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Summary

• Introduction
• Motivation and goal
• The Tilecal detector in the ATLAS LHC experiment at LHC
• Proposed methods for the Tilecal signal detection
• Results
• Conclusions



Introduction – The ATLAS detector
• General purpose detector for 

the LHC
• Wide range of physics
• Different subsystems to detect 

and measure particles 
produced at the collisions

• 42 m length, 11 m radius
• Treating background sources 

and detector noise is a 
challenge

• Trigger output frequency 
O(~100 Hz)



Motivation and goal

Motivation:
• Distinguish signal from particle with low energy deposition in 

the calorimeter from noise and LHC collision backgrounds
• Cells with useful but low energy from particles risk to be 

discarded during the particle reconstruction

Goal:
• To detect low signal to noise ratio (SNR) signals for the 

ATLAS Barrel Hadronic Calorimeter (Tilecal)



The Tilecal Detector

• Sampling calorimeter: steel (absorber) and scintilating tiles 
(active material)

• One long barrel (divided for readout in two parts) and two
extended barrels

• 64 modules each part (∆ϕ = 0.1 rad)
• 10.000 channels (signals)
• Each signal: 7 dig. samples 

with 25 ns period
• Energy estimated through an

optimal filtering algorithm



The Tilecal Detector
• Three longitudinal layers
• Highly segmented: ∆ɳ x ∆ϕ = 

0.1x0.1 (0.2x0.1 in the last 
layer)

• Two PMT per cell for readout 
redudancy

EBA LBA LBC EBC



The Tilecal Detector

• Typical Tilecal signals
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Proposed Methods – Maximum Likelihood 
Detection

• Based on hypothesis test
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Maximum Likelihood Detection – PDF Estimation

• Based on sample distributions of the digitized  Tilecal signal
• Product of individual probability distributions (independence)
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Maximum Likelihood Detection – Noise Whitening

• Additive noise should be white. 
• Aim: to uncorrelate noise samples

Correlation among 
neighbor noise samples

Noise samples
uncorrelated

Before whitening After whitening



Maximum Likelihood Detection – Principal 
Component  Analysis (PCA)

• Aim: to uncorrelate signal (H1) samples
Assumptions:
• Sample distributions are Gaussians
• Noise is Gaussian and white (so that PCA applied on H1

does not correlate samples of H0)

Steps:
• Apply the whitening filter to the incoming signals
• Develop the PCA transformation using signal data 

(development set)



Maximum Likelihood Detection – Principal 
Component  Analysis (PCA)

• It results in dimensional reduction
(samples are highly correlated)

• Signal can be represented by only
two components (uncorrelated
variables) without losing significant
information

Eigenvalues of the covariance 
matrix for the signal dataset



Maximum Likelihood Detector – Independent 
Component  Analysis (ICA)

• In reality signals are not Gaussian.
• Aim: to maximize the statistical independence (based on 

maximizing the nongaussianity of the components)
• The algorithm used was the FastICA
• Takes into account the 7 samples of a signal pulse



Neural Network

• Aim: Design a neural network 
to identify the input signal

• All 7 samples feed the input 
nodes

• A single hidden layer with 6 
neurons

• Hyperbolic tangent as neuron 
activation function

• The single output neuron 
decides beetwen noise or 
signal signal  0  noise ≤<



Results

• The database comprises 240,000 low SNR simulated muon 
signals and 240,000 noise signals taken from specific 
Tilecal noise acquisitions 

• Noise signals obtained from specific Tilecal noise 
acquisitions while event signals taken from MC simulations

• For PCA and ICA, half of each data set was used for PDF 
estimation as well as for training the neural network

• The other half was used for performance evaluation



Results – Neural Network

Detection performance:  97,5258 %, if threshold = 0



Results

For 10% of false alarm
• 69% detection (Energy cut)
• 98% detection (Neural nework)



Conclusions

• Different approaches for signal detection in low SNR 
conditions were presented

• All proposed methods have higher detection efficiency with 
respect to applying a simple energy threshold

• Neural network showed the best performance 
• All methods can be implemented in the offline software for 

the calorimeter signal identification and reconstruction.


