
A
TL

-D
A

Q
-S

LI
D

E-
20

10
-2

02
21

Ju
ly

20
10

 A. Corso-Radu¹, A. Kazarov²,3, R. Murillo Garcia¹, G. Lehmann Miotto2, L. Magnoni2, J-E. Sloper2

¹University of California, Irvine, USA
2CERN, Geneva, Switzerland

3PNPI, St. Petersburg, Russian Federation

APPLICATIONS OF EXPERT SYSTEM TECHNOLOGY 
IN THE ATLAS TDAQ CONTROLS FRAMEWORK

1. Trigger and Data Acquisition of the ATLAS experiment at LHC 2. Controls framework for TDAQ system 

3. Integration of expert system to the Controls framework

5. Diagnostics and Verification framework

4. CLIPS expert system shell

6.  Online Recovery scenarios
DVS

Expert Operator

Test 
Repository

Knowledge 
Base

Expert System 
engine

DVS GUIC++ API

DVS 
console

Tests 
RepositoryKB

Expert 
System

Operator

Online 
Recovery DVS

Test 
Manager

online 
error 

handling

offline 
verification

OO schema

ExpertSystem

Agenda

KB

rules

inference

Operator

objects

classes

CDB

Configuration 
Service

TDAQ 
System

errors, 
messages

test results

test requests

T esting 

recovery actions Controls 

Monitoring 

 

ATLAS Experiment
A Toroidal LHC ApparatuS (ATLAS) is a particle 
physics experiment at  the  Large Hadron Collider 
(LHC) at CERN.
The LHC is producing proton-proton head-on collisions 
with center-of-mass energy equal to 7TeV (design 
energy 14 TeV) at  40 MHz rate.
The ATLAS detector comprises more than 140 million 
electronic channels.

Trigger and Data Acquisition system 
managing filtering and transfer of ATLAS experiment 
data from the detector to mass-storage
large-scale, distributed computing system: 10000 
applications (30000 is foreseen)
running on 1500 nodes (3000 in near future)
non-stop operations 24hrs/day, 7 days/week in next 
years

Main objectives
•control and supervise all ATLAS TDAQ h/w and s/w:

– Up to 3000 computer nodes, including SBC, ROSes, rack-mounted 
PCs (x4, x8, x16... cores), file-servers, monitoring and desktop PCs

– 10000 – 30000 applications
•Provide testing and verification functionality to detect possible errors at early 
stages
•Handle run-time errors and suggest recovery solutions 
•Perform automatic recovery actions
•Keep the expertise of system developers through years of experiment 
lifetime

Runtime failures are frequent: our goal is to minimize downtime of the 
system!

Architecture principles
•System is built of a number services and components, interacting with each 
other
•Framework-based approach: functionality is extended by users and 
subsystem experts
•Configurability: the current h/w and s/w state of the TDAQ is stored in the 
database, all components are configured
•Use of expert system technology for automation of control actions

The whole TDAQ system is fully described and configured via the 
Configuration Database Service   according to a pre-defined 
configuration object-oriented schema. The corresponding schema 
developed in the CLIPS object language COOL is loaded to all 
instances of the ES. The actual set of objects for a particular 
configuration is loaded into the ES as a class hierarchy 
representing proxies of the applications and the hardware in the 
system. These objects, together with information gathered from the 
Monitoring service and test results can then be used in the ES 
engine to match the loaded rules. The CLIPS inference engine 
adopts a forward chaining approach:  the agenda is how CLIPS 
keeps track of which rules are to be executed next run, and a rule 
is added to the agenda when all its conditions, given the status of 
objects in the systems, are satisfied. 

After an evaluation, a open-source product was selected as the core of the implementation 
For expert-system based applications.

CLIPS = C Language Integrated Production System, which means
- rule-based (“if-then” paradigm known as “production” system) expert system engine
Open source, originally developed by NASA 
can be used as a standalone application or as embeddable (C-source) library, which allows integration of ES 
functionality in the existing applications
implements a number of different programming paradigms: 

– “if-then” rules and a forward-chaining inference engine
– object-oriented constructs (“COOL” language)
– traditional algorithmic constructs (functions, loops  etc.)

One of the key (if not unique) features of CLIPS is the possibility to describe the architecture of your application using an 
object-oriented approach (including classes, multiple inheritance, methods) and to develop “generic” rules for classes of 
objects which will be then applied to a particular set of objects according to a particular configuration without any 
modification of the pre-loaded rules.  This model fits very well with the TDAQ configuration object-oriented approach and 
gives a powerful tool for developing rule-based control applications in TDAQ framework. 

To accomplish its objective, the Controls system 
includes some high-level components which are 
responsible for the automation of system 
verification, diagnostics of failures and recovery 
procedures: DVS (Diagnostics and Verification 
System) and Online Recovery. These components 
are built on top of a common technology of a 
forward-chaining Expert System (ES) framework, 
that allows to program the behavior of a system in 
terms of “if-then” rules and to easily extend or 
modify the knowledge base (KB). 

CLIPS parses the knowledge base at run time. This allows to easily customize the behavior of  recovery procedures supplying 
different set of rules as arguments to the recovery applications. In a complex and dynamic  framework such as the TDAQ system it 
is very difficult to detect apriori all the different errors that might occur and which appropriate actions should be taken. It is 
therefore very important that the expert system can be easily changed and customized as more data is gathered and a better 
understanding of the system is gained.

DVS (Diagnostics and Verification system) is a framework used to assess the 
correct functionality of the system, to detect and diagnose eventual problems. 
DVS allows the configuration of one or several tests for any component in the 
system by means of a configuration database. The system and the testing results 
can be viewed in a tree like structure using a user friendly graphical user 
interface. 

Test Repository service allows configuration and execution of tests for single 
TDAQ component. A test is a binary running on a particular host in a system. The 
following attributes are available for test description: parameters, host, dependencies, 
time-outs, scope, complexity and mask. Any test can be associated either to a 
particular object in the configuration database or to all objects of a particular type. 

Using DVS Graphical User Interface (right hand side) The user can select a 
single component or a group in the tree and run all defined tests by clicking a 
single button. As tests finish, the components icons change colour reflecting 
the result. On the right hand side the test results, diagnosis and recovery 
advice are presented.

Other features were implemented following the constant user feedback 
received: log file browser for accessing log files produced by the TDAQ 
applications running in a distributed environment, test scope to prevent 
destructive tests to be executed during data-taking sessions, test runtime 
output for long-running tests.

Code on the right describes a general recovery mechanism in case an 
application has died. The left hand side (LHS) of the rule  contains the 
conditions to identify the error situation, the right hand side (RHS) lists the 
actions to be taken.

In the TDAQ framework applications are arranged in a tree structure, with a 
controller responsible for a segment, a subset of the whole system. Following 
this recovery rule, when an application that satisfies the conditions described 
in the LHS the expert system takes care of notifying the associated controller 
to ignore the application from now on.

The expert system server holds the main responsibility  of dealing with 
detector frontend failures. There is an automatic recovery procedure which 
allows for Read-Out Drivers (RODs) that are permanently busy or 
otherwise faulty to be recovered  without stopping the run. The expert 
system drives the recovery operations, detecting the error conditions and 
holding the data acquisition triggers for the time needed to disable the 
failing component and to restore safe data taking operations. 

Using ES rules it's possible to automate some routine actions normally 
performed by hand by system's operator on shift. The ES rule presented on 
the right side is an example of such action. System automatically resumes 
the trigger when collider energy reaches 2.7TeV during the ramp.

(defrule resumetriggeronenergy
  (selection ?val&~BCref)
  ?fact<(triggeronhold)
  (not (clockchanging ?changeFrom))
  (object (isa ISINFO)(ISNAME RunCtrl.RootController) (FIELD state) 
(VALUE RUNNING))
  (object (isa ISINFO)(ISNAME LHC.BeamMode) (FIELD value)(VALUE ?
bm&PREPARERAMP|RAMP) )
  (object (isa ISINFO) (ISNAME LHC.BeamEnergy) (FIELD value) (VALUE ?
energy))
  (test (> ?energy 2700))
  
  =>

  (erswarning OnlRec::EndRampPause Resuming the trigger as the Beam has 
reached and energy of 2.7 TeV.)
  (cmdtriggergo)
  (cmdsendsync RootController LUMIBLOCKINCREASE)
  (retract ?fact)

)

Conclusions and Outlook

A rule-based expert system is used to help the TDAQ operators to control data-taking of the ATLAS experiment:
• we are capable of restarting processes on the fly
• we are capable of excluding/re-including parts of the readout dynamically
• we are capable of re-synchronizing detectors dynamically
• we are interacting with the accelerator status to automatically select the correct clock and preserve the DAQ during changing LHC conditions

More and more expert actions are being coded into the expert system thus allowing already today (1st year of steady data taking with LHC) to operate the 
TDAQ with non-experts.
We are envisaging an extension of the usage of expert knowledge to introduce a new component, the Shifter Assistant, that will advise and guide the 
operator in different situations.


