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ABSTRACT

-The vertex function third-order in radiation field is
found for an electron in an external constait crossed field
of arbitrary strength: It is ghown that the radiaﬁve in-
teraction ¥#ears” the Ainy function which describes the
intenaity of eiecttoﬁ—phdfdﬁ iﬂtéractiﬂﬁ in the external field
as a function of the nonconserved component of electron mo-
mentum., The quélitativo relation V'(S?‘N A ’Vs:v(‘) bet—
ween the third-and the first-order vertex funcfions is found
for 1arge values of the dynamic parameter 'X\ o It is shown
alao that the radiative interaction doeu not change the order
of magnitude of the squared mass transmitted in the vertex.

The vertex function satisfies the Ward identity modified by
the external field.



VERTEX FUNCTION OF ELECTRON IN A CONSTANT ELECTROf
MAGNETIC FIELD
D.A.Morozov, N.B,Narozhny, V.I.Ritus

I, Introduction,
Much attention is attracted at preaent to investigation of
radiative corrections to electromagnetic.proceases in intense
external fields, i.e. in fields whose stirength is clome to the

éharactaristic quantum electrodynamic value

F, = mc 44 = 44x10" 0e.

So, for a constant external fieldvthere were calculated
mase and polarization operators in the second-order of per?
turbation theory [1-16] y» fourth-oxrder corrections to them
[II~13] and radiative corrections to soume proceasses [;1-131.
The asymptotic behaviours of mass and polarization operators
in higher orders of perturbation theory pavevbeen also invea-
tigated [14-16} . | | ,

3 ﬁoyever in all these papers only the diagrammes containing
no vertex function were comsidered mince the vertex function
has not been calculated yet in eléctrodsnamioa_with an exter-
 nal field. | | :

In the present paper we are going to bridge the gap and’
calculate the vertex function in the third order of pertur-
‘bation theory with respect to the radiation field for an
electron in e constant crossed field (Elﬁ ’ E= H ) of



. : : _ 1)
arbitrary strength. Such a field im described py 4-potential
M

It is a low-frequency approximation of a plane-wave field and

=ar(k-x) y K’:=‘-.'KQ. =0.

.a good approximation of én arbitrary constant field for
ultrarelativistic particles.

The vertex function of an electron in a constant crossed

field can be written in the form

V (x “,x)_e b' S(“,‘a)x S (‘j,!)ﬁ D(* ") (1)

where S (%, ) is the electron propagation function in a
crossed field which was found by Schwinger [17}

Sc(*,\g); e/;'z, S(xég) y 0= %( yX=4)(k,x+Y), (2

| S(;_,i_élzw)&gﬂ!é‘éz [m-‘.;n'z}exfi %: isL (eFi)) Q%_Fs}(a) |

d‘?‘(s) = 1 S‘dF e F‘\? + - e (FF) (a)

andD(!) is a photon propagation function for which we use

the proper-time representation

1) The sjatem of units is used where t. =C = 1 | and the |

| deeignationa P, = (P ,-,,Po ' QP= Zip %PO’P P-Ps
P-lv (Pn*P‘s) d_l;s-’;s = (431‘ 03.. )
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completeness relations
Sd"x Ew(x) Eptx) = (Zn') 8’((\r p) .
(L BBy = S(umy),
Eptx) =%, MO

EP -transform of the vertex function (I) will be written
in the form

- (8)

¢ 7(3 - ’ 5. u‘ ! | ) ;l
Vb, ) = Sesdtedly B o) Vit g, gl .
We wmay rewrite the formula (9) in the form

x7® = M, . N

Vr (‘M’,t) = SA‘X E‘}(‘j) Af' (1(3),})(3\)%(% e 3, (10)
1t 1ntx'o;:luce the 1ntegration variables

(1)

Pty)

2wy, ey o
and use the relation |
Eplpr)- Ep( B (z')e“*‘“""““ iz

which follows directly from the explicit expresaion (6) for
 the Ep-function. Here, -

Pp(‘é) P-ea. “'ﬂ)*ﬂ)( DR - zxp( ‘3\ Po(13)
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is a classical kinetic momentum of a charged particle at the
point Y. with the initial value Pr at the point LJ-=O ,

A(ﬂ(% P)_ e 844 lJAi”E (i)lf S(i) S(l)KvE

( )
D" z’) exp { i_f [(o.z")(xz") - (ai')(m')] }

and S(E) is a diagonal part of the eicctron prnpagator (3).
The representation (13), (14) ubtained for \I (q,, ,Q)
is a Fourier integral with respect to the argument L « By
shifting the integration variable ’g- and using the relation
(II) one can obtain for vr}n(q P,Q) the represen-

3)
~ tation (13) with another function J\.‘ which differs from

(14) and depends explicitly on Q . Th:i,js representation will
not be already a Fourier-integral with reapect to ’. , but
it will allow to simplify the depemknce  of the function I\‘:
on % P , lee. On ‘tHe integration variable in (13).

Pormula (13) differs from the Ef' ~-representation of the
point vertex by the substitution Y _ — A_ « Therefore
‘it is the function I\. H:‘) that determines the correction to

the vertex function in the EP -representatiom
r'“ (‘%F) "'"xr "'f\r(zi'F) (15)

As is seen from (14) and (15), the vertex function in
the Ef’ -representation dependa on the 3 ~coordinate of photon
absorption through the classical kinetic electron momenta P 4
and Ctr(g) before and after abaorption, more precisely threugh
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. Using the evident equality EP(") EP(X)‘—‘ i , we shall
rewright (19) in the form '

Mt:)(O,,p) SJ‘xE (*)E ('t)ge‘4 (‘)M (‘a*)E (“),(21)

and show that the integral

4) 41T @), 1 o |
My () = (4% Ep() My (x,x) B ) (22)
does not depend on X . |
Making use of the E? ~-representation of tkhe electron

propagator and the representation (13) for the function

Vm( ’P"Q) we obtain
-i!(x-g

) C
My (P)--(—z-“) 84‘“““‘3 — Bpg B o

i
meaf i

(‘3)1\ (fm Py Eply) -
By virtue of relations (II), (IB) we have

(24)
Er“” B0 Ef“d) Eme !

Py ‘5) ﬂ) 3\)m Wiy)

Therefore the expression (23) can be reduced to the form

M . Ap 47 '%
(P) ( S "3E W)ig“ “f"' P‘ )('*) ;(‘) (25)
i

| G) ~ '
g “’M))} s



if in curly brackets one passes over from the integration va-
riable f to r: ;(3) bt.aking into account that the Jacobian
here is equal to I and designating x-—g =2 .

After integrating over the virtual mowenta, the expression
in curly brackets in (25) is a ¥ -matrix invariant depending
on X?(%), , 2 , 6F only. The Lorentz rotation opera-
tion (18) transforms KF(";) into '5'9 , ¥2 into UE" Y
where

3T - - (26)
Z, = %, E(Fz) 20‘?) e(FFz)r, ‘

and does not change the invariant &F . Therefore

-l.h 9
Eoof e o0 £ By L NG 7

m».xi -1&

-

If in the expression (25) one now goes over from the in-
~
tegration variable g to 2 (the Jacobian is equal to unity)

~J ~

and takes away the unnecessary "tilda" aigns in { ., 2

one finally obtains

M a;d? m
()-**-; g Vp( f Q) (£,p) - (29

f -1t mai \&

@) Kf

So, Mv (P) does not depend on the coordinate X , and by vir-
tue of (8) for the mass operator (21) there appears the

following expression

My (4, p) = ()" B(g-p) MYeE), (29)



-9 -

which should be expected also from the general considerations
Lz
' An analogous representation can also be obtained for -

the second-order mass operator

S5 -
(zx\ S i*-ie Vr' (Bt )my\xf.ie - ‘39)

Comparing formulae (28) and (30) we see that the iransition

My ()= -

from the second-order maess operator to the vertex correciion
(28) is realized by a replacement of the matrix Kl‘ by I\m ¢
the correction to the vertex function I\(: being 1ndepon,-
dent on the coordinates and being considered as a function
of the guantum numbers f and P |
Note that the repreaentations of the mass operator (28),
(30) aze remarkable by being close to vacuum representations
since there is only one vertex that is "dreaaed" in Ef =fuanc-
tions. This closenpss reached by the EP - representation

.technique facilitates eatentially the 1nterpretation and the
calculatione.

Bergra paaaing over to a direct éalculation of the vertex
function Ar in the third order o the perturbation theory,
we would like to recall that the reprementation (14) is not
unique. Choosing integration variahice i the formula (9) aif~
ferent from (10), one can, for exauple, vbtain for the vertex
tunction'f\r a representation depending sxplicitlj on [

the absence of an pxternql field tuiwm sriitrariness corres-
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ponds to the use of the consérQetion.laws. In our case the
aituation is however 1es§ trivial since in a constant field
we have ohls three,conﬁe:véd guantum number and various
representations of.fLr differ from each other by’thé ¥ -matrix
structure, Transition from one répreaentation to another re-
quires integration by parts over the variable 13 in (13), and
therefore when calculating 1\ it is convenient to proceed
directly from formula (13). We shall trs ta represént the ver-
tex function in the form of an .’mtegral over electron and pho-
ton proper timea. where the field-independent part of the
phau is expreued in terms of (‘ % P p and ! yand
in the Y -matrix. structure the matrices "} stand on the
lef% and the matrices Kp on the right.

When chooeing the coordinate system and the gauge so
that the vector t be directed along the axis 1 and the
vectoy 4 along the axis 3, we represent (13) after 1ntegra-—

tion over the coordinates "3‘ ’ 4‘,, 3*3 = (&J.Hd,) in the form
Vi )('M"?) (2’0 8'((“ “P- !)5‘(% Pa n)s(“ -P.- ')(3”

es’F ' | 19SF
SJ’ e f(9) e 4nt’ Al‘ (cu.ﬂ P('”)e 4"?

where
f=-rgsdadt- B¢ 9o ky =%y
_ ' (32)
 n q,-p, -, , o= cafp 1 - (eFD
| K.y *4)(<p) (<a)p(sl)

Let us pay attention to the fact that as moon as the
external field is switched off, the integral over 44_ im-
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med}.ately gives sz'(q’_h _L) J\V‘:f- and leads
to0 the conservation law .Pd" t‘: (t‘ Afoz‘ a;Ll the four compo-
‘nentes of the momenta. If in formula (31) the radiation inter-
action is switched off, i.e, if one changes At: by ¥, sthen
the -V.‘:‘) -will be transformed to vertex function 'V—r?)r de-
termined by formulae (22), (23) of ref. [19].111 the presence
of the field 1,2 and "-" components of the momenta are con-
ssrved, while ".'+" cbmponent of the momenfaﬂ conjugéte to the
".n coordinate i8 not converved - thé kinetic momentum of an
electron depend on its "-" coordinate and interaction depends
_on the coordinate 41_ - of photon absorption., Therefore,after
integration over ‘3_ the 'final momentum is not completely de~-
termined by the initial momenta P , l , the conservation
law 18 valid only for fhree components of the four,see for-
mula (31). At the same time if we 'regard I\.r'as a slowly
changing function of ‘\J_ .and abstract ourselves fx"cm spin
effects,then due to 6:9}11tt16n- of the function e‘ﬂ‘(’) the
- largest contribution to the integral (31) is made by the -
| .vioir;iigy of thqpbints P=%, where“-f'('ﬁ)ao . S_ince _

o= -aredpet= 4 (F-Bin-bL),
this is the vicinity of the points for which the conservation
law is valid for the're‘maining"-o‘-“ - comfnonentu of the momenta.
For the first-order vertex functioh‘ Vm ltor which
J\?;?: Xr, the integral over Q‘_ in (31) 98 reduced essen-
tially to the Airy function @(ﬁ) with the argument
2= (4% [(erap)-(a/apy ], O
which replaces 3% D (ch- R - Q Q) ‘ -rur}otion.n'a,rb we a_b-tnct.
ourselves from the general factor and the spin structure,lead-



ing to the itema with the I-st and the 2~-nd deriVatives of
the Alry functiona. .

Note that the argument 2 is gauge invariant and its
magnitude determines the "dettming" th- P*" L‘_ a8 a function
of the field intensity Frq and the values of conserved com-
ponentes of the momenta (}, P ’ Q_ o« The quantity (Q'-P-t)* can be
also congidered as the squared mass transmitted in the char-
ged or the neutral channels @ince with the help of the con-

servation laws it can be represented in the form

(§-p-1), = ‘—-—-‘-‘t—’!)%‘ - ’_"_‘é (r_El“ S

Thus, the electzon-photon interaction is intensive only if

is not very large in megnitude, i.e. 1f the conservation law

for "4 componenté of the momente is vioiated not very much.

Radiative interaction makes f\r a complicated function of %-

and modifies essentially the Airy}runction; see formula (54).
‘Making use of.the representations (2), (5) for Green's

functions and the explicit form (6) of the EP -functions,

Y] H .
we shall integrate over 2 , 2" in (14) with the help of the
formula |

s Sl[j‘rxm exp{1 b | X9\ m F)}S(K )

_ i (4m)
detw

expi ﬂﬁ) (w.‘)*p m}%[m(d( :‘; qf-;) (35)

where W - 4 x 4 - ma tx ix for the Lorentz indices d , P
and XN ~matrix for the indicas 1. K which numerates
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4-coordinates of integration and -4-momenta, W" is the inverse
matrix for W and g 1is an arbitrary function of the varieb-
leﬂ x‘.*)' k = 1.2, eee 9 Ne
In our case )
IV w g ™ ~
Wy = Wy b4 + W, 29 (F Ko + )
d o Od s - alalt
P Pt wp AUMTP IR (36)

+ N:‘ ;e“i qt. (F"“Kf+ arKd) + W.‘; e"(FF)d? ’

where .two-rowed matrices W, .have the form

: 3 -‘ -‘vl N o O s Q »

3; ’ 33 gmf‘lw- t are propér.tipe- of electrong with 'momeﬁta
P9 and a photon, respectively, u’ﬁ:: S?t t"f‘ .
* - The inverse mabrix W also nas the atructure (36)
with metrix coefficients W, instead of Wy s
. : ' o '“},Q’ a4 '
- v wa -t
.. ,%o '-‘_"Wo" = l . l‘ x|
, ) : detwo \-t7 Wy [

(38)

=Wt - - - A e e
uh‘- =-Wo Wl,?.wli4 y U= "wo‘ wswo'4 -W.‘S', wo‘sgwo‘,

(4
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where 6'; is a Pauli matrix, and

c\tW--L -i-(4—+4) | (39)
8 Wo S,S,+t S2) °

After integration, (14) can be written in the form

Al“ i‘%?m) :;n SX\ dsidsadt \("{S‘émzsa;p‘.“

s? s} t‘ 6(4'0)
.expl-tqwt 4e’a (2) 430&
| "‘“3.«,[(“%}“ Sy ]}
here . egk < o6F
_ o g W °r) ] 158
Qr e 2xq ¥, ["H l’(‘lﬂsa) 2 -5". “n
« QGF (
[m + ;"K‘s‘) l“’ z KQ = "'6; K(w“q) O

the two~way arrow over the differentiation operators indica-
tes that they act on the functions both on the right and
on the left of them.

Differentiation boias can'ied out, one should put

q° “Pls 97=uy) .

Expression (40) possesses a rather conplicatedvdepen-
dence on P, C‘ - and therefore on “4. « This dependence can
be ean\entia’lly simplified in the following ways. After sub-

~ stituting expression (40) into formula (31) and making the
following replacement
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_ 2 S¢Sa
. =Y-¢ S,+5;+1 . (42) |

A IS
Sy= 2 0)(ben), S, = -‘z-w(uv)(&-vz) , t=0 ‘—’\;— y  (43)

one can rewright formula (31) in the form

'V'“ (9P, ) gd zE.'(z)A (q(z),p(z), ) r(i)e 'y (48)

where the transformed vertex function A ( $ P ?. )

depends now on ?. but for that it has s verx simple depen~
dence on Z._

o i
(2 -\ S-s 3R kt.ﬁ‘lf o
Ar(%?;t)s = S'.T!' S * i @"tm i (45)

8= miwa) + §FE + §F @ vy, wo

R = el e e -
{1~ g v)] & LIS FEN! ter ,(M,z]

47) -
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.
The variable \l' s\ﬁ')\h“r ,» A= (l"/m_\ includes the photon
mass. The phase of the integrand depends on #_ through

e%FP .eo'FP+eQFFi only linearly. .
a,.(qp,)»(m ) 2 L)

w(iew)) T 4 (arw)? s
-1 DY oy ley
‘a(mr) o (247 VT ) SoFisF

+ [FAe -] [4AF  sBpt ] -
‘-tm[w L -xm[‘{khtﬁ(q)’d]f -
-‘mxr [xhpuB(-z)l] zm't [xkp 35(7)1]

A-.-.gx?i -‘,.gfa[aew(u?)]}x exp - m[zf"(“%‘
%"j ._%egr{ ‘1‘%;42%#@.-?)} exp{t = MG*'[)}

_and the matrices A, A' , B (on R B'(\z)
| are determined by the equalities

A= [h m(anr)eF + = (6+4u’ns"')eFF] (50) -

uv

-.-..;4.; [{-unreF * _g.zw(xr-a) e"FF] ; (51)
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B ('D _ 2;\&(‘_‘% 4(&*\!') [ 'f(g;?‘),»c \r(d-ll) + 4(2.*\!':\1&\: + .
[3 +4u‘? + B\r(q-»l) 2 v(mr)(h?)nr(i-\fw ) ﬂL‘U} FF,

4(1 \r)

Bl('Z) g—%—}g {11- [2+(1-11)(t+?ﬂ eF+
. (53)
v S ey -¥ -va 7 )+ 400 )W(M)'l("‘l)]err}

When tranarorming Qr we have perrormed the above-
mentioned integration by parts over the variable 3 in (31)
with the help of the equality (33).

Note that the metrices A R A have a simple phy-
sical meaning, namely

e L * e

hiptp=Tp 2’ Repdp=Tiap 2y,
where the matrix 'ﬂ;r ie datermined in (4), ']f; di!fau from
it in the sign of the charge or the field strength end z‘..“, is
an effective value of the relative coordinate of the classi~-
cal electron with the momentum (1, [5] . »

The field being switched off,.the vertu function (45) )
is transforned into the vaounm one obtained first by Karplus
‘and Kroll [20] s Bee also ref. [21]

As has already been mentioned, for the first-order
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vertex function \Jpj the integral over 3_' in the repre-
sentatlon (31) is reduced, in effect, to the Airy function
@ (2) with the argument (34). From formula (45) it follows
that radintlve interaction "smears" the q)(a)replacing it by
the function

”J C -wS-LwvR N
411'; “§j“"r‘ _S:"Le o 3 CP(;-;), (54)

where !:l.n the same argument (34) and T 1is a correction
depending on w,v, 2 :

b2 O ()4 (eq)(kp). (55)

4, Propertiel of the vertex function in 1ntenee fields.

Let us oonlider two propertiee of the calculated vertex
function which difter essentially . from the propertiel of
the eotreeponding vacuum funotion. _ ,

The 1ntenot10n of particles with an external field
is ehezeeterised by Lorentz- and gange-invariant parameters

A= "':%l » AT UFP)™ - o VeFL)™

which obey & conservation law depending on a channel

¢+ € = . .
A ’K ’\* (57)
It follows al!eed: from the riret~order'vertex function

’T“ ¢(a) and the structure of the argument Z , that a
equeted nass of order
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9= (po)*~ m"\'"’(,\) , (qepy - U e /’(’\\) ¢
can be transmitted at the vertex. The tranamitte¢ squared
mass- doesn't depend on M and vanishes the field being
switched off. ’

¥hen the field strength or the momenta of the particles
are large, at leﬁst two of the“parameteu J\ R 7\' y & are |
large too. Then the transmitted squared mass is wuch la:ger_
than the electron mess and increases with the fiqld- strength,
1f, for example, 7\' R ~X N1, the transuitted squared méss
is of order (eFP)V-‘ for any channel.

Radiative interaction doesn't change the relation (58)
since the effective values of the integx!at:lon variables :l.n
(54) are of such oxrder that % is always lees or of order 1.

Even of greater 1ntereut is the aasmptot:l.c behaviour
of the vertex function 'V": in the limit of very strong
field. We will consider a simple cue'when \' )\)) 1,8 ~ 1

and all the particles are on the maas aholl. Besides we put
two parametera

xm‘az | miae
where X = e(1/',“‘ , to be equal to zero.

The parameter ? has the meaning of the center of the'

)

vertex function formetion region and due to the uniformity
of the field all matrix elements including the vertex don't
depend on it. Therefore the condition f‘ = 0 is quite
natural. In the coordinate syétem with. d directed along
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the axis 1 and T() along the axis 3 the parameter ‘¥
has the meaning T ~ QI/m, and is definitely of order’1
in matrix elements. We put it to zero for the sake of sAimpli-
city.
In the case under conaideration the effective values of
the inteération variables in formula (45) are
0).“ ,,,K’ys.A , -{.“.—'1 . 7
Then for the quantities $ (16) and R (47) we have
S mm'v, , R=my®
The argument of the Airy functions (54) in our approxima-
tion is of order
By (-3~ Bl
and integrals over W are reduced, in effect, to the well-

known special functions [19]

| ﬂ.” - S’“ e_i“t*g ) ) "1 (‘3)"" _Sat,{f(t)_'ft“}
and their derivatives with the_' a'rgufnegt 3, (\f/’o «1. In-.-:

tegrals over " end V" are triviel and we can finadly write

o] ’ - = ’ ") 18 0 ovring:
fox T,f‘ ‘V’F_,‘V’r the folloving

"V'r " (21()’ 8‘(3.-?,-{4)5(%*&‘ls)g(‘}.'ﬁ‘t-) '
T o ot () o

y m‘:\ (59)

c il Ve o W 3
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where
“"i“—— Qn. 7\1\/3)
'\r’.zi-;-:-‘[?en'\ 29-717\.],
. 2%x\¥3 5 (4+1(3) I’(
Uy = { - ok(i‘\) _fs_ﬂ.___ o ))

: S, i
G = - (3" 448‘4 ;ﬁ M),

and Br, denotes a vector which doesn't appear in the first-

order vertex function and has & rather combersome atructure.

We will write down here only those terms in BI‘ which do

not decrease in the liuit \>> 1e

g ~ 3% q)(O) Qn(ﬁy E(B’FFE)
) 27m? A ) 7\

i (S 0T 6 i

Ly bl (e T(3) [ eSF swiﬂ)n -
=V gl T ey
i e s
L z‘p(e) | (PFF) : 4m+ixp+9(§-z)sﬂn,(%

m“w\ 2
.
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One can see from the expressions for the scalar coeffi-
oients'ﬁf of the vertex function that some of them are
expanded w1th the parameter d.9n1& , and gome with the pa-
rameter (iﬁ\ . Hence; we may say that in the limit of lar-
ge 1\ there exists a qualitative relation

-V—@) . 0“\2/3. .V..(ﬂ (60)
between the third- and the first-order vertex functions.
This relation remains to be true when ‘7\~7\l~& >> 1,
but the explicit expfession for‘\rr in this case is wuch
more campiicated. The relation (60) is an indication that
GK7\ sﬂ igs a universal parameter of the perturbation theo~
ry in intense-field quantum electrodynamics in the high
-nergy or high field strength limit. Some considerations for
2/3-power, but not logarithmic, dependence of the parameter
on % were firet discussed by one of the authors [1] and
then confirmed in [14]

5. Wayd gdeptity |
The vertex function must satisfy the generalized Ward
identity firet found by PFradkin [22] « It is. convinient

for us to use this identity in the following representatlon
(see Mitter's work [23} )

0 foa)(wv»‘) 5| Tan % - Mg T U e

wbere r1 Ei)is the second-order mass operator, and the
wa trix I (q, p,l) hae the representation
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I(O',p,h =&al.4x E%(x)EP(x) e‘h. (61')
Tt is a generalization of the four-dimensional (2% )4 g(q,-P"Q)
-~ function which describes the momehtum conserva-

tion in the vertex for the“case‘of a nonzero external field,
Hence, IH,P,Q) differs from F\Q' F,?,) by a replace.-
ment of J\r by unit, see €13), (31). ' |

In the limit ldﬂp 0 one can ubtainAerm the identity(671)
the following differential Ward identity

roefF 3 | ) |
{ Kr "OS} | A{(P*SK,P,-O) = -"\’b_.'?..(.g) -
M | S=o Pp

(62)

R WM ep (eFpakake IM |, ¢ EFR)Kpkp IM
4(xp)" Py 2 (sp)*  DROP, 6 (%p)* 'bp,\pr“oh

After direct calculations one can make sure that the obtain-

ed vertex function (45) and the mass operator of an electron

in a crossed field [12]satisfies the relation (62).This is

a pbod verificétion of the calculations made above . The

choice of integration variables (13) in the vertex function

is just determined by the requirement that at a = 0 they
coincide with the 1ntegration variables in the expression

for the mass operator [1él « It is readily seen that at

t = 0 the integral over 14_ in (45) gives 8' ~-function for
"4+"-components of the momentum, the phase of the integrad

in (45) depends no longer on the variable = (59;"54)/(51*94),

which has the meaning of a tglétive difference
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of the electrons proper times, and coincides with the phase
of the second~order mass operator [12} with the only natu-~
ral difference that in the vertex variables
- -4 -4
= (S4*52) "4 t , V¥ = (%*Sﬂ/@
the aumm S1+S2 replaces the proper time S of the electron
in analogous variables of the mass operator . The variable
W can be referred to as the proper time of the vertex
function, 4 |
Note that for the representation (25) of the vertex
function f&r in addition to (62) there holds the relation
2 2
1Ar(P+sn,.p)o) _ ' oD “OM(?*SK)
M 2 3 P Y (63)
Vs 3=0 vs? Ph lsoo,

The obtained relation for the vertex function containg,

of course, a 1bgarithmic divergence in the proper time and
requires regularization. Since the presencé of an external
field does not introduce additional; as compared with the
véﬁuum, ultraviolet divergences, theh to regularize the ver-
tex function (45) it is sufficient to subtract from it the
value it has at 1 = 0, z;('i'f:xF: im.  and F=0

\ﬂ ~ o~

H%@ =L

‘ £ =im 5 Xf‘ ) (64)
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In this cdase for the regularized vertex function we have

® (v~ o . o)
AM(%P,Q) = I\r‘ H”F’Q)—L -Kr i ~ (66)

Introducing for the variable W the lower integration
kimit h\. ->» 0, and carrying out integration in (65), we ob~-
)
tain for L\) the value

LA

) i - , _
=& (4D =
\. = o5 ( 2 Qh. i'(m“u\. + Qh.l +2) > ¥ “.781. «(67)
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