Sander Klous on behalf of the ATLAS Collaboration Real-Time May 2010

Resource Utilization in the ATLAS Data Acquisition System

The ATLAS Experiment

Contents

- Introduction of the ATLAS DataFlow system
- Modeling DataFlow and Resource Utilization
- Cost monitoring explained
- Example of performance data analysis
- Conclusions

DataFlow (1)

Acronyms:

Frontend Electronics (FE)
Read Out Driver (ROD)

Region of Interest (RoI)

Read Out Buffer (ROB)

Read Out System (ROS)

Trigger Level 2 (L2)

Event Filter (EF)

Modeling DataFlow and resource utilization

- Historically studies have been done with different levels of detail
 - Paper model (static model)
 - Back of the envelope calculations
 - Average data volumes and data fragmentation info
 - Dynamic model (computer simulation)
 - Discrete event model of the DataFlow system
 - Cross-check with results of the paper model
 - Additional information on queuing in the system
- How do these studies match with reality?
 - What predictions can be made for the future?

Discrete event model (TDR 2003)

Cost monitoring in the real DAQ system

- Introduce a mechanism in the running DAQ system to:
 - Collect performance info (i.e. resource utilization) on the fly
 - On event by event basis
 - Group performance information together
- Use this information to validate the model
 - Trigger rates, Processing times
 - Access to information fragments

Obtaining input data from the real system

Intermezzo (1): Event structure and transport

- Data driven
- Event contains multiple parts
 - Header
 - Meta data
 - Payload
- Meta data added by
 - L2 (L2 result)
 - EF (EF result)

Event Header

L2 result

EF result

Event payload
Detector A
Detector B
Etc.

Intermezzo (2): Partial event building (PEB) and stripping

- Reduced event payload
 - Calibration events
 - Not all detector data needed
- Smaller events
 - Partially built at LVL2
 - Stripped before stored
 - By EF or SFO
- Improved efficiency
 - Disk (less storage capacity)
 - Network (reduced bandwidth)
 - CPU (bypass L2/EF if possible)

Event Header L2 result

Event payload

Detector A

Detector B

Etc.

Collect and ship performance data

- Performance data stored in L2/EF result:
 - Each event:
 - L1 accept time and HLT host local time
 - HLT application ID
 - L1 and HLT trigger counters
 - L1 and HLT trigger decision bits.
 - Every 10th event:
 - Start/stop times of HLT algorithms
 - HLT trigger requesting the HLT algorithm
 - Rol information, ROB IDs, ROB request time and ROB size

PEB and performance data

- Transport information by piggybacking on rejected events that can be built partially:
 - Without event payload (only L2/EF result)
 - Avoid mixing with other data
- Collection rate of buffered information
 - Each Nth rejected event (N=100)
 - Cost algorithm fires, buffer is serialized
 - Typically less than 1 MB/second collected

Results

- Separate stream with performance data
- Automatic NTuple production and analysis
- Results listed on html pages:
 - Trigger rates
 - Trigger sequences
 - Processing times
- Feedback information for:
 - Operations and menu coordination
 - Performance studies, modeling and extrapolation

Example performance study (step 1)

The online L2 monitoring show a long tail in the event processing time (wall clock time):

Example performance study (step 2)

In our new tool, we identify the dominating algorithm, responsible for the long tail:

28/5/2010

Example performance study (step 3)

With our tool we can investigate the different aspects of the algorithm: Typical retrieval time about 1 ms

Problem is in ROB retrieval (congestion?, ROS problem?)

28/5/2010

Conclusions

- Cost monitoring is a valuable new tool for performance measurements
- The tool makes intelligent use of existing features in the ATLAS TDAQ system
- The tool is operational and is working fine, as demonstrated with the example
- Next steps:
 - Validate MC event performance model with real data
 - Modeling with higher luminosity MC events (extrapolate)
 - Make cost monitoring available online