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ABSTRACT
Radiation damage processes in structural materials are important for
the determination of fission and fusion reactor performance. To model the
evolving microstructure during particle bombardment of metals using the rate
theory of void swelling, irradiation creep and growth, it is necessary to
evaluate the strengths of the various sinks for migrating point defects.
Conventionally, because of the complexity of the problem, bulk recombination

of such defects has been neglected in sink strength derivations.

In this paper we calculate, by means of an original mathematical
formulation, void sink strengths which include the higher-order bulk recom-
bination effects. Detailed comparison of computed void swellings obtained
with our new void sink strength expressions and those derived previously
disregarding bulk recombination show rigorously, for the first time, the
effect of neglecting the higher-order corrections to the void sink

strengths arising from bulk recombination.
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TLLUSTRATIONS

Calculated void swelling, at three doses, as a function of
temperature for the data given in table 1 and a dislocation
density of ]x]O]4 m'z. The curves have been calculated for
the with recombination void sink strengths (45) and (46),
whereas the dots indicate results for the without recombina-
tion expressions (7) and (8).
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figure 1.

Evolution of error in swelling with dose, at a temperature of
550°C, for the conditions of figure 1.

Calculated void swelling, at 100dpa dose, as a function of
dislocation density for the data given in table 1 and a tem-
perature of 550°C. The curve has been calculated using the
with recombination void sink strengths (45) and (46), whereas
the dots indicate results for the without recombination expres-
sions (7) and (8).

Error in swelling incurred from neglecting bulk recombination
in the void sink strength derivation for the conditions of

figure 4.

Error in swelling as a function of dose for the data given in
table 1 except a constant void concentration of 1x]02] m-3 has
been used. Temperature is 400°C and the dislocation density is

]x]O]4 m 2.

Error in swelling, at 100 dpa dose, as a function of dislocation
density for the conditions of figure 6.
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1. Introduction

The phenomena of void swelling, irradiation creep and growth observed in
structural materials have important consequences for fission and fusion
reactor performance. The fundamental microstructural processes manifesting
themselves in these physical observables are now fairly well understood, and
may be described mathematically using a chemical rate theory formulation.
Crucial to the employment of this model is the evaluation of the strengths
attributed to the various sinks for migrating point defects in the rate
theory continuum. Brailsford and Bullough (1980) have discussed the
philosophy and present state-of-the-art for the sink strength determination
in a recent comprehensive work, and have noted that (apart from empirical
modifications or perturbation and iterative treatments) bulk recombination
of point defects is conventionally ignored in such derivations. More
recently, however, Wood, Jones and Pierce (1980) have calculated, for the
first time, sink strength expressions including bulk recombination effects
directly; in their case for the thin foil surface sink, as used in high

voltage electron microscopy (HVEM) studies.

Here, we extend the Wood, Jones and Pierce analysis tackling the
generally more important void sink for which strengths in the presence of
bulk recombination are rigorously derived. Numerical sink strength values
are given for expressions derived both without and with bulk recombination,
and the results compared. To examine the sensitivity of the different
formulae appropriate void swelling calculations have been performed, and it
is concluded that the sink strengths obtained previously by neglecting bulk
recombination introduce only small errors in the regime of physical interest.
Using results for the void case, the derivation of grain boundary sink
strengths with bulk recombination is presented for completeness in an

appendix to this paper.



2. Void Sink Strengths

We consider the diffusive flow of irradiation produced point defects to
a spherical void of radius re embedded in an infinite and homogeneous lossy
continuum. Point defect loss in the medium is to fixed extended sinks, such
as dislocations, grain boundaries and cavities, and through bulk recombination
of interstitials and vacancies. The steady state continuity equations for

the interstitial (i) and vacancy (v) fractional concentrations outside the

void- (i.e. for ro < r< ®) are;

D, dc.
id 2 i 2 _
Zdr (’“ T )t Ko Dikyey maeyey =0, (1
and
D dc
v d 2 v 2 _
p2 dr <:r o )t K- Dkey - aciey, =0, (2)

where spherical coordinates with their origin at the centre of the cavity
have been adopted. Here Di and Dv are the interstitial and vacancy dif-
fusivities respectively, K is the point defect production rate, o is the
bulk recombination coefficient, and k? and ks denote sums of the strengths
of all sinks in the lossy continuum for migrating interstitials and
vacancies respectively. Conceiving the void as an ideal sink, the solution
of the coupled differential equations (1) and (2) is subject to the boundary
condition;

¢; =¢, =0 at r=rg, (3)

be finite.

Brailsford and Bullough (1980) have shown how void sink strengths may
be calculated by equating the respective loss rates of point defects to the

central void with the corresponding loss rates in the lossy continuum: the




resulting expressions for the sink strengths are,in terms of the solution

of equations (1) and (2):

2 = amele <% 5)
ic ccar | /6 -
Y‘-Y‘C
and
dc
2 2 v 0
kye = 4mrcCe Tﬁr] . //év’ (6)
r=re

respectively, where CC denotes the volume concentration of voids in the medium.

Assuming ac;c, = 0 (nonlinear bulk recombination has been ignored in most

ivv
previous derivations of void sink strengths) the uncoupled equations

resulting from (1) and (2) are readily solved yielding the <nterstitial sink

strength;

ke = dmrcCo(T+kre)s (7)
and the vacancy sink strength;

k2o = dmrcCo(lok,re)- (8)

To allow for recombination, (1) and (2) may be written in terms of the

variables Y = Dici and Yy = Dvcv, to yield;

dy.
1 d 2 Vi 2, _ A _
?Za?< @)t K T iy T O )
and
1d (2%, 2 | a - 0 (10)
Zar " Vv SO0 Yy T
Defining,
N
Y= + ¥,/
Z=(.Y1".Vv)/2
2= kE 48 ? (1)
2 _ .2 _
kv =k B
A= a/DiDv’

equations (9) and (10) become;



1 d <:r2 dy + K - k2y - Ay2 = Bz - Azz, (12)

;?_.HF dr
and
L& <r2 42) - % - gy (13)
"

Also, the condition (3) becomes;
y=z=0 atr=re (14)
and the requirement (4) is replaced by;
y=y,z=2 whenr > (15)

be bounded.

In their paper treating foil surface sink strengths with bulk recom-

bination, Wood, Jones and Pierce (1980) have justified introducing the

approximate relation;

8z - Az = 0, (16)

to solve an equation similar to (12) above. Here, we also adopt this

relation* and consider henceforth, instead of (12), the equation;
d 2 d 2 2
Mg <:r O S R (17)
r

together with (13). Employing the asymptotic solution of (17) for r —+ «;

y® = k2Q/2A, (18)
where
0= (1 +aakkhHE -1, (19)
together with the quantities;
f = kerQ/Z.T

w
]

(20)
1, j

and the normalized variables;

*The errors incurred in adopting this relation for the present analysis are
discussed at the end of this section.
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r' = r/rC
y'=ylye (21)
z' = z/y, ’

equations (17) and (13) can be reformulated to give;

Ly g (PP g e {0 v'+s)? ] - o, (22)
rl
and
d 2 dz' 22, _ .2
respectively. The condition (14) then becomes;
y'=z"=0 atr' =1, (24)
and the regquirement (15) is written;
y'=1,2" =2'" when r' »e (25)

with z'* bounded. The nonlinear differential equation (22) is of the Emden
type (Davis, 1962) and apparently does not have an exact solution in closed
form. To establish a convenient and accurate approximate solution, we use
the limit of vanishing recombination, A - 0, when (22) degenerates to the

Tinear differential equation*;

—za—r < 2 dy + koS (1-y") = o. (26)

The solution of (26), subject to (24) and (25), is;

y'=1- %L—exp[-krc(r'—l)]. (27)

The form of (27) suggests the ansatz;

yi=1 - F]r expl-G(r'-1)7, (28)

with a (positive) constant G to be determined, as an approximate solution of

equation (22) when recombination is present.

*Notice that y~ = K/k2 in (21) for A - 0 according to (18) and (19).



Inserting the expression for y' from equation (28), into equation (22)
leads to the 1mplic{t relationship;
6= f {2(1+5) - exp[-G(r‘-])J} , (29)
which gives G as a function of r' rather than a constant, as assumed in the
derivation of (29) from (22). An approach to remove this contradiction is
indicated by expanding y' as a series in powers of G;
oot re e g d e (30)
‘ n=1 )
Hence, we consider replacing the fuhction G(r') from equation (29) by its

moments;
R|
1

6" = gim —— /2 j

r'2{2(1+5)- Vzl-r-exp[-G(r')(r{-l)]}n/2 dr',
R'= R'7-1

n=1,2,3,... .(31)

Because of the inequalities;
S >0, (32)

and

F‘r expl-G(r')(r'-1)1 < 1, (33)

(the latter holding in the entire range 1 < r' < « since, due to (29), G(r")
is positive definite) we may expand the integrand in equation (31) in a

binomial series to obtain;

"> = [2F(145)1V2 {1 + 1 (-1)“("()2 [2(148)17 x
v=1

R |
X Lim —%j (r)2™ expL-vG(r')(r'-1)3dr'}, n = 1,2,3, ... (34)
R'se R'S-1 /1

The following outcome is easily verified;

Rl
2im ——%—— [ (r.)Z-v expl-vG(r')(r'-1)1dr' =0, v = 1,2,3,... . (35)
R'» R'"-1 71

Hence,



<6"> = [2F(145)12, n =1,2,3,... (36)

revealing the identity,

<"z <", n-= 1,2,3, ... . (37)
If we choose in equation (28),

G = <G> = [2(145) 12, (38)

or, by the definitions (20),

o=

G = kro(1 +Q)2, (39)

we obtain an approximation to the solution of equation (22) which reproduces

all moments of G(r') exactly and, since

G = kr. if A~0, (40)

C

tends to the exact solution (27) in the zero recombination 1limit.

We are now able to solve equation (23) for z' subject to (24) and (25).

Substitution of y' given by equation (28) yields*;

-
] ] ] ]
J B{(:£§ + i>.Fr exp[-krc(r -1)1 - EZ --%} expl-G(r -1)]} s G>krC
2 - | | G
B [ ?%-- é)'FT expl-kro(r'-1)1 - ;? + 68 exp[-krc(r'-l)]} > G=kr.

*By following an analogous procedure to that outlined above for the void sink
taking bulk recombination effects into account, it can be shown that the
theoretical results for point defect concentration profiles across irradiated
thin foils given by Lam, Rothman and Sizmann (1974), and successfully employed
by Wood, Jones and Pierce (1980) to derive related sink strengths, are
obtained identically. In this case detailed comparison between the exact
numerical solution of the corresponding steady state continuity equations and
the approximate solution, equivalent to (28) and (41) with (39), displayed
good agreement for computed defect concentrations, and led to accurate sink
strengths and computed irradiation growth strains within a wide range of
values for the parameters involved. From a physical viewpoint, it is clear
that an extremely high accuracy in the solution of (17) is not necessary
since, of the coupled equations (12) and (13), it is (13) that generates the
important interstitial - vacancy differential effect in the sink strengths.




where

Y r%/( 62 - k rc), § = re/2k (42)

The required void sink strengths from (5) and (6) are given in terms of

the primed variables introduced by (21) and (25) by;

2 _ ' dZ Ioo]
and
2 dy' _ dz'] -
ka = 4T|'Y‘CCC l:?'—r a?r— r'='|/ \:] - Z ] . (44)

Application of the expressions (28) and (41) finally yields the results for
G z_krc:
interstitial sink strength;

K2

ic 4“rCCC{Bi(]+G) + (1-31)[1 + Gkrc/(G+er)]}, (45)

vacancy sink strength;

kSC = 4nr.Coi8, (146) + (1-8,)01 + Gkr o/ (G+kre) 13 (46)

where;

- &/ - B)s By = KE/ (K + 8). (47)
Since G 3_krC according to (39) and (40), the expressions (45) and (46)
indicate that both interstitial and vacancy sink strengths are enhanced in
the presence of bulk recombination. Furthermore, we note the limiting case
of a neutral lossy continuum (where void growth cannot occur) whence B = 0,

_ 2 _ 2
Bi = Bv and thus kiC = ka.

Having achieved our objective of determining void sink strengths with
bulk recombination, we consider the error involved in the approximation (16).
For dislocations the only biased sinks in the rate theory continuum (i.e.

the only sinks admitting a strength for interstitials different to that for

vacancies) we may write by use of (11)



B/kY < (Zy - 2)/(Z; + 1), (48)

where the parameters Zi and Zv define the preference of dislocations
relative to vacancies. With typical values of Zi and Zv we find B/kz.i 0.1,
and more neutral sinks present in k2 could imply B/k2 << 0.1. We realise

from (28) and (41) that
z'/y' = -B/k2 when r' - o« (49)

hence, it seems appropriate to neglect the terms on the right hand side of
equation (12), the approximation (16). A more rigorous analysis on the sink
strength expressions (45) and (46) for the zero recombination 1limit (40) in
comparison to the exact formulae (7) and (8) reveals errors due to the

)2

adoption of (16) to be of order (B/k2 and are therefore at most 1% and

often, substantially smaller.

3. Results and Discussion

The physical and irradiation data used in this section and purporting

to relate to 316 stainless steel under HVEM conditions are given in table 1.

We have calculated values of void sink strengths for interstitials and
vacancies derived both without, equations (7) and (8), and with, equations
(45) and (46), the inclusion of bulk recombination effects. The results,
presented in tables 2 to 5 for different temperatures covering the void swel-
ling regime and a range of dislocation densities, exhibit the same features
as previously found for the thin foil surface sink strengths (Wood et al.
1980), that is:

(1) The zero recombination results are independent of temperature and
point defect production rate, behaviour which may be contrasted with that
obtained when recombination is included. This feature is obvious since the
expressions (45).and (46) include the recombination and diffusion coefficients

and the defect production rate explicitly, while equations (7) and (8) do not.

-9 -




(2) Rather large errors can originate in the zero recombination sink

strength values at Tow temperatures and dislocation densities.

(3) The agreement between corresponding pairs of results is best at

high temperatures and dislocation densities, i.e. when point defect loss due

to bulk recombination becomes small.

However, simply comparing numerical steady state sink strength values
may indicate 1ittle about the performance of such sink strengths in actual
void swelling calculations. We have, therefore, alternatively incorporated
the respective sink strength formulae, equations (45) and (46) on the one hand
and equations (7) and (8) on the other hand, in the full rate theory void
swelling VS2 computer program (Windsor, Bullough and Wood, ]980) which
numerically integrates the rate equations with the recombination and thermal
emission terms present. Figure 1 illustrates the predicted swelling as a
function of temperature. The full curves have been calculated with the void
sink strengths inciudihg bulk recombination, equations (45) and (46), whereas
the dots refer to neglecting recombination in the sink strength derivation,
equations (7) and (8). Figure 2 displays errors in swelling* which arise from
the use of the sink strengths without recombination, for the results of
figure 1: errors are revealed to be either positive or negative, and are
always less than 4% in magnitude. For the identical set of results, figure
3 shows the evolution of the error in swelling with dose up to 100 dpa at
550°C; this temperature being chosen because it gives the maximum error at 100
dpa (c.f. figure 2). The sign of the error changes from negative to positive
between 10 and 20 dpa, and the error then increases to 100 dpa. At the same

temperature, the calculated swelling against dislocation density behaviour

*Error in swelling is defined as the difference in swelling obtained using
the void sink strengths without and with recombination relative to the
swelling for the void sink strengths with recombination.

- 10 -



is presented 1in figure 4. Again, the curve and dots have been obtained,
for 100 dpa dose, using the sink strengths with and without recombination,
respectively. For this series of computations we have plotted, in figure 5,
the error in swelling due to the employment of the sink strengths without
recombination: as expected the error becomes very small at high dislocation
densities. The maximum error, less than 4%, is found for a dislocation

density of A0 m2,

A11 the calculations described above have been repeated at a constant

void concentration of 1 x 102] m3

for temperatures below 550°C to account

for possible heterogeneous void nucleation at low temperatures*. Within this
series of calculations the maximum error occurred at 400°C, the lowest
temperature of computation. Hence, in figures 6 and 7 we show the computed
error in swelling as a function of dose and dislocation density, respectively,
for this temperature. Comparison of figures 3 and 6 indicates a qualitatively
different behaviour with dose at these two temperatures: in the latter the
error decreases monotonically from ~ +6% to v -10% between 0.1 dpa and

100 dpa. Figure 7 reveals larger errors than figure 5, the maximum error

with the lower void concentration being v -14% at a dislocation density of

about 10]5 m-z.

4. Conclusion

By means of an original mathematical formulation we have derived,
rigorously and for the first time, void sink strength expressions which take

the higher-order bulk recombination effects into account, for use in the

rate theory of void swelling.

*This value for the void concentration is two orders of magnitude smaller than
that following from the corresponding Arrhenius law in table 1 at a tem-
perature of 4000C.

-1 -



We have performed detailed swelling calculations employing both the new,
with recombination, vbid sink strengths and formulae previously obtained by
disregarding the recombination. The computations exhibit that the derived
sink strength expressions without recombination yield generally acceptable
results in the physical void swelling regime. Larger errors are found at
low temperatures and moderately high’dis]ocation densities when heterogeneous

nucleation of voids is considered.
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Table 1

Data used in Calculations

Interstitial diffusion coefficient Di = D? exp(-E?/kBT);

D? = 1x1077 mzs-], ET = 0.2 eV.

Vacancy diffusion coefficient Dv = DS exp(-E?/kBT);

Ds = 6x107° mzs-], ET = 1.3 eV.

Bulk recombination coefficient o given by a/Di = lxlozo m'?.

Interstitial bias parameter Zi = 1.025.
Vacancy bias parameter Zv = 1.0.
Void radius (for sink strength calculations only) re = ]x10'8m.

Void concentration (for swelling calculations only) CC=C8 exp(EC/kBT);

2 - 2.73x101% m™3, E, = 1.42 eV.

1

3 dpa s .

Defect production rate K = 5x10°
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Table 2

Void Sink Strengths Calculated at 300°C*

kz**,m'z Without Recombination With Recombination
e Koe e Koe
1012 1.269 | 1.269 5.183 | 5.086
1013 1.297 | 1.29 5.183 | 5.087
1014 1.383 | 1.381 5.182 | 5.088
1010 1.656 | 1.651 5.179 | 5.091
106 2.521 | 2.505 5.182 | 5.108
10V 5.255 | 5.206 5.958 | 5.895

*Void sink strength values given per volume concentration
of voids in units of 1077 m.

RS
with B/k° = (2,-2,)/(24+2,)
2,2
ky = k B
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Table 3

Void Sink Strengths Calculated at 450°C*

: Without Recombination With Recombination
I

ic o e Koe
1012 1.269 | 1.269 2.259 | 2.234
1018 1.297 | 1.29 2.258 | 2.235
1014 1.383 | 1.38] 2.257 | 2.236
1015 1.65 | 1.651 2.262 | 2.244
1016 2.521 | 2.505 2.629 | 2.611
107 5.255 | 5.206 5.259 | 5.210

*Void sink strength values given per volume concentration
of voids in units of 10™m.

ke = k% 4 g
with 8/k% = (2;-2,)/(2;+2,)
2,2
2=kl -g
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Table 4

Void Sink Strengths Calculated at 600°C*

k2**,m'2 Without Recombination With Recombination
k?c_ oc e e
1012 1.269 | 1.269 1.665 | 1.656
10'3 1.297 | 1.29 1.665 | 1.656
1014 1.383 | 1.381 1.665 | 1.657
101° 1.656 | 1.651 1.736 | 1.730
1016 2.521 | 2.505 2.525 | 2.509
1017 5.255 | 5.206 5.256 | 5.206

*Void sink strength values given per volume concentration
of voids in units of 10 /m.

S AR
with B/k% = (2,-2,)/(2;+2,)
2,2
Z=k?-g
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Table 5

Void Sink Strengths Calculated at 7500C*

: Without Recombination With Recombination
kz**,m_z
2 2 2 2
kic kye Kic ke
1012 1.269 | 1.269 1.474 | 1.468
1013 1.297 | 1.29 1.473 | 1.469
1014 7.383 | 1.381 1.479 | 1.475
101° 1.656 | 1.651 1.665 | 1.660
1016 2.521 2.505 2.522 | 2.506
107 5.255 | 5.206 5.256 | 5.206

*Void sink strength values given per volume concentration
of voids in units of 107/ m.

*RKL = k2 + B

- N

with 8/k% = (2,-2,)/(2;42,)

n

K2=k?-p

<
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Appendix

Grain Boundary Sink Strengths

In this appendix we present a derivation of grain boundary sink strengths
including bulk recombination, which closely parallels the presentation given

for the void case in section 2.

Considering a spherical grain of radius RG embedded in an infinite
and homogeneous lossy continuum, the steaay state continuity equations for
the fractional concentrations of irradiation produced interstitials and

vacancies outside the grain (i.e. for Rg<r< ®) are;

D. dc. .
id /29 2 _
":2‘ a? <Y' —d—r—> + K - D_ik_lc_i - o C_in = O, (A])
and
D dc
v 2 2 _
;-2- 'a— r —d-Y-‘— + K - DVkV v = OLCiCV =0, (AZ)

whereas <mside the grain (i.e. for 0 < r f-RG) they are Jjiven by,

2 - - = .
( ) + K - “1kiscci - ocic, =V (R3)
and
U ac ,
v d 2 Vv - G-

respectively. Here, spherical coordinates with their origin at the centre of

the grain have been adopted and the quantities Di’ Dv’ K, a, k? and ks are

defined as in section 2. In addition, k? and k2 denote sums of the
iSC vSC
strengths of all sinks within the (single crystal) grain for migrating inter-
stitials and vacancies, respectively. We employ the ideal sink boundary
condition;
c; =c,=0, c.=¢c, =0 at r=Rg (A5)
in the two sets of coupled differential equations (A1) to (A4) together with

the requirement that both

- Al -



cj when r - o, (A6)

O
1]
(@}
-
O
1]

and

C. E?, c ES when r » 0 (A7)

be finite. The mathematical problem established for the range RG <r<oe
is formally the same as that of the void in section 2, and the problem for

O<r f.RG is similar to that of the thin foil discussed previously (Wood

et al., 1980, Lam et al., 1974).

Following Brailsford and Bullough (1980) grain boundary sink strengths
may be obtained by equating the average point defect loss rates to the
surface of the central grain with the respective loss rates in the lossy

continuum. Use of the solutions of equations (A1) to (A4) therefore yields

2 2. [d 45 = |

kigs = 2™Rglq [_d?_ - 'Hr_] /S (A8)
r-RG

and
dc dc

2 2 v _ TV oo

kygs = Z“RGCG[W 'HF—] AN (A9)
r-RG

respectively, where CG is the volume concentration of grains in the medium.

We note that disregarding bulk recombination in (A1) to (A4) yields the

interstitial sink strength:

2 2,2 - i
kSep = 2'rrRGCG[] + kiRe + (KS/KSge) (KygcRg coth kigeRe 1)} (A10)

and the vacancy sink strength:
Com o (1 KR+ (KK ) (ko R coth k o R. - 1)1 . (A11)
vGB GG v G v/ TvSC/ M TvSCTG vSC'G J
Including the effects of bulk recombination, (A3) and (A4) may be

‘reformulated in terms of 91 = 0151 and &v = Dvav’ thus;

@,

1 d /2771 2 = ity

2 # (P )+ k- Ky - g i, - 0 (A1)
TV
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and

dy
1 d/ 2 Vy - - =
P2 dr rar )t kyseYy - DaD yi¥y = 0. (A13)
iTv
Through the definitions;
N
y=(y; +y,)/2
z=(y; -y,)/2
2 _ 2, =
kiSC = k™ + B ’ (A14)
2 _ 2 =
kaC k= - B
A = a/DiDv J
equations (A12) and (A13) become;
—’Z%QZ P 4 k- &% - AP -z - AF, (A15)
r
and
14 <r2 g;) - &% = &, (A16)
r
the condition (A5) is written;
y=z=0 at r = Rg (A17)
and the requirement (A7) becomes;
y=35°, z2=2° when r-o0 (A18)
be bounded.
We adopt the approximation;
Bz - AZ% = 0, (A19)

which has been justified by Wood, Jones and Pierce (1980) for an equation

similar to (A15) above, and consider henceforth, instead of (A15);
NG g%) + K-k - A2 = 0. (A20)
r

Introducing the solution of (A20) when the Laplace term vanishes;

¥, = KoQ/en, (A21)
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with

Q=(+ 4AK/E4)% -1, (A22)
and the quantities; .
F = KoRE0/2
(A23)
§ =1/
as well as the normalized variables;
| r' = r/Rg
=y, (A24)
' = 2/5,,
equations (A20) and (A16) may be cast into the form;
g (g )+ F {00 - 997 ) -0 (h25)
r
and
1 d 2 dz £202=, _ =02-,
respectively. The condition (A17) is then;
y''=z'=0 at r' =1 (A27)
and the stipulation (A18) becomes;
v =y% 2 =2° whenr' >0 (A28)

be finite. In the Timit of vanishing recombination, A -~ 0, equation (A25)

reduces to*;

d , 2 ! =2.2,4 =,
'—%Z'H?T' r g%r + kZRG(]-y ) =0, (A29)
r v

(A30)

‘<_|
1]
—
|
7*d

sinh kRG

*Notice that y = K/k? in (A24) for A>0 according to (A21) and (A22).
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for the conditions (A27) and (A28). From the form of the solution (A30) we
make the ansatz;
1 sinh Gr' (A31)

j'=1- A sioh i
rr sinh G

as an approximate solution of equation (A25) when recombination is present,

with a (positive) constant G to be deliberately fixed.

Substitution of y', equation (A31), into equation (A25) gives the

implicit relationship;

82 . f{ (145) - J i‘—'l*lﬂ’—} (A32)
sinh G

which indicates G is a function of r' rather than a constant, as assumed for
the derivation of (A32) from (A25). As in section 2, an approach to

proceed is by considering the series representation of y' in powers of G;

yt=1- [1 + z W'Z"( )2"}/{1 + z W 2"]. (A33)

Hence, it seems appropriate to replace the function G(r') from equation

(A32) by its moments;

1
<@Ns = 3" j
0

n
r'2{2(]+§) 1_sinh G(r')r! } dr', n=1,2,3,... (A34)
sinh G(r')

Expanding the power beneath the integral in (A34) into a binomial series

yields the form;
- - - n -
<G> = [2F(145)1" {1 £z (-1)Y @) [2(143)17Y
v=1 /

3 f] 2-y Sinh” G(r')r' dr'} , n=1,2,3... , (A35)

o (r) sinh¥ G(r')

which may be evaluated by means of an iteration technique. As a first step,
the following limits are considered: for [G(r')| << 1 in the range

o<r! 5_1; we approximate to the lowest order;
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1 sV R/ |
3 j (rf)27v sinh vGéf»)” dr' =1, v=1,2,3, ..., n (A36)
0 sinh” G(r')

and get from equation (A35);

<62">(]) - [F(1 + 25)1", n=1,2,3, ... (A37)
revealing the identity
<é2>?]) = <g2"s n=1,2,3, ... . (A38)

Therefore, to a first approximation, all moments of G(r') are obtained from

one constant;

6, = [F(1 + 25) 2%, (A39)

Similarly, for |G(r')] >> 1 in the range 0 < r' < 1, it can be shown that,

to a first approximation, all moments of G(r') originate from the constant;

G = [2F(1 + §)2%. (A40)

b

To proceed to a second order of approximation would require Ga and Gb’
respectively, to be inserted in the integrand in equation (A35). Since,
however, replacing Gb by Ga yields only a small error if lé(r')l >> 1, we
use for both limits, |G(r')| << 1 and |G(r')| >> 1, the constant G, from

equation (A39) in (A35) obtaining;

- - - n - -
<G2n>(2) = [2f(1 + S)]n {1 + I (—1)V (:n;>[2(1 + S)1 Y x
- v=1 v
] sinh¥ G_r'
x 3 f (r1)27V e dr'} ,n=1,2,3, ... . (A41)
0 sinh Ga

Obviously, the expression within the curly brackets in equation (A41) in
general does not constitute a power of some other expression,thus precluding
a simultaneous reduction of all moments as for the first approximation.

But, with regard to (A33), we try a refined evaluation of the leading second

moment of G(r') taking equation (A41) for n = 1 to give;
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% = F {2(1 +35) - (3/G§)(éa coth Ga - 1)} . (A42)

By further consideration of the limits Ga << 1 and Ga >> 1, we conclude

that the form;
=2 - [ - -1 . -1
<G™> = (f/5) l7 + 10S - 2f2/sinh f2 (A43)
approximates the moment under consideration with a sufficient accuracy.

Substituting into equation (A31) the constant;
1
& = <65t - (F/5) [7 + 108 - 2F%/sinh ?%} ) (A44)

or, by the definitions (A23),

1112
2

G = ERG{ 1+ (Q/5)07/2 - ERG(Q/2>%/sinh k R;(2/2) ]} (A45)

therefore provides a good approximation to the solution of equation (A25)
for G both small and large which, because of
G = kR

if A0, A46)
G

tends to the exact solution (A30) in the without recombination limit.

We turn now to solve equation (A26) for z' subject to (A27) and (A28).
Inserting y' from equation (A31) yields
= _= (/1 .=\ 1 sinh ERGrl 1 vy sinhGr']l = .z
z' =8 [(:E?-+ wi) L e A~ Ml (1 G > kRG (A47)

sinh kRG k

with
¥ = RS/(8% - KERY). (A48)
To calculate the grain boundary sink strengths including bulk recombina-
tion, we refer to the basic formulae (A8) and (A9), which in terms of the

primed variables defined by equations (21) and (25) in section 2* and by

(A24) are written;

*Understanding in these and in related equations RG instead of re
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2 . [dy' _dz' _“ofdy' , dz' |00
2mR.C [aFr'Fa—r—r _w[aT'T +a—Fr]] r‘.=.|/[:.| + z | (A49)

Kigs = “™gtg y
and )
e = 2mReCq [g%;" Er - ;% %%; - %%; ]' r'=]//@1 - 2™ (A50)
respectively. With the expressions (28) and (41) from section 2 as well as
G’ G > ERG:

(A31) and (A47) the following results hold for G > kR

interstitial sink strengths
)
= ZﬂRGCG{Bi(]+G) + (]-81)[1 + GkRG/(G+kRG)] +

Kigp
+ 8 (KU/K°Q)LE, (B coth G - 1) + Z, (R, coth kRg - 1)1}, (AS1)
vacancy sink strength
kgg = 2TR.Co(B, (146) + (1-8,)(1 + GkRy/ (G+KRG) 1 +
+ 8, (RRU/KPQ)LE (& coth G - 1) + T (R, coth RRg - 1)1}, (AS2)
where the abbreviations;
e; =1 +8By, e ,=1-8 (A53)
and
(A54)

B(1/RE + )

oy = -BO/RE + ), E,

have been introduced.
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