system has the form

N(ξ, η) = c1 + c2ξ + c3η + c4ξη, (3.1)

and is equal 1 at a particular node and zero at all others. Therefore, considering
the function for node 1, a set of four equations can be written.

N1(−1,−1) = c1 − c2 − c3 + c4 = 1
N1(1,−1) = c1 + c2 − c3 − c4 = 0
N1(1, 1) = c1 + c2 + c3 + c4 = 0

N1(−1, 1) = c1 − c2 + c3 − c4 = 0

(3.2)

The solution gives missing constants

c1 =
1
4
, c2 = −1

4
, c3 = −1

4
, c4 =

1
4
, (3.3)

and the interpolation function for node 1 can be written as

N1(ξ, η) =
1
4

(1− ξ)(1− η). (3.4)
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Using the same approach, all four bilinear interpolation functions can be ob-
tained

N1(ξ, η) =
1
4

(1− ξ)(1− η)

N2(ξ, η) =
1
4

(1 + ξ)(1− η)

N3(ξ, η) =
1
4

(1 + ξ)(1 + η)

N4(ξ, η) =
1
4

(1− ξ)(1 + η)

(3.5)

and in terms of these functions the primary unknown quantity interpolation
and coordinates transformation can be written as

A =
4∑
j=1

AejNj (3.6)

and

x =
4∑
j=1

xejNj , y =
4∑
j=1

yejNj . (3.7)

3.2 The Galerkin method

The Galerkin approach of the weighted residual method is widely used in
electromagnetism due to its simplicity and practicality. The �nite element
equations are derived from physical equation

rot
1
µ

rot A = J in Ω, (3.8)

which in 2D automatically ful�ls the Coulomb gauge ( ∂∂z = 0) and can be
written in cartesian coordinates as follows

∂

∂x

(
1
µ

∂Az
∂x

)
+

∂

∂y

(
1
µ

∂Az
∂y

)
= −Jz, (3.9)

where Az and Jz are z-components of the magnetic vector potential and the
current density vector, respectively. The residual for a single element has the
form

Re =
∂

∂x

(
1
µ

∂Az
∂x

)
+

∂

∂y

(
1
µ

∂Az
∂y

)
+ Jz, (3.10)

which then has to be multiplied by a weight function w(x, y), integrated over
the element domain and forced to be zero∫∫

Ωe

w

[
∂

∂x

(
1
µ

∂Az
∂x

)
+

∂

∂y

(
1
µ

∂Az
∂y

)
+ Jz

]
dxdy = 0. (3.11)
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Transforming Eq. (3.11) and applying the Green theorem yields∫∫
Ωe

1
µ

(
∂w

∂x

∂Az
∂x

+
∂w

∂y

∂Az
∂y

)
dxdy

=
∫∫

Ωe

wJzdxdy +
∮

Γe

w
1
µ

(
∂Az
∂x

nx +
∂Az
∂y

ny

)
ds,

(3.12)

which is the weak form of the di�erential equation. The boundary integral
in Eq. (3.12) vanishes due to boundary conditions (2.17) and (2.20). The re-
maining two boundary conditions that have to be considered in the 2D case
are

A · n = 0 on ΓH , (3.13)

n× (A× n) = 0 on ΓB. (3.14)

The �rst condition (3.13) is automatically ful�lled since n ⊥ ez, while the
condition (3.14) reduces to the form Az = 0.

In the Galerkin method both the weight functions w and the unknown
vector potential Az must be expressed with the same set of shape functions.
Therefore,

Az =
n∑
j=1

AezjNj (3.15)

and

w = Ni for i = 1, 2, , n (3.16)

where n is the number of the nodes in element type used. Substituting Eqs. (3.15)
and (3.16) into Eq. (3.12), the discretized weak form of the governing di�er-
ential equation for a single element can be conveniently expressed in a matrix
form 

Ke
11 Ke

12 · · · Ke
1n

Ke
21 Ke

22 · · · Ke
2n

...
...

. . .
...

Ke
n1 Ke

n2 · · · Ke
nn



Aez1
Aez2
...

Aezn

 =


F e1
F e2
...
F en

 (3.17)

where

Ke
ij =

∫∫
Ωe

1
µ

(
∂Ni

∂x

∂Nj

∂x
+
∂Ni

∂y

∂Nj

∂y

)
dxdy (3.18)
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is called the element sti�ness matrix and

F ei =
∫∫

Ωe

NiJzdxdy (3.19)

is the element force vector.
To evaluate the element matrix and the vector for the bilinear quadrilateral

element, which was described in Section 3.1, it is convenient to change the
integration variables from x and y to ξ and η. For that purpose the Jacobi
transformation matrix Jt has to be introduced

∂Ni
∂ξ

∂Ni
∂η

 =

∂x∂ξ ∂y
∂ξ

∂x
∂η

∂y
∂η


∂Ni
∂x

∂Ni
∂y

 =
[
Jt
]

∂Ni
∂x

∂Ni
∂y

 (3.20)

where x and y are space coordinates expanded in terms of the shape functions
Ni. Using the Jacobi transformation the element matrix and the vector can be
expressed as

Ke
ij =

∫ 1

−1

∫ 1

−1

1
µ

(
∂Ni

∂x

∂Nj

∂x
+
∂Ni

∂y

∂Nj

∂y

)
|Jt|dξdη (3.21)

and

F ei =
∫ 1

−1

∫ 1

−1
NiJz|Jt|dξdη (3.22)

and then numerically evaluated using the Gauss quadrature method.

3.3 Assembling the global matrix

Once the governing equations have been developed for each individual element,
the element sti�ness matrices and the element force vectors must be merged
into a single global sti�ness matrix and a global force vector. Assembled global
system is usually presented in the following form:

[K] {A} = {F} (3.23)

where K is the global sti�ness matrix, which is symmetric and sparse, A is
the global vector of Az degree of freedom and F is the global force vector.
After imposing the boundary condition Az = 0 on all global nodes that lie on
the boundary ΓB, the equations of the system can be solved using direct or
iterative numerical techniques.
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Magnet characterization

The main magnetic part of the Proton Synchrotron is a structure of 100 magnet
units placed in a tunnel that forms a ring of 200 m in diameter. Each unit is
a combined-function, normal conducting magnet composed of two half-units:
focusing (F) and defocusing (D) rigidly joined together. Such design allows to
bend and focus particle beam at the same time to keep required radius and
size. The magnets are arranged in a lattice FOFDOD with �eld-free, straight
sections (O) between them, where auxiliary equipment is situated.

Figure 4.1: The sequence of magnets in the PS accelerator.

4.1 PS unit geometry

Each half-magnet unit consists of 5 adjacent identical magnet structures, called
blocks, separated from each other by a wedge-shaped air gap. A block is
straight C-shaped structure, 417 mm long, of open or closed type. Such con-
struction gives an arc shape to a magnetic unit, where blocks are so arranged
that axes of the magnet gaps are tangent to magnetic circumference of the ma-
chine (r0 = 70.0789 m). The magnet half-units do not have the same length. Air
gaps between blocks of the same type in focusing half are 7.75 mm long while
in defocusing half 9.75 mm. Focusing and defocusing sectors are separated by
20 mm straight air gap called central junction.

19
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Figure 4.3: The iron block types.

4.2 Pole pro�le

The most important factor that determines the �eld shape is a pole pro�le. In
both block types, open and closed, the geometry of the pole is the same. It has
been designed to produce the linear �eld and keep the focusing strength coe�-
cient k constant over the largest region possible. Obtaining strictly linear �eld
is in this case impossible due to �nite permeability of the steel, the coils and
the saturation of the core. All of these factors introduce non-linearities. Thus,
the �nal pro�le contains hyperbolic contour, which provides the quadrupole
component of the main �eld. The central part of the pole is responsible for the
�eld at the equilibrium orbit, while the narrow part reduces the saturation in
external pole region and the wide truncated part increases the fall of the radial
�eld on the opposite side, where it was too small.

4.3 Di�erent units

Four di�erent magnet types, denoted by letters: R, S, T and U, can be dis-
tinguished depending on the half-units order and the location of the iron core
with respect to the beam orbit. There are 35 units of both R and T type and
15 units of both S and U type installed in the tunnel. Magnets with the iron
core external to the ring are signed R and S, while those with internal core are
called T and U. Units R and U have defocusing sector upstream and focusing
downstream while S and T units have their half-units inversely.
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Figure 4.4: Pole pro�le [7].

4.4 Exciting coils

All 10 blocks of magnetic unit are excited by the same two main coils. One
of them is wound around the top pole piece and the other is placed on the
bottom pole piece. A single coil consists of two layers called pancakes. They
are made up of 5 turns of the conductor, an aluminium rod of 55 x 38 mm
cross-section with a hole of 12 mm in diameter used as a cooling line. All main
coils are electrically connected in series while the cooling system is connected in
parallel. Each turn of conductor as well as the pancake is insulated by several
layers of paper-mica-paper and vacuum impregnated with polyester resign.
This makes pancakes as rigid as possible and reduces relative movement of
individual conductors caused by thermal and magnetic e�ects.

Apart from the main coil, which is used to generate the dipolar �eld and
the main quadrupolar �eld, there are two types of auxiliary windings: the
�gure-of-eight-loop (f8) and pole-face windings (pfw). They are used to adjust
and correct the harmonics of the �eld and to control four optical parameters
of the beam, tunes and chromaticities in horizontal and vertical plane.

The �gure-of-eight-loop is installed around both top and bottom pole pro-
�le. As its name suggests, it has the shape of an 8, thus it goes around the pole
faces of focusing and defocusing half-unit and crosses between them. Because
of that, currents inside loops around the two poles have di�erent sign so they
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Figure 4.5: Sketch of the magnet windings.

generate opposite �elds in each half-unit. The �gure-of-eight-loop a�ects the
magnetic �eld and its quadrupole component therefore it is used to control
horizontal and vertical tune.

The second type of auxiliary coils are the pole-face windings. Each magnet
has four pole-face windings plates mounted on the pole surface of focusing
and defocusing half-unit. Each plate has two separate circuits called narrow
and wide. They consist of an arrangement of parallel copper bars, which have
cross-section of 9 x 3 mm, embedded in an insulating sheet of polyester resign.
Pole-face windings mainly a�ect quadrupole and sextupole �eld component,
thus they are used in adjustment of all four optical parameters.

Figure 4.6: Cross-section of the pole-face-windings plate [7].
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Impurity Amount

carbon 0.06%
manganese 0.30%
sulphur 0.025%
phosphorus 0.010%

Table 4.1: The amount of the steel impurities [22].

The working point of the machine is controlled using these two auxiliary
windings. When narrow and wide circuits of pole-face windings are connected
in series, three currents (IpfwF , IpfwD and If8) are governing four parameters
(Qh, Qv, ξh, ξv), which leaves one physical quantity free. Such powering scheme
is called the 3-current mode. However, it is possible to power those circuits
separately. The application of the 5-current mode (IpfwFN , IpfwFW , IpfwDN ,
IpfwDW and If8), which gives more freedom in the working point adjustment,
has just started.

4.5 The PS magnet steel

The characteristics of the rimming steel [22] that was used for all of the PS
magnets is shown in Table 4.1. It had been cold worked to the critical degree of
deformation and subsequently annealed at the temperature of about 750 ◦C in
order to increase the grain size and eliminate the internal stresses, which could
contribute to a decrease in permeability for low induction and an increase in
the coercive force.

The blocks are made up of laminations insulated by paper and stuck to-
gether with hot-setting resin (araldite). They had to be suitably mixed during
blocks manufacturing to obtain statistical uniformity of magnetic properties
and decrease variations in average performance from one block to another. To
reduce induced eddy currents, which are created under dynamic conditions,
thickness of a single sheet of steel had been set to 1.5 mm.
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Numerical model

5.1 Finite element magnet model

A 2-dimensional numerical model of the PS magnet was created using ANSYS,
a general-purpose �nite-element analysis software package. ANSYS has wide
application in diverse mechanical as well as electromagnetic problems. The
geometry was based on technical documentation [21][22] and drawings [7]. It
contains upper half of symmetric iron core and all types of exciting coils as
well as a �nite air region surrounding the magnet. The fragment of geometry
with the close-up of the pole piece and exciting coils is shown in Fig. 5.1.

pole-face windings

main coilmain coil

air

�gure-of-eight loop

iron core

�
�
�+

XXXXXXXXXXXXz
HHY

-

6

x

y

Figure 5.1: The fragment of the focusing half-unit model geometry.

The �nite element model was created using 8-node quadrilateral and 6-
node triangular PLANE53 elements [1]. This type of element is suitable for
the magnetic �eld calculation with the total vector potential formulation and
has up to 4 degrees of freedom at each node, but in static analysis only the
vector potential (AZ) is used. The element is capable of modelling materials
with nonlinear magnetic properties de�ned with BH curves.

25
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Figure 5.2: The PLANE53 element geometry.

5.2 Magnetic properties of the steel

5.2.1 Packing factor

Laminated iron yoke consists of layers of two di�erent materials, thereby aver-
age material properties are strongly dependent on the direction. Between each
iron plate of thickness lFe, which is considered to have isotropic permeability
µFe, there is a layer of insulating paper of thickness l0 and permeability µ0.
The in�uence of laminated structure can be described with a packing factor
de�ned by

λ =
lFe

lFe + l0
(5.1)

and by means of the packing factor we de�ne the average permeability in the
lamination plane

µx = µy = λµFe + (1− λ)µ0 (5.2)

and in z-direction

µz =
(

λ

µFe
+

1− λ
µ0

)−1

(5.3)

The magnetic �ux density B in anisotropic material is calculated from

B = [µ]H (5.4)

where [µ] is the permeability 2nd rank tensor

[µ] =

 µx 0 0
0 µy 0
0 0 µz

 (5.5)

Estimation of the packing factor value is not precise since the number of
laminations within blocks is inaccurate. In the technical documentation [21]
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Figure 5.3: Relative �eld in defocusing and focusing half-unit.

we �nd information that a single �nished block, which is 417 mm long, theo-
retically contains 264 steel plates of 1.5 mm thickness, but according to other
report [22] this number may vary within the range 262 ≤ nlam ≤ 272.

When we take a single block with 264 laminations into consideration, the
packing factor is calculated as follows

λ =
264× 1.5mm

417mm
≈ 0.9496. (5.6)

However, this value can be used only in the 3D simulation, where individual
blocks are modelled, as well as air gaps between them, while the 2D model
represents a cross-section of an in�nitely long, continuous magnet. The only
way to introduce the in�uence of air to the calculated magnetic �eld is through
the packing factor. Its average value can be estimated as below

λ =
264× 1.5mm× 10

417mm× 10 + (7.75mm+ 9.75mm)× 4 + 20
≈ 0.9296 (5.7)

This value is close to the packing factor λ = 0.925 that was used in the PS
magnet simulation done in the past [10] using POISSON Super�sh code1. How-
ever, both these values, as well as the approach of treating the factor separately

1developed by the Los Alamos Accelerator Code Group (LAACG)
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Figure 5.4: Magnetization curves of iron.

for focusing and defocusing half-units, are only an attempt of modelling 3D
�eld e�ects of a real magnet in the 2D analysis. As shown in Fig. 5.3, the
magnetic �eld is not constant along the beam trajectory in the real magnet.
Air gaps, central junction and magnet end in particular have a signi�cant in-
�uence on the �eld drop. It is especially visible in external blocks, where even
in the middle of the block length the �eld can be few percents lower. Therefore
estimation and numerical veri�cation of the packing factor will be performed
with respect to the reference �eld value.

Fig. 5.4 shows the measured isotropic magnetization curve [22] of the PS
magnet steel and calculated anisotropic properties that were modi�ed with
the packing factor λ = 0.9496. Modi�ed BH-curve in the lamination plane
is noticeably lower than the measured one, which pretends the existence of
laminations or also air gaps when other factor value is used.

5.2.2 Iron saturation

Magnetic properties of the PS magnet steel have a non-linear character, espe-
cially when material is highly magnetized and saturation e�ect occurs, limiting
the magnetic �ux growth with the increase of excitation current. The consti-
tutive equation of magnetic material can be written in the form
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B = µo(H + M), (5.8)

where M is the magnetization factor that describes the movement of magnetic
domains, which are regions of aligned electron spins grouped together. When
all magnetic domains are aligned in the same direction the material reaches
the saturation and further increase of the �ux is limited to that provided
with the permeability of free-space µ0. The magnetization shown in Fig. 5.4
proceeds with the movement and rotation of magnetic domains. At �rst the
magnetic �eld rises slowly in the region of reversible movements and next
faster, slightly linear in the region of irreversible movements. After that, when
magnetic domains are being reversibly rotated, the iron core becomes saturated
and the increase of induced �eld is much slower.

With the element type that used in simulation and available magnetization
curve, the saturation of the iron core can be modelled. If the magnetic �ux
locally exceeds the range of given BH data further calculations are continued by
ANSYS with the permeability of free-space. It happens only in the analysis of
a high excitation state of the magnet required for high energy beam guidance.

5.3 Boundary conditions and loads

Both open and closed blocks are symmetrical with respect to the horizontal
median plane. Using this feature we can model only the upper half of the mag-
net, which will decrease number of elements in the model, but simultaneously
we have to apply boundary conditions which will force perpendicularity of �ux
lines to the symmetry plane. On external boundaries of the air domain the
�ux is forced to �ow parallel to the limiting edges.

The model is loaded with current densities applied to conductor areas.
Current values have been taken from the control program of a real PS magnet
excitation cycle, during which the beam is injected into the machine, accel-
erated to certain energy and then ejected. The model is used to simulate the
magnet when the currents are constant and the magnetic �eld is stabilized. A
simulation was performed under few operational conditions of the coils, that

Cycle Imc If8 IpfwF IpfwD

E 669.2 A � � �
A 2677.5 A 450.35 A 39.47 A -45.08 A
B 4732.0 A � 77 A 88 A
C 5413.15 A 1257.9 A 200.7 A 99.75 A

LHC 5400.56 A 1452.8 A 206.7 A 86.9 A

Table 5.1: Di�erent con�gurations of currents.
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have been measured during past measurement campaigns. The sets of currents
that were used:

• E � 3.5 GeV/c cycle,

• A � 14 GeV/c cycle for continues transfer of protons to SPS (Super
Proton Synchrotron),

• B � 24 GeV/c cycle for slow ejection to East Experimental Area,

• C � 26 GeV/c cycle for ejection of protons to SPS,

• LHC � 26 GeV/c proposed as test cycle for LHC purpose.

5.4 Post-processing

The result of the electromagnetic analysis is the nodal vector potential Az
from which the nodal magnetic �ux density B and the �eld intensity H are
derived. The ANSYS general postprocessor does not have the capability of
decomposing those quantities, the magnetic �ux density in particular, into its
multipole terms. To perform this post-processing operation the Fourier series
�eld expansion procedure was written in APDL2 scripting language.

ANSYS

magnet

model

field

multipoles

fourier

decomposition

MAD X

ps lattice

TUNE

chromaticity

excitation

currents

magnetic

field B

comparison

with

measurements

energy

depedent

parameters

comparison

with

measurements

Figure 5.5: Scheme of the calculation algorithm.

2ANSYS Parametric Design Language
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5.4.1 Fourier series expansion of the magnetic �eld

Fourier series expansion uses 2D �eld map in the cross-section plane of the
magnet. Unlike the �eld gradients calculated with derivatives of the �eld mea-
sured on the median plane, the Fourier method calculates multipole compo-
nents using multiple points on the circular path, therefore it is much more
accurate.

The numerical solution has to be transformed to the Br component calcu-
lated in N points

ϕk =
2πk
N

, k = 0, 1, 2, . . . , N − 1 (5.9)

on the circular path with reference radius of r = r0. We can write the Fourier
series expansion of the magnetic �ux density

Br(r0, ϕk) =
∞∑
n=0

(An(r0) cosnϕk +Bn(r0) sinnϕk) (5.10)

with the Fourier coe�cients

An(r0) =
2
N

N−1∑
k=0

Br(r0, ϕk) cosnϕk (5.11)

Bn(r0) =
2
N

N−1∑
k=0

Br(r0, ϕk) sinnϕk (5.12)

To obtain the multipole coe�cients in the same units as measured data, they
have to be de�ned independently of the reference radius

An = An
(n− 1)!
rn−1

0

, Bn = Bn
(n− 1)!
rn−1

0

(5.13)

Multipole components calculated this way can be directly compared with
the measurement data or used in accelerators and lattice design programs such
as MAD-X [17].

5.4.2 Comparative data

The latest measurement data, which can be used for comparison, come from
the measurement campaigns that took place in 1992 [11] and 2004 [2]. These
campaigns have been carried out using a detector equipped with an array
of the Hall probes, which measure only the �eld component normal to their
surface. However, the measurements were performed on the symmetry plane
of the magnet, where, as it follows from the Maxwell equations, the magnetic
�eld is perpendicular to this plane.
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After obtaining the map of the magnetic �eld, higher order components of
the �eld, such as quadrupole and sextupole, were approximated with derivative
of the dipole component in x-direction, as shown in Eqs. (5.14) and (5.15).

G(xi, z) =
B(xi+1, z)−B(xi−1, z)

xi+1 − xi−1
(5.14)

S(xi, z) =
G(xi+1, z)−G(xi−1, z)

xi+1 − xi−1
(5.15)

The consequence of calculating derivative this way is the measurement
error transportation to those components. The total error of the measurement
(that takes into account all errors like: Hall probes calibrations, eddy currents
e�ect, probes alignment precision, temperature di�erence between probes, etc.)
has been estimated below 0.05%. The aftermath of that is the relative error
of quadrupole on the level of 3%, which still gives a good estimation of the
gradient value. However, the sextupole component error reaches even some
70%, which can only give a rough information about its behaviour [2].



Chapter 6

Results of 2D analysis

In this section we will present some of the results obtained with the use of 2-
dimensional PS magnet model. At �rst, we will consider the quality of the cal-
culated magnetic �eld in terms of discretization and input parameters. Then,
three speci�c solutions, representing real operating states of the magnet, will
be compared with the data available thanks to the measurement campaigns.

6.1 Model veri�cation

To begin with, a series of tests had to be performed in order to verify the con-
vergence of the solution. The �nite element mesh re�nement and the boundary
discretization were the factor taken into consideration, as well as the magnetic
material properties and the packing factor, both of which have a signi�cant
in�uence on the solution.

In the veri�cation section the current values from the LHC type excitation
were used. It generates high level magnetic �eld which guarantees that the iron
saturation phenomenon appears and the whole range of BH curve is used in
the simulation.

6.1.1 Boundary distance in�uence

The simulation is performed in the limited air region with the boundary con-
ditions that pretend the magnetic �eld behaviour in in�nity. In order to select
the appropriate boundary distance, that does not deteriorate the solution, the
boundary in�uence was investigated. The test was carried out with the black-
leg iron yoke width d = 360 mm as a parameter of the air region dimension as
shown in Fig. 6.1. The packing factor value λ = 1.0 was assumed.

Fig. 6.2 presents the dipole, the quadrupole and the sextupole components
at the beam trajectory as a function of the boundary dimension. It can be seen
that although the changes are not signi�cant, all three components converge to
certain values with the increase of n. The sextupole component is characterized

33
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Figure 6.1: Parameterization of the boundary dimension.

by the biggest di�erences. Its values at n = 1 and 16 di�er by δ(1−16)
s = 0.07%,

while for the dipole and the quadrupole this di�erence is less than 0.02%.
The rate of change between the last two tested values is much lower. For the
sextupolar component δ(8−16)

s = 0.004%, while for two other components it is
less than 0.0015%, which allows us to assume that the value n = 8 gives a
su�cient accuracy of the solution.
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Figure 6.2: Boundary distance in�uence on �eld components at x = 0.

6.1.2 Solution sensitivity to the material data

In non-linear electromagnetic analysis the crucial factor is the quality of the
magnetization curve, which has a strong in�uence on the solution convergence.
Available data had been measured up to 2.03 T, but as it is shown in Figs. 6.3
and 6.4, the calculated magnetic �eld density and intensity of the LHC cycle
both exceed the range of measured properties. When the magnetic �eld inside
the iron yoke exceeds locally the given BH data the material is assumed to be
completely saturated and further calculation in this point is proceeded with
the permeability of free-space.

In Fig. 6.5 we can see that such extrapolation makes the BH-curve dis-
continuous in terms of dB

dH at the end of original data, which seems to be an
unphysical behaviour. Too early assumption that the iron is fully saturated
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Figure 6.3: Magnetic �eld density of the magnet pole at 26 GeV/c. The magnet
pole-tip is fully saturated.
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Figure 6.4: Magnetic �eld intensity of the magnet pole at 26 GeV/c. The
magnet pole-tip is fully saturated.
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Figure 6.5: Magnetization curve used in the simulation.

might have been the reason of underestimation of the magnetic �eld in the
narrowest part of the pole gap that has reached 1.5% with respect to the
measured value for the LHC cycle.

In order to complete the missing data the curve has been extrapolated
by means of the 2nd order polynomial in the range where ∆B/∆H ≥ µ0.
The obtained points are only an estimation and should be veri�ed by more
detailed measurements. However, the aforementioned error in the highly satu-
rated region has been reduced to 0.8%, which allows to believe that the applied
approximation of missing data is to some extent correct.

The next crucial element of the material data veri�cation is the packing
factor. As it was stated in Section 5.2.1, this parameter is extremely important
since it introduces laminations and air gaps e�ect to the 2D model, but its
theoretical estimation based on magnet geometry is inaccurate.

To evaluate the sensitivity of the model to this factor and estimate its
value for the use in further analysis, a series of calculations were performed.
The in�uence of the factor was tested in the range 0.919 ≤ λ ≤ 0.931 as shown
in Fig. 6.6. It shows that the choice of λ = 0.925 in the past calculation was
quite right since the dipole component error in both half-units is very low
and on the same level, while the quadrupole error has almost the same value
but opposite sign. The extrapolated zero level of the dipole error lies outside
the range of theoretical packing factor values which results from the magnet
geometry. The use of this packing factor value brings satisfactory results and
will be applied in further analysis.
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Figure 6.6: Solution sensitivity to the packing factor.

However, the focusing sector is shorter than the defocusing because air gaps
between its blocks are 7.75 mm while in the other sector the gaps have length
9.75 mm. Thus, the magnetic/non-magnetic material ratio is smaller in the
defocusing sector so the packing factors should satisfy the condition λD < λF .
This is con�rmed by the quadrupolar component errors, which are zero for the
following factor values

λF ≈ 0.9306,
λD ≈ 0.9211,

(6.1)

but at the same time it makes dipole errors di�erence more signi�cant. Never-
theless, this approach as well as the previous one with a single packing factor
have to be taken under consideration.

6.1.3 Veri�cation by using the ROXIE model

The correctness of results may be veri�ed with the solution obtained by other
methods. For this purpose the ROXIE1 program package was chosen. It has
been developed in CERN mainly for the design and optimization of the LHC
superconducting magnets [3][25], however, it may be successfully used for cal-
culations of warm magnets as well. It uses a reduced vector potential formula-

1
Routine for the Optimization of magnet X-sections, Inverse �eld calculation and coil

End design
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Figure 6.7: Absolute �eld di�erence between ANSYS and ROXIE solution of
the LHC cycle. Zero corresponds to the beam trajectory.

tion2 and the BEM-FEM coupling method3, which does not need the surround-
ing air region to be discretized as a �nite domain with �nite elements. Thus
there are no arti�cial boundary conditions on the far �eld boundaries [25].
This feature is extremely useful in the �eld calculations of coil ends and op-
timization of superconducting coils, while in our case it will provide a useful
benchmark to the research presented in Section 6.1.2.

Both models were built to have exactly the same geometry of focusing
half-unit. Air region boundaries in the ANSYS model were placed at the dis-
tance that corresponds to the parameter n = 16, with respect to the magnet
elements. Two sets of material data were used in the simulation: the origi-
nal measured BH-curve and the extrapolated one, both with no lamination
stacking e�ect (λ = 1). ROXIE behaves in the same manner as ANSYS when
magnetic �eld of the iron exceeds the given material data. In this case the
calculation is proceeded with the permeability of the free-space.

Fig. 6.7 shows the �eld di�erences of both models on the magnet median
plane. Discrepancies can be seen in the range of 75 mm < x < 200 mm (see
Fig. 4.4 for the pole geometry), where saturated pole-tips are located. When
the measured BH-curve was used the maximum relative error corresponds to

2developed at IGTE Graz, Austria
3developed at ITE Stuttgart and Robert Bosch GmbH, Germany
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δMAX = 1.29%. However, in simulation with the extrapolated material data
the error has been reduced to 0.52%, which is satisfactory for the region of high
saturation. Outside this region the results coincide, which is show in Table 6.1.

Multipole ANSYS ROXIE relative error δ

dipole [T] 1.26424 1.26426 0.001%

quadrupole [T/m] 5.41058 5.40944 0.021%

sextupole [T/m2] 3.83421 3.77767 1.475%

Table 6.1: Comparison of �eld components obtained using ANSYS and ROXIE
on the beam trajectory of the focusing half-unit.

6.2 Low energy cycle

The beam momentum during cycle E reaches the level of 3.5 GeV/c, hence
the magnetic �eld, which is needed to keep circulating particles on a constant
radius, is also low. In both types of blocks the dipole component obtained in
the simulation is equal 0.1665 T on the beam trajectory, and the quadrupolar
�eld reaches 0.6839 T/m for focusing and -0.6852 T for defocusing gradients.
At this level of magnetic �eld the saturation of the steel does not occur and the
shape of the multipole components is determined by the pole pro�le. Therefore,
the correction of multipoles introduced by the auxiliary coils is not needed and
only the main coil is powered.

Comparison between the numerical solution and the measurements shows
very good agreement of multipole values, however, it has to be noted that
experimental data of cycles E and A comes from the paper report [11] and
a data handling error was taken into account in experimental error bars. The
dipole component is the most accurate in the area of the greatest interest,
which is the neighbourhood of the beam. On the 10 cm long segment around
the beam orbit the di�erence between the measured and the calculated �eld is
less than 0.25%. Outside the region of hyperbolic pole pro�le the �eld behaves
strongly nonlinearly and the error reaches the level of 1.6%.

The behaviour of the quadrupole component that is derived from the dipole
�eld shows that the linear �eld has been achieved with the hyperbolic poles
without use of any auxiliary windings. In this region the di�erence compared
to the measurement is oscillating between 0.4% and 1.2%. The error of the
quadrupole component increases suddenly in the narrowest point of pole aper-
ture where �eld gradient changes dramatically. It can be seen that the biggest
discrepancies for both dipole and quadrupole components are located in the
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Figure 6.8: Comparison between the calculated and the measured cycle E
dipole component.
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Figure 6.9: Absolute error of cycle E dipole component.
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Figure 6.10: Comparison between the calculated and the measured cycle E
quadrupolar component.
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Figure 6.11: Absolute error of cycle E quadrupolar component.
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Figure 6.12: Comparison between the calculated and the measured cycle E
sextupolar component.

same region outside the hyperbolic part of the pole, where the �eld is strongly
nonlinear and reaches the highest level.

In comparison of sextupolar components the measurement error has to be
taken into account. A detailed discussion on quantitative error has been passed
over due to the fact that sextupolar components at this level of magnetization
is very small and di�cult to measure. An error on the measurements up to a
factor of 2 can be assumed [11]. However, computed solution has converged
with measured data on both the �at and external parts of the component,
which is presented in Fig. 6.12.

6.3 Medium energy cycle

Cycle A is an excitation program of which the �nal ejection momentum of 14
GeV/c is in mid-range of PS capability. The magnetic �eld at equilibrium orbit
reaches 0.6534 T in focusing half-unit and 0.6840 T in defocusing, while the
calculated quadrupole �eld reaches 2.7498 T/m and -2.7406 T/m respectively.
The di�erence of 0.0306 T in the dipole �eld value is caused by the �gure-
of-eight loop. Current in focusing half of this winding �oats in the opposite
direction to the current in the main coil causing a decrease of the �eld while in
defocusing half currents have the same direction and the �eld is increased. In



Chapter 6. Results of 2D analysis 43

−100 −50 0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Cycle A dipole component

x [mm]

B
y [T

]

 

 

ANSYS focusing
ANSYS defocusing
Measurements focusing
Measurements defocusing

Figure 6.13: Comparison between the calculated and the measured cycle A
dipole component.
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Figure 6.14: Absolute error of cycle A dipole component.
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Figure 6.15: Comparison between the calculated and the measured cycle A
quadrupolar component.
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Figure 6.16: Absolute error of cycle A quadrupolar component.
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Figure 6.17: Comparison between the calculated and the measured cycle A
sextupolar component.

this cycle both �gure-of-eight loop and pole-face windings are active to control
higher harmonics of the �eld.

The behaviour of both dipole and quadrupole components of the �eld is
very similar to cycle E. Discrepancies of the dipole component in the beam
surrounding were less than 0.5% and less than 1.0% for the quadrupolar com-
ponent with increasing trend in the narrow part of the pole.

The calculated sextupolar component corresponds to the measurements.
As it can be seen in Fig. 6.17, it �ts well within the experimental error bars.

6.4 High energy cycle

In the LHC cycle the particle beam is accelerated to the momentum of 26
GeV/c, which is close to the highest possible obtained in the PS. Such a particle
momentum implies high magnetic �eld on the beam orbit at the level of 1.2356
T and 1.2938 T in focusing and defocusing halves respectively. Again, the
di�erence between the focusing and defocusing �elds is observed due to the
�gure-of-eight loop and it amounts to 0.0582 T. Control of the �eld in this
cycle is also made using the pole-face-windings. The quadrupole �eld on the
equilibrium orbit in focusing half-unit is calculated to 5.2281 T/m and -5.2332
T/m in defocusing.
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The di�erence between calculated and measured dipole �eld [2] is less than
0.5% in the beam region and reaches 0.7% in the narrowing of the pole aper-
ture. Discrepancies of the quadrupolar component on the beam trajectory are
less than 0.3%.

The measurement data of the LHC cycle sextupolar component [10] are
available in much wider region than for the other two presented cycles. Fig. 6.22
shows that the simulation has well reproduced the behaviour of the sextupolar
component. However, in highly nonlinear parts of the �eld discrepancies are
clearly visible, which can be seen closely in Fig. 6.23.

Focusing Defocusing
Multipole Meas. Ansys δ [%] Meas. Ansys δ [%]

By [T] 1.2295 1.2356 0.50% 1.2882 1.2938 0.43%
Gy [T/m] 5.2440 5.2281 0.30% -5.2212 -5.2332 0.23%
Sy [T/m

2] 3.5843 2.8132 21.5% -1.1155 -1.4257 27.8%

Table 6.2: ANSYS results compared with the measurement of unit type U.
Field components were calculated and measured on beam trajectory at 26
GeV/c.

Focusing Defocusing
Multipole Meas. Ansys δ [%] Meas. Ansys δ [%]

By [T] 1.2304 1.2365 0.50% 1.2876 1.2948 0.56%
Gy [T/m] 5.2171 5.2348 0.34% -5.2548 -5.2464 0.16%
Sy [T/m

2] 3.1818 2.7492 13.59% -1.1655 -1.3991 20.04%

Table 6.3: ANSYS results compared with the measurement of simulated unit
type R. Field components were calculated and measured on beam trajectory
at 26 GeV/c.
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Figure 6.18: Comparison between the calculated and the measured cycle LHC
dipole component.
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Figure 6.19: Absolute error of cycle LHC dipole component.
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Figure 6.20: Comparison between the calculated and the measured cycle LHC
quadrupolar component.
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Figure 6.21: Absolute error of cycle LHC quadrupolar component.
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Figure 6.22: Comparison between the calculated and the measured cycle LHC
sextupolar component.
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Figure 6.23: Comparison between the calculated and the measured cycle LHC
sextupolar component in the pole gap.



Chapter 7

3D magnetic �eld map

calculation

Magnetic �eld generated by the PS magnet is not uniformly distributed along
the magnet half-units. Both ends of the magnet are sectors where the �eld
decreases gradually. Furthermore, air gaps, both the central junction and the
gaps between the blocks of the same type, have also the in�uence on the
magnetic �eld. These e�ects cannot be modelled in the 2D analysis, thus an
attempt was taken to create a 3D model of the magnet.

The solution is veri�ed with the data from the latest measurement cam-
paign, that was undertaken in 2004 [2]. The measurement was performed using
a matrix of Hall probes and covered the median plane of the magnet including
the ends of the magnet as well as the �eld in the junction area.
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Figure 7.1: 3D model of the PS magnet without coils.
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7.1 Full magnet model

The �rst attempt was to create a 3D model that would contain all 10 blocks and
all exciting coils. For the simplicity of the coils modelling, blocks were aligned
into a straight line, even though the real magnet is bent with a bending radius
of 70.0789 m. The blocks and air enclosure region were meshed with the �nite
element SOLID117 [1], which is a 3D magnetic element that has a capability
of modelling materials with non-linear magnetic properties.

7.2 Coils

ANSYS allows usage of solid conductor bodies only when the termination point
of the conductor lies on a symmetry plane, while the full magnet model is
symmetrical only with respect to the horizontal median plane. For this reason
all coils had to be modelled as line conductor bodies and meshed with the
SOURCE36 elements. In this approach, the conductor domain is not physically
in the meshed model, but it is used to calculate a source magnetic �eld intensity
Hs with the Biot-Savart law, which is then prescribed as a load to appropriate
elements of the air domain. The advantage of line conductor bodies is the ease
of modelling complex coils such as the �gure-of-eight loop and the pole-face
windings, but the model of these coils were simpli�ed nevertheless. Pole-face
windings are wound in the way that copper conductor loops are parallel one
to another and are bent at external parts of half-units with the curvature
radius of 15 mm. The bent parts were very problematic and due to their small
dimensions, they were neglected in the modelling.
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Figure 7.2: 3D model of the PS magnet coils.
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Figure 7.3: The close-up of the focusing side of coils end.

7.3 Analysis conditions

The iron as well as the air domain takes advantage of model symmetry, while
the line conductor bodies do not and have to be completely modelled. On the
symmetry plane the natural Flux Normal boundary condition automatically
occurs. On the rest of external model faces the Flux Parallel boundary condi-
tion is applied. Coils are excited with the LHC type currents set, which allows
to verify the solution at high magnetic �eld level, on which the saturation of
iron occurs. Blocks are assumed to have non-linear isotropic magnetic material
properties. The analysis is performed with two materials de�ned with di�erent
packing factor: λ = 0.925 that was previously used in the 2D analysis and
λ = 0.9496 that is calculated for a single block with 264 lamination layers.

7.4 Finite element discretization

The �nal �nite element model has dimensions 2.1 × 1.1 × 5.67 m, which are
greater than distances between the blocks or coils cross-section dimensions.
The existence of such small components requires the usage of adequately small
�nite elements to obtain accurate solution. However, the re�nement of the �-
nite element mesh entails greater need for computer resources, which is, so far,
a limiting factor. With the available resources1, we were able to obtain a solu-

1Intel R© Xeon R© 5130 2.0Ghz, 8GB of RAM
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tion for the model containing around 1.5× 106 elements, but it did not allow
to go below 1 cm elements on the median plane. Therefore, several additional
models were built with the local mesh re�nement of the beam trajectory neigh-
bourhood. In these models, a �ner mesh was used in speci�c magnet regions
(central junction, half-units mid-blocks or external blocks), while the rest of
the model was meshed with coarser elements. This allowed to obtain more
detailed solution in these regions.

7.5 The results

The motion of particles takes place along the trajectory that cuts across the
horizontal median plane between the magnet poles and goes through the al-
ternating gradient �eld. Calculated absolute value of the By component of the
�eld in this region and the beam path are shown in Fig. 7.4. The dipole and the
quadrupole �elds along the beam trajectory are presented in Figs. 7.5 and 7.6,
respectively.

It can be seen that e�ects of air gaps and magnet ends are clearly visi-
ble. The �eld drops between each pair of blocks of the same type and lowers
towards external blocks. However, the overall accuracy of the solution with
respect to the measured data needs to be discussed. A relative �eld error on
the beam trajectory ∆B = |Bc − Bs| between the calculated magnetic �ux
Bc and its smoothed value Bs, which was obtained with local regression using
weighted linear least squares method (for more details see [19]), de�nes a nor-

focusing half-unit �eld

defocusing half-unit �eld

beam trajectory ����)







�

@
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Figure 7.4: Calculated magnetic �eld on the horizontal median plane.



Chapter 7. 3D magnetic �eld map calculation 54

−2500 −2000 −1500 −1000 −500 0
1.2

1.25

1.3

1.35

s [mm]

B
D

 [T
]

λ=0.9496

λ=0.925

0 500 1000 1500 2000 2500
1.15

1.2

1.25

s [mm]

B
F
 [T

]

 

 

λ=0.9496

λ=0.925

B
m

 − measurement

B
c
 − calculation result

B
s
 − smoothed calculation result

2D analysis result

Figure 7.5: Dipole �eld along the beam trajectory.
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Figure 7.6: Quadrupole �eld along the beam trajectory.
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λ = 0.925 λ = 0.9496
Field integral Measurement Ansys δ [%] Ansys δ [%]∫
BFds [Tm] 2.6455 2.6461 0.02% 2.6754 -1.13%∫
BDds [Tm] 2.7840 2.7671 0.66% 2.7993 -0.55%∫
GFds [T] 10.8749 10.7459 1.19% 10.9002 -0.23%∫
GDds [T] -10.8711 -10.7623 1.00% -10.9344 -0.58%

Table 7.1: Field integrals along the beam trajectory and the relative di�erence
δ between the measured and the calculated �eld integral values.

malized relative error δB = ∆B/Bmax
c . The maximum normalized error along

the steady �eld region amounts to 0.5%, while at junction and magnet ends
0.9% and 3.5%, respectively. These errors are transported to the quadrupole
�eld that is derived from the dipole �eld as in Eq. (5.14). Thus, the quadrupole
calculation errors are much higher: 4.1% on the steady �eld region, 13.7% at
junction and 9.6% at magnet ends. Calculation errors have in�uence to much
larger extent on sextupole as well as other higher order multipoles.

Figs. 7.5 and 7.6 present results of analysis for two di�erent packing factors.
The �rst factor λ = 0.925, which was previously used in 2D analysis, alters
magnetic properties of the iron, which results in a slight underestimation of the
�eld. The second factor λ = 0.9496, which is calculated for a single iron block
with 264 laminations, gives results closer to the actual �eld. For both of these
materials integrated �eld values were calculated along the beam path in both
half-units. Comparison with the measured values presented in Table 7.1 shows
that the second material gives better results, which is much more clear for
quadrupolar components. Dipole component values are burdened with small
discrepancies in the �eld of external blocks as well as those close to the junction,
which makes the di�erence comparison less reliable.

The improvement of results quality was obtained by means of locally re�ned
�nite element model. Figs. 7.7�7.9 show the dipole, the quadrupole and the
sextupole �elds calculated with the model re�ned around the poles of focusing
half-unit mid-block. From evaluation of the maximum normalized errors that
have decreased to 0.26% for the dipole and 1.73% for the quadrupole compo-
nent we can see that both of these quantities are more accurate compared to
the previous results.

The veri�cation of solution is also performed in the transverse plane of
the magnet. It is presented in Figs. 7.10�7.12, in which the median plane
�eld of both focusing and defocusing mid-blocks for s = ±1076 mm is shown.
The model has well reproduced the actual dipole �eld (Fig. 7.10), especially
in the beam surroundings where the di�erence between the solution and the
measurement data is less than 0.4%. However, similarly as in 2D analysis, the
calculated magnetic �eld between the highly saturated magnet poles is slightly
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Figure 7.7: Measured and calculated dipole components (top plot) and the
total error between them (bottom plot) on the beam trajectory of the focusing
half-unit mid-block.
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Figure 7.8: Measured and calculated quadrupole components (top plot) and
the total error between them (bottom plot) on the beam trajectory of the
focusing half-unit mid-block.
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Figure 7.9: Measured and calculated sextupole components (top plot) and the
total error between them (bottom plot) on the beam trajectory of the focusing
half-unit mid-block.

underestimated by approximately 2% when compared to the measurements.
The discrepancy in the same region is also visible in the quadrupole compo-
nent (Fig. 7.11), but the di�erence at the beam trajectory in both blocks is
much lower and does not exceed the value of 0.2%. The sextupole component
(Fig. 7.12), which is derived from the solution obtained with 0.5 mm elements,
is still not reliable. The shape of this component and its accuracy is very similar
to the measured values, but it is far from the quality of 2D solution. The ap-
plied mesh re�nement is still su�cient neither to obtain accurate sextupole nor
higher order multipoles, but further improvement of quality is only a matter
of computer capacity.

Separate models were also create for the junction and magnet ends re-
�nement. The solution of both of them, presented in Figs. 7.14 and 7.15, has
improved as in the prior case. It can be seen that the shape of the �eld obtained
with 3D model is very similar to the actual �eld and even the interaction of
alternating gradients �eld in the magnet centre is visible. However, there are
higher discrepancies between the solution and the measured �eld in the ex-
ternal parts of both half-units. This was expected since these are the regions
were conductors have complex shape that was to some extent simpli�ed. These
discrepancies are higher than those in the stable �eld region and amount to
1.5% at the �rst focusing block (for s = 60 mm) and 2.9% at the last focusing
block (for s = 2000 mm).
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Figure 7.10: Dipole �eld at s = ±1076 mm.
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Figure 7.11: Quadrupole �eld at s = ±1076 mm.
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Figure 7.12: Sextupole �eld at s = ±1076 mm.
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Figure 7.13: Dipole (left) and quadrupole (right) �elds on the median plane of
the focusing half-unit mid-block.
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Figure 7.14: Dipole �eld at the median plane (left) and along the trajectory
(right) in the junction region.
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Figure 7.15: Focusing dipole end-�eld at the median plane (left) and along the
trajectory (right).



Chapter 8

Application of the numerical

solution in MAD

The magnetic �eld calculated with ANSYS model and decomposed into mul-
tipole terms can be applied in MAD1 program, which is a tool for charged-
particle optics calculations in the accelerators and beam transport systems.
It was developed in CERN but since it can handle various accelerators and
problems it is used in many other laboratories. We will use MAD-X [17] to
check if it is possible to recreate the most basic beam parameters with the
FEM solution obtained.

8.1 Proton Synchrotron lattice model

The MAD model of the PS lattice [8] has been divided into 10 sequences of
magnetic elements, that correspond to 10 PS ring sections. Each section consist
of 10 main magnetic units as well as other accelerator equipment. The magnet
itself is modelled as a sequence of MAD elements [12]:

• SBEND � a sector bending magnet described with dipole, quadrupole
and sextupole components,

• MULTIPOLE � a thin-lens magnet described with up to 20-pole compo-
nent,

• DRIFT � a space element with no real attribute of the magnetic �eld.

Multipoles above the dipole are de�ned as

Kn =
1
Byρ

∂nBy
∂xn

n = 1, 2, . . . (8.1)

1Methodical Accelerator Design
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Figure 8.1: Diagram of the PS lattice model in MAD.

where Byρ is the beam rigidity. Detailed description of the MAD model created
in 1992 can be found in [23], and the diagram of its actual state is presented
in Fig. 8.1.

Apart from derived multipole components, which were calculated for a
speci�c working point, there is a number of energy-dependent parameters that
cannot be calculated using the 2D ANSYS model:

• central junction parameters: e�ective length LJ , quadrupole K1J and
sextupole K2J components,

• e�ective magnetic length, which results from the fact that magnetic �eld
does not vanish suddenly at the end of the magnet, but in the optics
model the �eld is assumed to be uniformly distributed along the element.
The e�ective length is introduced to ensure that the �eld integral through
the magnet remains unchanged.

magnet ends

Lef

s

B

Bmax × Lef =
∫ ∞
−∞

B(s)ds
����9

XXXXz

Figure 8.2: E�ective magnetic length.

• pole-face angles εF and εD correcting the di�erence between the magnet
and the stray �eld geometry at the magnet ends, which is caused by the
shape of the pole pro�le.



Chapter 8. Application of the numerical solution in MAD 62

0 0.5 1 1.5
0.03

0.04

0.05

0.06

0.07

0.08

B [T]

∆
`

[m
m

]

 

 

∆`F
∆`D

Figure 8.3: Focusing and defocusing correction bending length [27].

The PS lattice model in the latest form is adapted to use the multipole
components derived from beam based measurements [6]. Multipole values were
�tted with the use of virtual thin-lens elements to reproduce measured beam
parameters. However, the parameters of SBEND elements mentioned above
were �xed to one value, therefore, for the needs of this study, the model has
been modi�ed so that the elements length changes with the energy.

In order to perform the analysis, the measurement data concerning all these
parameters is needed for various �eld levels. The e�ective bending lengths can
be derived from the correction bending lengths ∆`F and ∆`D, which are given
in [27], as below:

LefF = LF + ∆`F ,
LefD = LD + ∆`D,

(8.2)

where LF = 2126 mm and LD = 2134 mm are focusing and defocusing half-
unit lengths respectively. Pole-face angles and junction parameters were much
more problematic since they were not measured in such a wide range of �eld
levels as correction bending lengths. Available data come from old MAD-8 [16]
input �les of the PS lattice [24], which are dated 1992, but only for momen-
tum of 3.5, 24 and 26 GeV/c. Thus, the calculations are carried out for these
speci�c working points and their close neighbourhood where parameters can
be extrapolated.

8.2 MAD-8 calculations using magnetic �eld

measurements and FEM solution

Optics calculation were at �rst performed using a MAD-8 model. Since it
was intentionally developed for the use with measured magnetic �eld data, no
major modi�cations were needed to use it with the ANSYS solution. Available
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input �les contain multipole components and energy-dependent parameters
for three di�erent coils powering con�gurations called B, C and E � which
are shown in Table 5.1 � that were applied in ANSYS model. Tables 8.1�8.3
present calculated beam parameters � the tune and the chromaticity, which
are mainly governed by quadrupolar and sextupolar components, respectively.
However, these parameters are also dependent on the total �eld since given
multipoles are normalized by beam rigidity Byρ as in Eq. (8.1).

The cycle E, the solution of which was discussed in Section 6.2, is a low
energy cycle with adequately low magnetic �eld. Beam parameters at this
working point show relatively small sensitivity to multipole discrepancies. The
di�erence between the measured and the calculated quadrupole components
that has reached 1.2% resulted in the tune error that has not exceeded 0.12%.
Very small sextupole components have produced similar values of chromaticity.

Measurement ANSYS δ [%]

Qh 6.2414 6.2490 -0.12
Qv 6.2917 6.2996 -0.12
ξh -2.7041 -2.6227 3.01
ξv 0.6516 0.5746 11.83

Table 8.1: Parameters of the E cycle beam calculated with MAD-8 model using
measurements and ANSYS solution for λ = 0.925.

The cycle B is a high energy working point that does not have the �gure-
of-eight powered. Thus, the �elds in focusing and defocusing half-units are
very similar and it seems that beam parameters are more sensitive to the
choice of the packing factor. Discrepancies of dipole and quadrupole compo-
nents calculated for packing factor λ = 0.925 were less than 0.5%, while tune
discrepancies, which are shown in Table 8.2, are equal to δQh

= 0.65% and
δQv = −0.51%. The application of separate factors for focusing and defocusing
parts of the magnet � λF = 0.928 and λD = 0.923 � has decreased those
discrepancies to δQh

= 0.14% and δQv = −0.04%. The di�erence between chro-
maticities has not improved signi�cantly, nevertheless the values obtained are
to some extent similar.

Measurement ANSYS δ [%]

Qh 6.2090 6.1689 0.65
Qv 6.3341 6.3664 -0.51
ξh -1.2625 -1.3522 -7.11
ξv -0.8234 -0.7404 10.07

Table 8.2: Parameters of the B cycle beam calculated with MAD-8 model using
measurements and ANSYS solution for λ = 0.925.
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The cycle C is the high energy working point, which is similar to LHC cycle
presented in Section 6.4. Its currents con�guration is set so that all auxiliary
coils are powered to correct the e�ect of iron saturation, hence the �eld in
magnet halves di�ers signi�cantly. For this reason the separate packing factors
are not necessary or even ill-advised in this case. The di�erence between tunes
calculated with ANSYS solution for λ = 0.925 and those calculated using mea-
sured magnetic �eld are equal to δQh

= 0.13% and δQv = −0.15%, while the
use of the same separate factors as in the previous cycle has deteriorated these
values to δQh

= −0.66% and δQv = 0.62%. As it can be seen in Table 8.3, com-
pared chromaticity values are completely divergent. Such di�erence is caused
by sextupole discrepancies, which are relatively small (see Tables A.5 and A.6)
compared to the experimental error, but the sextupole itself is much higher,
which makes discrepancies more important.

Measurement ANSYS δ [%]

Qh 6.2343 6.2259 0.13
Qv 6.2617 6.2710 -0.15
ξh -0.4080 0.0577 114.15
ξv 0.3755 -0.0706 118.79

Table 8.3: Parameters of the C cycle beam calculated with MAD-8 model using
measurements and ANSYS solution for λ = 0.925.

The comparison of beam parameters calculated using ANSYS solution and
measured magnetic �eld has given fairly good results, for tune values in par-
ticular. However, it has to be noted that these parameters are burdened with
uncertainties since the maximum absolute relative error of measured multi-
poles is εB ≤ ±0.2% for dipole and εG ≤ ±0.25% for quadrupole, while the
error on the sextupole reaches 45% [11]. Furthermore, the estimation of the
packing factor for 2D analysis is ambiguous since apart from laminations it
also takes into account air gaps between magnet blocks.

8.3 MAD-X solution comparison with measured

beam parameters

MAD-X model was chosen in order to perform a comparison of the numeri-
cal solution with measured beam parameters. However, its version from 2007,
which was up-to-date with the actual machines state, had to be modi�ed to use
the calculated multipoles as input. Horizontal and vertical tune data was mea-
sured at various energy levels using speci�cally designed powering programme,
which is presented in Fig. 8.4.

The calculated and measured tune values are shown in Fig. 8.5. It can be
seen that the numerical solution for λ = 0.925 does not exactly match the
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Figure 8.4: Powering programme for beam parameters measurements.
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measurement, however, it does �t the actual tune values within the error of
±0.47%, while the tune measured had a precision of the order of 1×10−3. This
gives very good approximation of the tune behaviour, but the accuracy has to
be improved. Wrongly chosen betatron tune values lead to transverse resonant
conditions that cause betatron amplitude growth and as a consequence of
this � particles losses on the accelerator vacuum chamber. Obtaining the
convergence of calculated and measured chromaticity has yet turned out to be
not correct with existing MAD-X model and FEM solution, however, several
limitations of the MAD-X model have been discovered.

8.3.1 Limitations of the Proton Synchrotron MAD-X model

Apart from uncertainties connected with the FEM model (e.g. the packing
factor estimation) the accuracy of the PS lattice model is limited by lack of
energy-dependent parameters data and optical model simpli�cations.

Parameters data that can be found in MAD-8 input �les (pole-face angles
and junction parameters) were measured only at few speci�c energy levels,
while correction bending lengths that come from [27] were measured in 1959
on the prototype magnet unit that was not equipped with any auxiliary coils.
Furthermore, the old MAD model was designed in a way that it was possible to
calculate the beam circulating in both clockwise and anti-clockwise directions,
but because of that half-units were modelled as symmetrical elements. Internal
and external pole-face angles of the same type have the same value, while
internal angles in real magnets are altered by interacting �elds of both half-
units. The correction of this simpli�cation is introduced in junction element,
but it makes the estimation of junction parameters more complicated.

Another limitation of the model is lack of distinction between odd and
even magnets, which have separate powering circuits. The powering scheme
for 5 current mode separates narrow power converter circuit for odd and even
magnets, which gives 7 power converters in total:

• 1 �gure-of eight circuit,

• 2 wide pole-face-windings circuits (focusing and defocusing),

• 4 narrow pole-face-windings circuits (odd and even of focusing and de-
focusing magnets).

To avoid asymmetry between odd and even circuits a set of resistors was intro-
duced, but it was not readjusted after a renovation campaign in which more
even than odd magnets were refurbished. The current di�erence of about 1 A
in pole-face-windings of the same type is enough to noticeably contribute to the
precision loss [15], though in lesser extent than previously discussed factors.



Chapter 9

Conclusion

The ability to recreate optical parameters of the Proton Synchrotron using
computer programs, such as MAD, is of great importance to perform future
development of this accelerator. The main task of this thesis was to develop
the �nite-element model of the PS magnet that can be used, instead of mea-
surements, to obtain multipole components of the magnetic �eld in the magnet
pole-gap. The secondary task was to determine whether the FE solution can
be used as MAD input to recreate beam parameters.

The 2D analysis performed using ANSYS software has given very good re-
sults. Although the dipole component was overestimated by about 0.5% com-
pared to measurements, the quadrupole and the sextupole components were
well within experimental error bars. The simulation has also shown that the
solution is very sensitive to the magnetic material data of the iron and the
packing factor in particular. The laminated structure of iron blocks forces the
magnetic data reduction with the packing factor. However, since air gaps be-
tween blocks also contribute to the �eld drop an analytical factor estimation
becomes uncertain.

The packing factor estimation for the 3D analysis is much more straight-
forward since it only takes into account the in�uence of laminations, and the
value of λ = 0.9496 has given very good results. The most important limiting
factor in the 3D analysis was the number of �nite elements used in the sim-
ulation. It was possible to obtain the solution accuracy of δB ≤ ±0.26% and
δG ≤ ±1.73% using locally re�ned models with up to 1.5×106 �nite elements.
The comparison of the numerical solution with measurements has shown dif-
ference of about 0.4% for dipole and 0.2% for quadrupole components, which
are comparable with 2D results. However, the solution quality was not high
enough so as to obtain the reliable value of the sextupole component. There-
fore, it was only possible to compare the individual behaviour of sextupoles
and both of them, the calculated and the measured one, had very similar shape
and values. The �eld analysis in the areas of the central junction and magnet
ends has shown slightly bigger discrepancies but in these regions the calcu-

67
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lated �eld is a�ected by coils simpli�cations and isotropic iron properties to a
greater extent than within central part of the magnet half-units.

The MAD simulation performed with the use of 2D ANSYS solution and
measured magnetic �eld has shown that the in�uence of the packing factor
estimation on the calculated beam parameters increases with the energy. The
in�uence was especially signi�cant in the case of the calculated tune discrep-
ancies in high energy cycles with and without the use of �gure-of-eight-loop
correction. The comparison of calculated and measured beam parameters is
a�ected by more error sources. Some input parameters, such as junction mul-
tipoles and pole-face angles, were available only at limited number of energy
levels and could not be precisely extrapolated to other working points. Besides
that, there are some MAD model simpli�cations and magnets powering issues
that are not considered in the model. However, despite all these error sources,
the tune comparison had shown discrepancies of about ±0.47% compared to
the actual tune values, which gives a good knowledge about tune behaviour
but the accuracy is not su�cient to use the results in machine developments.

This study has given useful information about the present PS MAD model
limitations that should be eliminated. It has also shown that both the 2D
and the 3D magnet models that were developed can be useful source of in-
formation about the magnetic �eld and missing energy-dependent parameters
data, though some accuracy problems that concern junction and magnet ends
regions of the 3D model should be resolved �rst.
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Cycle E multipoles

Measurement ANSYS Relative di�erence δ [%]

K0F 0.1664 0.1680 -0.97 %
K1F ×Bρ 0.6824 0.6901 -1.12 %
K2F ×Bρ -0.0220 -0.0126 42.74 %
K3F ×Bρ 0.6851 0.1421 79.26 %
K4F ×Bρ 22.3273 4.5000 79.85 %
K5F ×Bρ -2246.3035 -776.3666 65.44 %

K0D 0.1665 0.1680 -0.88 %
K1D ×Bρ -0.6848 -0.6914 -0.97 %
K2D ×Bρ -0.0011 -0.0036 -231.55 %
K3D ×Bρ -0.5722 -0.1490 73.97 %
K4D ×Bρ 17.0218 0.4133 97.57 %
K5D ×Bρ 1924.4380 680.9651 64.61 %

Table A.1: Focusing and defocusing multipoles of magnets with the iron core
internal to the ring.

Measurement ANSYS Relative di�erence δ [%]

K0F 0.1665 0.1680 -0.88
K1F ×Bρ 0.6848 0.6914 -0.97
K2F ×Bρ -0.0011 -0.0036 -231.55
K3F ×Bρ 0.5722 0.1490 73.97
K4F ×Bρ 17.0218 0.4133 97.57
K5F ×Bρ -1924.4380 -680.9651 64.61

K0D 0.1664 0.1680 -0.97
K1D ×Bρ -0.6824 -0.6901 -1.12
K2D ×Bρ -0.0220 -0.0126 42.74
K3D ×Bρ -0.6851 -0.1421 79.26
K4D ×Bρ 22.3273 4.5000 79.85
K5D ×Bρ 2246.3035 776.3666 65.44

Table A.2: Focusing and defocusing multipoles of magnets with the iron core
external to the ring.
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Cycle B multipoles

Measurement ANSYS Relative di�erence δ [%]

K0F 1.1484 1.1532 -0.42 %
K1F ×Bρ 4.7621 4.7755 -0.28 %
K2F ×Bρ 0.5063 0.4235 16.35 %
K3F ×Bρ -18.2078 -17.8298 2.08 %
K4F ×Bρ -67.3263 271.0435 502.58 %
K5F ×Bρ -33828.1094 -36188.5530 -6.98 %

K0D 1.1470 1.1523 -0.46 %
K1D ×Bρ -4.7652 -4.7885 -0.49 %
K2D ×Bρ 0.7086 0.7176 -1.27 %
K3D ×Bρ 18.1574 17.3909 4.22 %
K4D ×Bρ -129.2963 285.9720 321.18 %
K5D ×Bρ 35118.5742 41241.6990 -17.44 %

Table A.3: Focusing and defocusing multipoles of magnets with the iron core
internal to the ring.

Measurement ANSYS Relative di�erence δ [%]

K0F 1.1484 1.1534 -0.43
K1F ×Bρ 4.7621 4.7756 -0.28
K2F ×Bρ 0.5063 0.3912 22.72
K3F ×Bρ -18.2078 -17.2734 5.13
K4F ×Bρ -67.3263 250.8840 472.64
K5F ×Bρ -33828.1094 -37603.1180 -11.16

K0D 1.1470 1.1521 -0.45
K1D ×Bρ -4.7652 -4.7885 -0.49
K2D ×Bρ 0.7086 0.7500 -5.84
K3D ×Bρ 18.1574 17.9507 1.14
K4D ×Bρ -129.2963 312.5467 341.73
K5D ×Bρ 35118.5742 38350.1700 -9.20

Table A.4: Focusing and defocusing multipoles of magnets with the iron core
external to the ring.
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Cycle C multipoles

Measurement ANSYS Relative di�erence δ [%]

K0F 1.2337 1.2419 -0.67 %
K1F ×Bρ 5.2088 5.2379 -0.56 %
K2F ×Bρ 2.4709 2.5295 -2.37 %
K3F ×Bρ -30.0813 -29.8562 0.75 %
K4F ×Bρ 577.8979 365.9082 36.68 %
K5F ×Bρ -76500.0000 -95634.0740 -25.01 %

K0D 1.2818 1.2917 -0.77 %
K1D ×Bρ -5.1980 -5.2455 -0.91 %
K2D ×Bρ -1.2830 -1.0420 18.79 %
K3D ×Bρ 32.9774 35.0419 -6.26 %
K4D ×Bρ 119.8827 -159.6368 233.16 %
K5D ×Bρ 88941.8125 90598.2660 -1.86 %

Table A.5: Focusing and defocusing multipoles of magnets with the iron core
internal to the ring.

Measurement ANSYS Relative di�erence δ [%]

K0F 1.2330 1.2428 -0.79
K1F ×Bρ 5.1971 5.2407 -0.84
K2F ×Bρ 2.2857 2.4738 -8.23
K3F ×Bρ -30.8848 -29.3511 4.97
K4F ×Bρ 485.6216 287.1356 40.87
K5F ×Bρ -76252.6250 -106242.4700 -39.33

K0D 1.2829 1.2907 -0.62
K1D ×Bρ -5.2115 -5.2434 -0.61
K2D ×Bρ -1.0767 -0.9772 9.24
K3D ×Bρ 32.3055 35.1156 -8.70
K4D ×Bρ 210.7191 -172.8100 182.01
K5D ×Bρ 86301.5625 94642.3830 -9.66

Table A.6: Focusing and defocusing multipoles of magnets with the iron core
external to the ring.
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B.1 Wst¦p

Synchrotron Protonowy (PS) jest pierwszym, wybudowanym w 1959 roku, syn-
chrotronem w Europejskiej Organizacji Bada« J¡drowych (CERN), uznawanej
za najwi¦ksze na ±wiecie laboratorium �zyki cz¡stek elementarnych. Akceler-
ator ten przez wiele lat sªu»yª jako gªówne narz¦dzie w programie badawczym
CERN, a od lat 70-tych, gdy zacz¦to doª¡cza¢ nowe akceleratory do kompleksu
badawczego, dostarcza cz¡stki elementarne do innych maszyn.

Rysunek B.1: Kompleks akceleratorów w CERN.

Celem niniejszej pracy byªa analiza numeryczna modelu gªównego mag-
nesu Synchrotronu Protonów. Znajomo±¢ rozkªadu pola magnetycznego jest
niezb¦dna do odtworzenia zachowania kr¡»¡cej wi¡zki cz¡stek elementarnych w
akceleratorze oraz jego dostosowania do przyszªych potrzeb. Dzi¦ki analizie nu-
merycznej nie jest potrzebne przeprowadzanie czasochªonnych pomiarów pola
magnetycznego, których w praktyce nie da si¦ przeprowadzi¢ dla wszystkich
potrzebnych punktów pracy akceleratora.

Do numerycznej analizy 2D i 3D zostaª wykorzystany pakiet elementów
sko«czonych ANSYS. Uzyskany rozkªad multipolarny pola magnetycznego zos-
taª nast¦pnie wykorzystany do odtworzenia najbardziej podstawowych para-
metrów kr¡»¡cej w akceleratorze wi¡zki. Do tego celu zostaªo u»yte opro-
gramowanie do projektowania akceleratorów MAD.
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B.2 Elektromagnetyzm i podstawy optyki wi¡zki

Do opisu problemu magnetostatycznego, którego wielko±ci s¡ niezale»ne od
czasu (∂/∂t = 0), wykorzystywane s¡ nast¦puj¡ce równania Maxwella

rot H = J, (B.1)

div B = 0, (B.2)

do których nale»y doda¢ równanie konstytutywne materiaªu magnetycznego

B = µH, (B.3)

gdzie H jest nat¦»eniem pola magnetycznego, B jest indukcj¡ magnetyczn¡, J
jest g¦sto±ci¡ pr¡du a µ jest przenikalno±ci¡ magnetyczn¡ o±rodka.

Ωi µi

Ωa µ0

ΓB

ΓBΓB

Γai

ΓH

�J µ0 ⊗J µ0

Rysunek B.2: Obszary oraz ich brzegi w problemie magnesu PS.

Stosuj¡c twierdzenie Helmholtza oraz cechowanie Coulomba mo»emy za-
pisa¢ problem przy pomocy caªkowitego potencjaªu wektorowego A:

rot
1
µ

rot A− grad
1
µ

div A = J in Ω, (B.4)

przyjmuj¡c nast¦puj¡ce warunki brzegowe w celu zagwarantowania jednoz-
naczno±ci rozwi¡zania

A · n = 0 on ΓH , (B.5)
1
µ

( rot A)× n = 0 on ΓH , (B.6)

1
µ

div A = 0 on ΓB, (B.7)

n× (A× n) = 0 on ΓB, (B.8)
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[
1
µ

( rot A)× n
]
ai

= 0 on Γai, (B.9)[
1
µ

div A
]
ai

= 0 on Γai, (B.10)

[A]ai = 0 on Γai. (B.11)

Rozkªad multipolarny pola magnetycznego w przestrzeni wolnej od ¹ródeª
pr¡du mo»na otrzyma¢ z rozwi¡zania powy»szego problemu w ukªadzie biegu-
nowym

Az(r, ϕ) =
∞∑
n=1

rn(Cn sinnϕ−Dn cosnϕ), (B.12)

sk¡d otrzymujemy skªadowe indukcji magnetycznej

Br(r, ϕ) =
1
r

∂Az
∂ϕ

=
∞∑
n=1

nrn−1(Cn cosnϕ+Dn sinnϕ), (B.13)

Bϕ(r, ϕ) = −∂Az
∂r

=
∞∑
n=1

nrn−1(Cn sinnϕ−Dn cosnϕ), (B.14)

gdzie Cn i Dn s¡ wspóªczynnikami multipoli pola magnetycznego niezb¦dnymi
w obliczeniach ruchu cz¡stek elementarnych w akceleratorze.

Multipole Magnesy sko±ne Magnesy normalne

Dipole, n=1 Bx = C1 Bx = 0
By = 0 By = D1

Quadrupole, n=2 Bx = 2C2x Bx = 2D2y
By = −2C2y By = 2D2x

Sextupole, n=3 Bx = 3C3(x2 − y2) Bx = 6D3xy
By = −6C3xy By = 3D3(x2 − y2)

Octupole, n=4 Bx = 4C4(x3 − 3xy2) Bx = 4D4(3x2y − y3)
By = −4C4(3x2y − y3) By = 4D4(x3 − 3xy2)

Decapole, n=5 Bx = 5C5(x4 − 6x2y2 + y4) Bx = 20D5(x3y − xy3)
By = −20C5(x3y − xy3) By = 5D5(x4 − 6x2y2 + y4)

Tablica B.1: Pola multipolarne w sko±nych i normalnych magnesach.

Ruch cz¡stki elementarnej w polu elektromagnetycznym odbywa si¦ pod
wpªywem siªy Lorentza

F =
dp
dt

= e(E + v ×B), (B.15)

gdzie p = γmv jest p¦dem relatywistycznym, v pr¦dko±ci¡, m mas¡ a γ =
1/
√

1− v2/c2 jest czynnikiem Lorentza.
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Poprzeczny ruch cz¡stki elementarnej w krzywoliniowym ukªadzie wspóª-
rz¦dnych (x,y, s) jest opisany przez równanie Hilla

u′′ +K(s)u =
δ

ρ
. (B.16)

gdzie u oznacza zarówno x jak i y, K(s) jest funkcj¡ wspóªczynników multi-
polarnych pola magnetycznego, δ = ∆p/p0 jest dewiacj¡ p¦du a ρ promieniem
krzywizny wi¡zki. Rozwi¡zanie nie zaburzonego równania ruchu cz¡stki (δ = 0)
ma posta¢

u(s) =
√
εβ(s) cos (ψ(s) + φ), (B.17)

gdzie ε i φ s¡ staªymi zale»nymi od warunków pocz¡tkowych, β(s) jest funkcj¡
betatronow¡ a ψ(s) jest przesuni¦ciem fazowym.

Wi¡zka cz¡stek mo»e by¢ opisana poprzez wiele parametrów. Do jednych
z najwa»niejszych nale»¡

• tune � liczba oscylacji betatronowych podczas jednego okr¡»enia po ob-
wodzie akceleratora o dªugo±ci C

Q =
1

2π

∫ s+C

s

ds

β(s)
(B.18)

• chromatyczno±¢ � zmienno±¢ liczby oscylacji betatronowych ze zmian¡
p¦du

ξ =
∆Q/Q
∆p/p0

. (B.19)
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B.3 Metoda elementów sko«czonych w

magnetostatyce

Metoda elementów sko«czonych jest jedn¡ z najbardziej efektywnych i wszech-
stronnych metod numerycznych sªu»¡cych do przybli»onego rozwi¡zywania
równa« ró»niczkowych opisuj¡cych zjawiska mechaniki i �zyki. W analizie elek-
tromagnetycznej najcz¦±ciej stosuje si¦ j¡ w uj¦ciu residuów wa»onych, wyko-
rzystuj¡c metod¦ Galerkina. Metoda ta jest bezpo±rednio oparta na równaniu
ró»niczkowym problemu, które w przypadku 2D ma posta¢:

∂

∂x

(
1
µ

∂Az
∂x

)
+

∂

∂y

(
1
µ

∂Az
∂y

)
= −Jz, (B.20)

gdzie Az jest skªadow¡ z magnetycznego potencjaªu wektorowego a Jz jest
skªadow¡ wektora g¦sto±ci pr¡du elektrycznego.

Ogólny algorytm metody elementów sko«czonych mo»na przedstawi¢ nast¦pu-
j¡co:

• Dyskretyzacja obszaru za pomoc¡ elementów sko«czonych.

• Wyznaczenie funkcji aproksymacyjnych dla elementu oraz zbudowanie
przy ich pomocy ukªadu równa« algebraicznych opisuj¡cych nieznane
wielko±ci w w¦zªach elementu.

• Agregacja elementów maj¡ca na celu zbudowanie ukªadu równa« alge-
braicznych dla caªego obszaru.

• Uwzgl¦dnienie warunków brzegowych w globalnym ukªadzie równa«.

• Rozwi¡zanie globalnego ukªadu równa« algebraicznych.

• Obliczenie warto±ci nieznanej wielko±ci w dowolnym punkcie obszaru
oraz wyznaczenie dodatkowych wielko±ci.
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B.4 Charakterystyka magnesu

Gªówna cze±¢ magnetyczna Synchrotronu Protonów skªada si¦ ze 100 mag-
nesów umieszczonych w koªowym tunelu o ±rednicy 200 m. Ka»dy z tych mag-
nesów skªada si¦ z dwóch póª-jednostek: skupiaj¡cej (F) i rozszczepiaj¡cej (D).
Magnesy oddzielone s¡ od siebie sekcjami prostymi (O), w których znajduje
si¦ pozostaªe oprzyrz¡dowanie, tworz¡c wzór FOFDOD. Ka»da póª-jednostka
skªada si¦ z 5 identycznych »elaznych bloków o ksztaªcie litery C z tzw. ot-
wartym lub zamkni¦tym hiperbolicznym biegunem magnetycznym. �elazne
bloki o dªugo±ci 417 mm, zbudowane z 1.5 mm grubo±ci pªyt stali z niskow¦-
glowej walcowanej na zimno i wy»arzanej w temperaturze okoªo 750 ◦C, tworz¡
w pojedynczym magnesie ªuk o promieniu ro = 70.0789 m i dªugo±ci 4260 mm.
Dzi¦ki takiej budowie magnesy te speªniaj¡ zarówno funkcj¦ zakrzywiaj¡c¡ jak
i skupiaj¡c¡ wi¡zk¦.

Rysunek B.3: Rodzaje bloków.

Wzbudzanie magnesów odbywa si¦ poprzez trzy typy uzwojenia: uzwoje-
nie gªówne, odpowiedzialne za podniesienie poziomu pola magnetycznego do
odpowiedniej warto±ci, oraz poprzez dwa rodzaje uzwojenia korekcyjnego. Pier-
wsze uzwojenie korekcyjne obiega bieguny obu póª-jednostek tworz¡c p¦tl¦ o
ksztaªcie cyfry osiem (ang. �gure-of-eight loop), natomiast drugie znajduje si¦
na powierzchniach biegunów obu póª-jednostek (ang. pole-face-windings).
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Rysunek B.4: Schemat uzwojenia.

B.5 Model numeryczny

Dwuwymiarowy model numeryczny magnesu zostaª stworzony przy pomocy
pakietu ANSYS, na podstawie dokumentacji technicznej [21][22][7]. Zawiera
przekrój bloku magnesu, wszystkich trzech typów uzwojenia oraz obszary przes-
trzeni otaczaj¡cej magnes. Model elementów sko«czonych zostaª zbudowany
przy u»yciu elementów PLANE53 [1], które s¡ w stanie modelowa¢ materiaª
opisany nieliniowymi wªasno±ciami magnetycznymi.

pole-face windings

main coilmain coil

air

�gure-of-eight loop

iron core

�
�
�+

XXXXXXXXXXXXz
HHY

-

6

x

y

Rysunek B.5: Fragment geometrii modelu póª-jednostki skupiaj¡cej.

Nieliniowo±¢ materiaªu jest spowodowana zjawiskiem saturacji magnety-
cznej stali, która jest osi¡gni¦ta gdy zwi¦kszanie nat¦»enia zewn¦trznego pola
magnetycznego H nie powoduje dalszego przyrostu indukcji pola B. Ponadto,
ze wzgl¦du na laminacyjn¡ struktur¦ bloków magnesu wªasno±ci magnetyczne
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stali u»yte w obliczeniach musz¡ zosta¢ zredukowane tzw. parametrem up-
akowania λ = lFe/(lFe + l0), gdzie lFe jest ª¡czn¡ grubo±ci¡ materiaªu magne-
tycznego o przenikalno±ci magnetycznej stali µFe, a l0 ª¡czn¡ grubo±ci¡ izolacji
o przenikalno±ci pró»ni µ0. Redukcja wªasno±ci odbywa si¦ zgodnie z wzorami:

µx = µy = λµFe + (1− λ)µ0, µz =
(

λ

µFe
+

1− λ
µ0

)−1

,

gdzie µx, µy i µz s¡ u±rednionymi kierunkowymi warto±ciami przenikalno±ci
magnetycznej stali. W przypadku analizy dwuwymiarowej jednoznaczne osza-
cowanie parametru upakowania nie jest mo»liwe ze wzgl¦du na wpªyw prze-
strzeni mi¦dzyblokowych które nie s¡ uwzgl¦dnione pªaskim modelu. Do obli-
cze« 2D przyj¦to warto±¢ λ = 0.925, natomiast w przypadku analizy 3D
parametr upakowania wynosi λ = 0.9496.

W modelu zadane s¡ dwa rodzaje warunków brzegowych:

• warunek prostopadªo±ci strumienia magnetycznego do brzegu � zadany
na osi geometrycznej symetrii modelu,

• warunek równolegªo±ci strumienia magnetycznego do brzegu � zadany za
zewn¦trznych brzegach dyskretyzowanego obszaru.

Obci¡»enie zostaªo zadane poprzez g¦sto±¢ pr¡du przyªo»onego w przekroju
odpowiedniego przewodnika. Warto±ci zostaªy pobrane z programu steruj¡cego
cyklem wzbudzenia magnesu, dla stabilnego poziomu pola magnetycznego przy
których przeprowadzana zostaje ekstrakcja wi¡zki.

Cykl Imc If8 IpfwF IpfwD

E 669.2 A � � �
A 2677.5 A 450.35 A 39.47 A -45.08 A
B 4732.0 A � 77 A 88 A
C 5413.15 A 1257.9 A 200.7 A 99.75 A

LHC 5400.56 A 1452.8 A 206.7 A 86.9 A

Tablica B.2: Kon�guracje obci¡»enia.

Post-processing zostaª przeprowadzony za pomoc¡ specjalnie do tego celu
napisanym procedur¡ w j¦zyku APDL1. Procedury te dokonuj¡ dekompozycji
obliczonego pola magnetycznego na jego skªadowe multipolarne wykorzystuj¡c
do tego celu szeregi Fouriera. Nast¦pnie rozwi¡zanie w takiej postaci mo»e by¢
porównane z danymi dost¦pnymi dzi¦ki przeprowadzonym w przeszªo±ci kam-
pani¡ pomiarowym [11][2] lub wykorzystane do oblicze« w programie MAD.

1ANSYS Parametric Design Language
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B.6 Wyniki analizy 2D

Dla dwuwymiarowego modelu zostaª przeprowadzony szereg testów sprawdza-
j¡cych zbie»no±¢ rozwi¡zania dla ró»nych parametrów symulacji. Przetesto-
wano wpªyw rozmiarów dyskretyzowanego obszaru na rozwi¡zanie oraz jego
wra»liwo±¢ na dane materiaªowe i zmian¦ parametru upakowania.
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Rysunek B.6: Wpªyw odlegªo±ci brzegów d = n× 360 mm dla x = 0.
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Rysunek B.7: Wra»liwo±¢ rozwi¡zania na parametr upakowania.

Zostaªo równie» przeprowadzone porównanie wyników symulacji uzyskanych
za pomoc¡ dwóch ró»nych programów: ANSYS wykorzystuj¡cym metod¦ el-
ementów sko«czonych oraz ROXIE2 wykorzystuj¡cym hybrydowe poª¡czenie
metody elementów sko«czonych i metody elementów brzegowych.

Nast¦pnie przedstawiono porównanie wyników oblicze« z danymi pomi-
arowymi dla trzech ró»nych cykli wzbudzenia: nisko-energetycznego typu E
(wi¡zka o energii 3.5 GeV), ±rednio-energetycznego typu A (14 GeV) oraz
wysoko-energetycznego typu LHC (26 GeV). Porównanie komponentów dipolo-
wego oraz kwadrupolowego wypadªo bardzo pomy±lenie dla wszystkich trzech

2
Routine for the Optimization of magnet X-sections, Inverse �eld calculation and coil

End design
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Multipole ANSYS ROXIE Bª¡d wzgl¦dny δ

dipole [T] 1.26424 1.26426 0.001%

quadrupole [T/m] 5.41058 5.40944 0.021%

sextupole [T/m2] 3.83421 3.77767 1.475%

Tablica B.3: Porównanie warto±ci multipoli na trajektorii wi¡zki uzyskanych
przy pomocy programów ANSYS i ROXIE.

cykli w obszarze pola generowanego przez hiperboliczn¡ cze±¢ bieguna. Nieco
wi¦ksze rozbie»no±ci zostaªy zaobserwowane w obszarze przew¦»enia przestrze-
ni mi¦dzybiegunowej, gdzie pole magnetyczne osi¡ga najwi¦ksz¡ warto±¢ i ma
silnie nieliniowy charakter. Ze wzgl¦du na wysoki bª¡d pomiarowy kompo-
nentu sekstupolowego, a przez to oscylacyjny charakter dost¦pnych danych
pomiarowych, porównanie tego komponentu mogªo mie¢ jedynie charakter
jako±ciowy. Dla cyklów nisko- i ±rednio-energetycznego zarówno ksztaªt jak
i warto±ci zostaªy bardzo dobrze odtworzone. W cyklu wysoko-energetycznym
rozbie»no±ci byªy wi¦ksze ale ksztaªt komponentu sekstupolowego zostaª odw-
zorowany bardzo dobrze. Poni»sza tablica i wykresy przedstawiaj¡ porównanie
wyników oblicze« z pomiarami dla cyklu wysoko-energetycznego.

Pole skupiaj¡ce (F) Pole rozszczepiaj¡ce (D)
Komponent Pomiary Obliczenia Bª¡d Pomiary Obliczenia Bª¡d

By [T] 1.2295 1.2356 0.50% 1.2882 1.2938 0.43%
Gy [T/m] 5.2440 5.2281 0.30% -5.2212 -5.2332 0.23%
Sy [T/m

2] 3.5843 2.8132 21.5% -1.1155 -1.4257 27.8%

Tablica B.4: Porównanie obliczonych i zmierzonych komponentów pola na tra-
jektorii wi¡zki dla cyklu LHC.
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Rysunek B.8: Cykl LHC - komponent dipolowy.

−100 −50 0 50 100 150 200 250 300
−0.01

−0.005

0

0.005

0.01

0.015
Absolute error of cycle LHC dipole component

x [mm]

ε B
y [T

]

 

 
Focusing
Defocusing

Rysunek B.9: Cykl LHC � bª¡d bezwzgl¦dny komponentu dipolowego.
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Rysunek B.10: Cykl LHC - komponent kwadrupolowy.
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Rysunek B.11: Cykl LHC � bª¡d bezwzgl¦dny komponentu kwadrupolowego.
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Rysunek B.12: Cykl LHC - komponent sekstupolowy.

−100 −80 −60 −40 −20 0 20 40 60 80 100
−25

−20

−15

−10

−5

0

5

10

15

20

25
Cycle LHC sextupole component

x [mm]

S
y [T

/m
2 ]

 

 

ANSYS focusing
ANSYS defocusing
Measurements focusing
Measurements defocusing
Polynomial fit

Rysunek B.13: Cykl LHC - komponent sekstupolowy.
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B.7 Obliczenia map pola magnetycznego w

przestrzeni 3D

Trójwymiarowy model magnesu zostaª stworzony w programie ANSYS Work-
bench przy u»yciu elementów SOLID117 [1]. Zawiera on 10 bloków, które dla
uproszczenia uªo»one s¡ w linii prostej i maj¡ izotropowe wªasno±ci magne-
tyczne o czynniku upakowania λ = 0.9496, oraz obszar przestrzeni która je
otacza. Uzwojenie magnesu zostaªo zamodelowane elementami SOURCE36.
Bardzo skomplikowana geometria przewodników wymusiªa zastosowanie pew-
nych uproszcze« uzwojenia korekcyjnego. Model wykorzystuje symetri¦ pozio-
m¡ magnesu w celu zmniejszenia ilo±ci elementów sko«czonych. Mimo to ich
liczba si¦ga niemal 1.5× 106 dlatego konieczne byªo stworzenie kilku oddziel-
nych modeli o lokalnie zag¦szczonej siatce elementów sko«czonych.

focusing half-unit

defocusing half-unit

air enclosure

Q
Q
Q
Q
Q
QQs

J
J
JĴ
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Rysunek B.14: Trójwymiarowy model magnesu oraz uzwojenia.
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Rysunek B.15: Obliczona mapa pola magnetycznego na pªaszczy¹nie ±rodkowej
magnesu.
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Najbardziej interesuj¡cym pod wzgl¦dem wyników obszarem jest pªaszczy-
zna symetrii magnesu, a w szczególno±ci trajektoria wi¡zki cz¡stek elementar-
nych która j¡ przecina. Przy pomocy wzgl¦dnego bª¦du symulacji wyra»onego
przez ∆B = |Bc −Bs|, gdzie Bc jest obliczon¡ w¦zªow¡ warto±ci¡ pola a Bs
warto±ci¡ wygªadzonej mapy pola magnetycznego, zostaª oszacowany znormal-
izowany wzgl¦dny bª¡d oblicze« δB = ∆/Bmax

c . Maksymalna warto±¢ bª¦du
na trajektorii wi¡zki wyniosªa 0.26% dla komponentu dipolowego i 1.73% dla
kwadrupolowego w obszarze stabilnego pola obu poªówek magnesu.
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Rysunek B.16: Komponent dipolowy (na górze) i kwadrupolowy (na dole) na
trajektorii wi¡zki w ±rodkowe cz¦±ci póª-jednostki skupiaj¡cej.
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Rysunek B.17: Komponent dipolowy w ±rodkowej cz¦±ci magnesu (po lewej) i
na jego ko«cu (po prawej).
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Porównanie wyników oblicze« 3D ze zmierzonym polem magnetycznym
daªo wyniki bardzo zbli»one do tych z analizy 2D. Ró»nice dla ±rodkowych
bloków obu póª-jednostek magnesu (s = ±1076 mm) w porównaniu do pomia-
rów si¦gn¦ªy na trajektorii wi¡zki 0.4% dla komponentu dipolowego i 0.2% dla
kwadrupolowego.

W obszarze rozdzielaj¡cym poªówki magnesu oraz na ich ko«cach odw-
zorowanie ksztaªtu pola magnetycznego byªo bardzo dobre ale rozbie»no±ci
byªy znacznie wi¦ksze i wyniosªy dla komponentu dipolowego 1.5% dla s = 60
mm i 2.9% dla s = 2000 mm. Nale»y jednak pami¦ta¢, »e wªa±nie w tych
obszarach wpªyw uproszcze« modelu jest najbardziej widoczny.

B.8 Zastosowanie rozwi¡zania MES w programie

MAD

Obliczone za pomoc¡ modelu elementów sko«czonych warto±ci komponentów
pola magnetycznego mog¡ zosta¢ wykorzystane w programie MAD3, sªu»¡cym
do projektowania akceleratorów. Stworzony przy jego pomocy model magnesu
Synchrotronu Protonowego opisany jest za pomoc¡ multipoli zde�niowanych
nast¦puj¡co:

Kn =
1
Byρ

∂nBy
∂xn

n = 1, 2, . . . (B.21)

gdzie Byρ jest sztywno±ci¡ wi¡zki, a tak»e poprzez zale»ne od energii wi¡zki
parametry zwi¡zane z dªugo±ci¡ efektywn¡ magnesu, przestrzeni¡ oddzielaj¡ca
poªówki magnesu oraz z geometri¡ pola magnetycznego na jego kra«cach.
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Rysunek B.18: Schemat modelu magnesu w programie MAD.
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Przy pomocy modelu wykonanego w programie MAD-8 porównano parame-
try wi¡zki uzyskane przy wykorzystaniu zarówno obliczonych w analizie 2D jak
i zmierzonych warto±ci pola magnetycznego.

Pomiary ANSYS δ [%]

Qh 6.2414 6.2490 -0.12
Qv 6.2917 6.2996 -0.12
ξh -2.7041 -2.6227 3.01
ξv 0.6516 0.5746 11.83

Tablica B.5: Parametry wi¡zki cyklu E policzone w programie MAD-8 przy
u»yciu pomiarów i oblicze«.

Pomiary ANSYS δ [%]

Qh 6.2090 6.1689 0.65
Qv 6.3341 6.3664 -0.51
ξh -1.2625 -1.3522 -7.11
ξv -0.8234 -0.7404 10.07

Tablica B.6: Parametry wi¡zki cyklu B policzone w programie MAD-8 przy
u»yciu pomiarów i oblicze«.

Pomiary ANSYS δ [%]

Qh 6.2343 6.2259 0.13
Qv 6.2617 6.2710 -0.15
ξh -0.4080 0.0577 114.15
ξv 0.3755 -0.0706 118.79

Tablica B.7: Parametry wi¡zki cyklu C policzone w programie MAD-8 przy
u»yciu pomiarów i oblicze«.

Natomiast wykorzystuj¡c specjalnie zmody�kowany do tego celu model
wykonany w programie MAD-X obliczono parametry wi¡zki wykorzystuj¡c
wyniki analizy MES a nast¦pnie porównano je z parametrami wi¡zki zmie-
rzonymi podczas pracy akceleratora.
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Rysunek B.19: Program nat¦»e« pr¡du wykorzystany podczas pomiarów.
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Rysunek B.20: Zmierzone i obliczone warto±ci parametru tune.
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B.9 Wnioski

Zdolno±¢ do odtworzenia parametrów optycznych Synchrotronu Protonowego,
przy pomocy programów takich jak MAD, jest niezwykle wa»na w dostosowa-
niu tego akceleratora do przyszªych potrzeb. Celem tej pracy byªo stworzenie
modelu numerycznego magnesów tego akceleratora, oraz próba wykorzystania
jego wyników zamiast danych pomiarowych w obliczeniach parametrów wi¡zki.

Dwuwymiarowa analiza pola magnetycznego na trajektorii wi¡zki wykazaªa
ró»nic¦ rz¦du 0.5% dla komponentu dipolowego w porównaniu do wyników
pomiarów. Komponent kwadrupolowy i sekstupolowy mie±ciªy si¦ w granicach
bª¦du pomiarowego. Wykazana zostaªa równie» du»a zale»no±¢ wyników od
parametru upakowania, którego oszacowanie w przypadku 2D nie jest jednoz-
naczne z powodu zªo»onej geometrii magnesów.

Gªównym czynnikiem ograniczaj¡cym obliczenia 3D byªa liczba elementów
sko«czonych wykorzystanych w modelu, która si¦gaªa nawet 1.5 × 106. Ana-
liza trójwymiarowa daªa ró»nice rz¦du 0.4% dla komponentu dipolowego oraz
0.2% dla komponentu kwadrupolowego w stosunku do danych pomiarowych. Ze
wzgl¦du na bª¦dy symulacji, jako±¢ obliczonego komponentu seksupolowego nie
byªa wysoka, jednak jego zachowanie i warto±ci byªy bardzo podobne do danych
pomiarowych. Wyniki analizy pola magnetycznego pomi¦dzy poªówkami mag-
nesu oraz na jego brzegach daªy nieco gorsze rezultaty, czego przyczyn¡ mogªy
by¢ uproszczenia modelu uzwojenia oraz zastosowanie izotropowych wªasno±ci
»elaza.

W obliczeniach przy pomocy programu MAD cz¦±¢ wymaganych paramet-
rów wej±ciowych, takich jak warto±¢ gradientu pola magnetycznego pomi¦dzy
poªówkami magnesu czy korekcja gradientu na ko«cach magnesu, byªa dost¦pna
jedynie dla kilku kon�guracji wzbudzenia, natomiast sam model synchrotronu
w programie MAD jest pod pewnymi wzgl¦dami uproszczony. Mimo tych
ogranicze« obliczona liczba oscylacji betatronowych podczas jednego cyklu
(tune) ró»niªa si¦ do ±0.47% w porównaniu ze zmierzonymi warto±ciami. Dla
oblicze« chromatyczno±ci nie udaªo si¦ uzyska¢ wiarygodnych rezultatów.

Praca ta dostarczyªa cennych informacji na temat ogranicze« istniej¡cego
modelu Synchrotronu Protonowego w programie MAD które powinny by¢ wye-
liminowane. Pokazaªa równie», »e numeryczny model magnesu mo»e by¢ cen-
nym ¹ródªem informacji na temat pola magnetycznego i parametrów wej±-
ciowych modelu MAD, jednak kilka kwestii wymaga dalszej pracy badawczej.


