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1. INTRO DUCTION 

In the design of beam transfer channels - and insertions for 

synchrotrons or storage rings - one often encounters the problem of 

finding a combination of quadrupole lenses that will produce particular 

transfer matrices in both the horizontal and vertical planes. Tradi

tionally, that problem has been solved by computer "matching" routines 

that operate by minimizing the deviations from the desired values as 

function of the lens strengths, lengths, and distances. Although power

ful routines are available nowadays, the minimization of a function of 

many variables becomes quite time consuming with increasing dimensions, 

and the results depend strongly on the initial values which have to be 

guessed. 

In this report we derive analytic solutions to the problem 

using three quadrupole lenses and four interquadrupolar distances. The 

first method is valid for infinitely short lenses, and leads to a second 

order equation for one of the parameters, from which all others can be 

calculated. The second method is for lenses of finite lengths, and 

leads to a higher order non-linear algebraic equation for one of the 

variables. While this still has to be solved by computer, the number 

of variables is reduced drastically and considerable saving in computer 

time can be achieved. In addition, the analytic solutions give insight 

into the influence of the various parameters, and into the limits of the 

regions where solutions are possible. 

CALCULATION O F  THE TRANS FER MATRIXES 

Usually, the known quantities are the values (and derivatives) 

of the beta-functions and the momentum compaction at both ends of the 

channel. The transfer matrices in both planes can be found from these 

quantities by the expressions l) 



M= 

- 2 -

µ + a.1 sinµ) 

(1 + a1a2)sin µ + (a.2 - a1)cos µ 
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The horizontal phase shift 

can be found from the momentum compaction function (unless it is identi

cally zero as for the vertical plane in the ISR). The calculation 

becomes quite simple when the channel begins - and/or ends - with a 

cross-orer or a parallel beam. E. g. for a.pl = ap2 = 0 (cross-over on 

both ends) we find M12 = O, and henceµ = mTI. 

In the general case we can use the matrix transformation 

(2) 

Upon substitution of the matrix elements, we can solve the two equations 

for cosµ and sinµ (this method is preferable to those using only one 

line of the matrix equations, which determine the phaseshift only up to 

a multiple of TI). We write the two equations (2) as 

(3) 

where 

V - (4) 

Adding a.2 times the first to the second equation (3) yields 

(5) 
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and the solutions become 

cos µ = U1U2 + V1V2 

w 

U2V1 - U1V2 sin µ = 
w 

where 

is the invariant of the transformation (which has to be the same at 

each end of the channel when no bending magnets are present). 

3, SHORT LENS TRIPLET 

(6) 

(7) 

(7) 

If we assume quadrupole lenses of vanishing lengths - but with 

a finite value of g = lim K. s  - the transfer matrices simplify con-
s ➔ 0 

siderably. In the horizontal plane we have 

while we only have to replace g by - g in the vertical plane.. However, 

straightforward multiplication of three quadrupole matrices and four 

inter-quadrupolar driftspaces 

in the right order still yields very complicated expressions. We can 

simplify this by multiplying from the centre outwards as shown in 

Appendix A. We then find simple expressions for the quadrupole strengths 

g2, g1+' g6, and the two inner distances s 3, s 5 in terms of s 1 and s7. 

These two are determined by the solutions of two nonlinear equations of 

second and third degree, if we assume a given length for the complete 
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channel. However, we can prescribe one of the lengths s1 or s7, and 

determine the other by the solution of the second order equation. The 

total length is then the second unknown and is given by the other 

equation which is linear in this variable. 

This procedure is much simpler, and permits determination of 

the regions where real solutions exist. A small computer program has 

been written that first calculates the transfer matrices (for several 

values of the vertical phase shift), then evaluates the limits of s1 for 

which solutions are possible, and finally calculates the triplet para

meters for several values inside this region. Naturally, solutions with 

negative distances are mathematically possible an:d have to be discarded. 

While the short lens triplet is actually not realizable, it 

is a good starting point for finding a long lens triplet either by one 

of the existing matching routines, or with the program described in the 

next section. 

4. LONG LENS TRIPLET 

For a horizontally focussing quadrupole of finite length s, 

the transfer matrices.in the two planes are given by 

= (,.. 
cosh cp 

e 
sinh p 

cp 

sin p) 
s 

cp 

cos cp 

sinh p) s 
cp 

cosh cp 

where cp = slJKI, g = s.K. In this form we see the transition to the 
1 0 ,1. h ,1. 

sin <p s i:rm_j_ ➔ l short lens fo-rm best ,s ➔ (,, cf> ➔ , cos 't' '." cos 't' "' 
cp I\, . cf> - , 
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g finite). For a defocussing quadrupole the two matrices are simply 

interchanged. 

The method used for short lenses becomes rather complicated 

because there are no more zeros in the quadrupole matrices *). However, 

by using a trick described by Regenstreif 2) we can find manageable 

expressions for the product of a string of quadrupole and straight 

section matrices. This is used in Appendix B to reduce the problem to 

a single, nonlinear equation in the two straight-section lengths s1 and 

s7, when we prescribe the three values �i (i = 2, 4, 6) . We can assume 

either s1 or s7, and calculate the other by a zero-finding routine on 

the computer. All other triplet parameters can then be calculated 

simply from these two quantities. 

In the limit of �i + O, the results agree with those for the 

short triplet. In practice we then have to vary the values of �i until 

we get acceptable quadrupole lengths and strenghts. Tracking of 

trajectories in the resultant triplet with any one of the existing 

routines (BEATCH, modified AGS) has been used to verify the correctness 

of the solutions. 

5. CONCLUSIONS 

The calculation of the parameters of a quadrupole triplet for 

given horizontal and vertical transfer matrices has been solved ana

lytically. For (infinitely) short lenses, the problem can be reduced 

to a single quadratic equation, and both the solutions and their region 

of existence can be found directly. For lenses of finite length, the 

problem leads to a single equation of higher order, which can be solved 

rapidly by computer. There remain three free parameters in that case 

*) Still, the computer program NEWT uses just this method. 
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for which we have chosen the three values of the quadrupole length times 

the square roots of their strengths. These parameters can be varied to 

find acceptable values of the quadrupole strengths which can be realized 

in practice. 

The main advantages of the analytic approach are saving in 

computation time, and independence from arbitrary initial guesses which 

often lead to difficulties in existing matching routines. Furthermore, 

the discriminant of the second order equation for the short lens case 

gives direct information about the existence of real solutions. 



- 7 -

APPEN DIX A 

Short Lens Triplet 

The horizontal transfer matrix is given by 

� = (SS7) (QF6) (SS5) (QD4) (SS3) (QF 2) (SS1) (A 1) 

where we assume arbitrarily an F DF structure. This is not restrictive, 

however, as the sign of the focussing strength can alter an F lens into 

a-D lens and vice-versa. The vertical transfer matrix is 

Mv = (SS7) (QD6) (SS5) (QF4) (SS3) (QD2) (SS1) 

and the transfer matrices of the single elements are 

(
1 

SSi = 
0 

(A 2) 

(A 3) 

(A 4) 

Rather than multiplying all seven elements directly, it appears 

expedient to do it in three steps for each: 

Mi!= (SS7)( P ) (SSl) 

PH = (QF6) ( Q ) (QF2) 

Q.ir = (SS5) (QD4}(SS3) 

(A 5) 

resp. QF's interchanged with QD's for the vertical case. In this manner 

we obtain the relations 
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mll = P11  + S7P21 

m12  = P12  + S1P11  + S7P22 + S1S7P22 
(A 6) 

m21 = P21 

m22 = P22 + S1P21 

P11 = qll - g2q12  

P12  = ql2 
(A 7) 

P21 = q21 - g6qll - q2q22 + g2g6ql2 

P22 = q22 - g6ql2 

qll = 1 + s5g4 

ql2 = s? + S5 - s3s5g4 
(A 8) 

q21 = g4 

q22 = 1 + s3g4 

and similar ones for the vertical matrix elements - which we characterize 

by asterisks - with all signs of gi inverted. Of each group of four 

equations one is recurrent due to the condition of unity determinant for 

all transfer matrices. 

Inversion of the equation is straightforward and yields 

Pn = m11  - S7m21 

P12  = m1 2  - s1 mll - s7m21 + s1s7m21 (A 9) 
P21 = m21 

P22 = m22 - s1m21 
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qll = P1 1  + g2P12 

ql 2 = P12 
(A 10) 

q2 l = P21 + g5P11 + g2P22 + g2g6P12 

q22 = P22 + g5P12 

The last set of equations (A 8) permits calculation of the three para

meters 

q22 - 1 q22
x - 1 

S3 = = 
q2 l q21 X 

(A 11) 

qll - 1 
qllx 

-
1 

S5 = 
q2 l q2lx 

(A 12) 

where the last column comes from the vertical transfer matrix calcu

lation. Substitution of eq. (A 12) into both eqs. (A 11) yields 

qll + qll 
X = 2 

q22 + q22 
X = 2 

or, with eqs. (A 10) 

P11 + P11
x -

g2 = 
P12x - P12 

P22 + P22x - 2 
g6 = 

P12x - P12 

Introducing these expressions into (A 12) then yields one equation 

involving only s1 and s7 through the matrix elements Pik 

(A 13) 

(A 14) 
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= 

We can rewrite this equation as 

in which form we see that the equation is quadratic both in s1 and s7, 

since P11(x) and p22 (x) are linear in s7 or s1, respectively, while 

p 12 (x) is linear in the product s 1 s7 (and p21 (x) is constant). 

Another equation for t 1 and _t7 can be obtained from the 

condition 

where t is the (known) total length of the channel. Substituting into 

this expressions s3 and s5 from (A 11) , ( A 10 ) and (A 1 4) yields a 

third order equation in s1 and s7 to be solved together with the second 

order eq. (A 1 6) . It is simpler to avoid that problem by considering 

(A 15) 

(A 1 6) 

(A 17) 

t as an unknown, and specifying either s 1 or s7• Then the other quantity 

can be calculated from a single second order equation. 

Assuming we know s1, we introduce the unknown variable 

(A 18) 

to get the equation 

a z2 + Sz + y = 0 (A 19) 
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with the coefficients 

and 

a = 2 (P22 + P22
x - 2)€ 

B = 481 - (m21 - m21
x) (B2 + 383) + 0€ (P22 + 3P22

x - 4) 

Y = 4m21m21x Y1 + (m21 + m21x)y2 + o[ 4y3 - P22m2 1X (m21 + m21x) 

- P22x Y4)] + 02€ P22
x 

Y1 = m21 P22 + m21 XP22 
X 

2 
- 6m21m21x + m21x2 

Y2 
= m21 

Y3 = m21 
x2 - m21 m21xP22P22

x 

2m21 
2 

5m21m21x + m21x2 
Y4 = -

Although these coefficients are rather complicated, it is 

quite simple to evaluate them on a computer and to find the solutions 

z = - 8 + le2 - 4ay
' 

2a 

after testing that e2 
> 4ay, condition for the existence of real 

solutions. Finally, we find 

(A 20) 

(A 21) 

(A 22) 

(A 23) 

(A 2 4) 

(A 25) 
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from which we can then calculate the other distances s3 and s5, the 

total length t and, the three quadrupole strengths g2, g4 and g6• 

However, we have to discard solutions for which one or more distances 

are negative. This often leaves us with a unique solution for a given 

set of transfer matrices, and we can adjust the total length of the 

channel by altering s1. The computer program TRIP performs all these 

operations, after calculating the transfer matrixes from given input 

and output values of the trajectory functions. One also has to assume 

a value for vertical phaseshift, which can be varied to find acceptable 

solutions. In order not to be asked to perform impossible transformations 
I the program calculates the correct value of ap at the end of the channel 

from the invariant, which is not altered by quadrupoles or straight 

sections. The program requires as input six values at the beginning 

(SH, aH, Sv, av, ap, a�), five values of the end (same except a;), initial 

values for s1 and �v, steps 6s and 6�v, and the number of steps Ks and K� 
It will then print the transfer matrices, phaseshift and possibly 

solutions for the triplet parameters s1 3 5 7, g2 4 6' ' ' ' ' ' 
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APPENDIX B 

Thick Lens Triplet 

The transfer matrices for the quadrupoles can be written 

a· bi 
Q,Fi = (c� a·) l. 

(B 1) 

aX b� 
QDi = ( i 

l.
) c· a+ l. l. 

where 

$i 
X cosh $i a• = cos a. = l. 

(B 2) 
sin $i 

b� 
sinh H 

b· = 
✓!Kil' 

= l. l. 
lfKiT 

and 
(B 3) 

In extension of an approach described by Regenstreif 2), we 

define the quantities 

X = S1 

y = S3 

z = S5 

T = S7 

a2 
+-

c2 

X a2 a4 
+-+-

C2 Ct 

X a6 a4 
+-+-

c6 cf 

a6 
+-

c6 

and the corresponding starred equivalents (si = si, af = a c�x 
= 

i, l. 

(B 4) 

C•) • l. 



are then 

- 14 -

The elements of the overall transfer 

given 

l\i = ( 
A B

) C D 

� = ( 
Ax Bx 

ex nx) 

by the rather simple expressions 

X 1 T 
A = C2 C4 c6 [Y (ZT - 2) - 7c'2"] C2 c4 

B X [ (XY - 12) (ZT 
1 = C2 C4 c6 c2) CG 6 

X 1 
C = C2 C4 c6 [YZ - 7fZ"] c4 

D = c
2· ex c6 [ (XY - �)Z 4 C2 

matrices 

(B 5) 

XT 
-=-x2"] c4 

(B 6) 

and the corresponding expressions with all terms starred (double star 

= no star) . We form the simpler · combinations 

A - CT = 

D - ex- = -

. .  ·X C2 C4 
c6 

ctf c6 
-·--

C2 

(B 7) 

z 

As third equation we use the expressions for C. The fourth 

relation is recurrent because of the requirement of unity determinant. 

If we 

and - with oi = 

X 

assume the values of �i' we can calculate ai and ai, 
sin �i 
sinh �i 

(B 8) 
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We shall rewrite the equations with the definition 

X = C2 X, X Y, X 

(B 9) y - C2 C4 z - c6 C4 z, t = c6 T 

(and starred equivalents). The six main equations then become 

y = Ct - Ac6 
X Cxt

x Ax x y = CG 

z = Cx Dc2 
X 

z = C
x

x
x DX X 

c2 (B 10) 

X X X  X X X yz = Cc4 + C2 CG y z = C C4 + C2 CG 

in which we can immediately replace all c� by c. with equation (B 8) . 
1 1 

The relations between the starred and unstarred auxiliary quantities 

follow from their definition (B 4) and equations (B 10) . With 

0. a.. - a· + a. 
1 1 1 1 

(B 11) 

X + 02 
X = a.2 

04 y - 02 y X = a.4 C2 - a.2 C4 
(B 12) 

04 06 
X z - z = a.4 CG - a.6 C4 

t + 06 tx = a.6 

Equations (B lO) and (B 1 2) form 10 equations for 11 unknowns. As last 

equation we can add the requirement Isi = t, if the total length t is 

known. Again it is expedient not to prescribe t, but either s1 or s7. 

We can then add one of the two equations following from (B 4) 

(B 13) 
t = S7 CG + a6 

From the equations for x and t (B 1 2 )  we get 

(B 1 4) 
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and hence from (B 10) 

(B 15) 

where 

Yo = ea6 
X eX X 

Yo 
= a6 

Zo = ea2 
X eX X 

ZO 
= a2 (B 1 6) 

Y1 = R-7 e - A X 
Y1 = R-7 ex 

- A
x 

zl = R-1 e - D X 
R-1 ex - D

X 
zl = 

Substitution df the expressions (B 15) for y and z into the 

2nd and 3rd equation (B 12) yields 

where 

41 = 

42 = 

P1 = 

P2 = 

04 

04 

Yo -

z -
0 

02 

06 

X 
Yo 

X 
zo 

04 Y1 
02 X + 
- yl 06 

o4 z1 
o6 X + -

z1 02 

We can solve equations (B 17) for 

(B 17) 

(B 18) 

C2 and CG 

(B 19) 
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where 

Czo = ( ct.4 ql + q2 P1 ) /coo 

C21 = ( ct.4 ct.2 + a.6 P1) /coo 

CGo = q2 + ql P2) /coo (ct.4 
(B 20) 

c61 = ( ct.4 a.6 + ct.2 P2) /coo 
and 

coo = a. 2 4 + P1 P2 

The expressions (B 19) we can substitute into the two quadratic 

equations (B 12) to get 

Pc42 + Q�4 + R = 0 

Pxc42 + Q
x

c4 + Rx = 0 

(B 21) 

where 

p = UV - e: l PX X X  = UV - e:1 

Q
x X X X X  X (B 22) Q = uq + vp - e:2 = u q + V p - e:2 

R
x X X  X R = pq - e: 3 = p q -e:3 

and 
X X 

u = Y1 c61 u = Y1 c61 
X X = V = zl c21 z1 C21 

(B 23) 
X X X 

p = Yo + Y1 c61 p = Yo + Y1 c61 

X X X 

q = ZO + z1 c61 q = Zo + zl c61 

e: 1 = C21 c61 e:2 
= (c20 c61 + CGo  C21) 

- C/o4 

X (c20 c21) + o2o 6c 
X 

e: 3 = C20 C6o e:2 
= c61 + c6o 

We can solve equations (B 21) for c4 in two ways by multi

plying the top equation with Px, resp. Rx, the bottom with P, reep. R, 

to get 

(B 24) 
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= (B 25) 

from which we finally get a single (nonlinear) equation for £1 or £7 

= (B 2 6) 

which has been programmed to be solved by computer (TRIL). The analytic 

solutions for thin lenses can be used as initial values for a zero 

finding routine. 

Once s1 and s7 are known, all other variables can be found 

directly: c4 from equation (B 25), c2 and c5 from equations (B 19), 

s3 and s5 by combining equations (B 4), (B 10),  and (B 1 6) 

S5 = --- - - -
C4 C5 

Furthermore, for i = 2, 4, 6, 

gi = -
C· ¢i/sin ¢i ]. 

!Kil = 

s· = 
]. 

and the total length is 

c/ /sin2 

¢i
2/gi 

7 
i =; I 

i=l 

= 

s. 
]. 

H 

(B 27) 

(B 28) 
sin H 
c· ]. 

(B 29) 
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FIGURES and TABLES 

Table 1: Results for a typical testcase. The desired trajectory 

functions at the end of a channel are obtained with triplets found by 

the computer program TRIP. The first column under point 3) is the 

short-lens solution found from a second order equation, the next columns 

are solutions with increasing lens lengths - and hence decreasing 

strengths - derived from the short-lens solutions. The lens-lengths 

are increased either until one of the intermediate length becomes 

negative, or until the strengths are low enough. 

Figure 1: Graph of the trajectory functions eH, ev, ap through the 

channel obtained by analytic matching in the example of the table, 

corresponding to the.case <1>2 = o.6. 
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Table l: Results for a typical testcase 

1) Desired trajectory functions on both ends of channel 

in 

out 
11.45 

12.80 

4. 68 11.45 

o. 21.30 

a.v 

- 4. 68 

- o. 

desired total length of channel 21.8 m. 

I 

O.p a.p 

o. 0.097 

o.86  - 0.0625 *) 

2) Matrix elements for vertical phaseshift �v = 0.5 

3) 

4) 

*) 

**) 

� = (
- 4.344 

0.203 

My = 
(_

- 1.863 

0.294 

8.866  
) - o.644 

7 .487 
) o.643 

�H = 2.319 *) 

Triplet solutions for s1 = 2.5 m 

�2 
*) 

= s2/ic; 
0 0.2 o.4 o.6 units 

s2 o. 0.076 0.289 0.586  m 
S3 1.270 1.170 o.888  o.474 II 

S4 o. 0.062 0.237 o.487 II 

S5 14.317 14.390 14.585 14. 822 II 

s6 o. 0.017 0.064 0.123 II 

S7 3.074 3,032 2.922 2.788 II 

JI, 21.160 21.248 21.484 21.779 II 

K1 {g1) (- 0.516) - 6. 890 - 1.917 - 1.049 m.-2 (m-1) 

K2 {g2) ( o.422) 6,936 1.946 1.074 II II 

K3 {g3) (- 0.116) - 6.691 - 1.782 - 0.922 II II 

Verification of solution for h = o.6 with tracking routine 

f3H a.H f3v I 

a.v a.p a.p 

out 12.8 6  0.003 20.65 0.058 0.861  - 0.0627 

Calculated by the program. 

�4 and �6 chosen such that K4 ::: KG ::: K2. 

(BEAl'CH) 
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