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SUMMARY 

';l:'ne methods and data employed in the determination of the 

gradient of the ISR magnets and of the ISR geometry are described. 

In particular, Part I contains the description of the hard edge 

approximation work on which all the designs were based. Part II 

describes work using a smooth field table and tracking trajectories 

through it which was mainly done for checking the approximate work 

of Part I. Good agreement between the two approaches was obtained. 

Part I. 

Part II. 
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Part I. Hard edge approximation 

I.l Introduction and Definitions 

The main IS R magnet of each rine consists of 192 rectangular 

magnet blocks which are arranged as follows: 

40 short F units composed of one block 

· 32 short D units composed of one block 

· 28 long F units composed of two blocks 

32 long D uni ts composed of two blocks. 

The expression "rectangular magnet block 11 describes its geometrical 

shape and = at the same time = indicates some of its consequences. 

i) Since a rectangular magnet block does not follow the curvature 

of the equilibrium orbit the latter is not geometrically 

distinguished from any other orbit through the magnet and 

must hence be defined explicitly (I.3). 

ii) Since the end faqes of the magnet are parallel to each other 

they are not perpendicu.lar to the equilibrium orbit and hence 

additional focusing occurs at the magnet ends which must be 

taken into account (I.5). 

In the hard=edge approximation the smooth magnetic field and 

gradient at the ends of the magnet blocks are replaced by magnetic 

fields and gradients which are piecewise constant and abruptly change 

at the edges in such a way that the integrals of the smooth fields and 

of the hard-edge approximation are equal. 
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. We use the coordinate system shown in Fig. 1. We first define 

the effective bending power of ha.Lf a magnet block hy the equation: 

s (x) n 
B (x,o) LB (x) � f B (x,s) ds 

0 
(1) 

The limit of . LB is the effective length for field of half a block. 
. -· ,. :, ,.;��) .. :::·· 

the integration s is conveniently chosen far away from the magnet n 
bloqk sµch that the magnetic field vanishes there. .This .is po�sible 

{qr, tb;e shalt_ units. 

The two blocks of a long unit ere so close together that their 

stray .fields interfere. In this case, the integration limit occurs 

·in. :an . azimuthal position where . the magnetic field does not vanish, and 

becomes itself a function of x, since there is a small ai::l,gle qetween 

the two blocks of a long unit. 

Differentiating (1) with respect to x gives us the efJ�ective, 

focusing power of half a magnet. ·block: 

s · (x) 
= n

f
. 3B(x,s) 

3x 
0 

ds. (x) ·n . 
dx 

(2) 

LG·. is the effective length for gradient of half a qlock. Only the 

first term on the right hand side remains when the limits of integration 

are in a field free region. 

For practical purposes it is more convenient to define length 

corrections tB and tG for each end of a magnet block such that 
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� L 
n 

= 

L is the physical length of a magnet block. n 

I. 2 Compilation of magnet data 

(3) 

(4) 

·. Table 1 is an abstract of the ISR parameter list1) giving the 

relevant magnet parameters. There are three different kinds of effective 

lengths tB 

i) 

ii) 

'iii) 

and 

the 

the 

the 

tG for the following ends of magnet blocks: 

end with coil connections facing a straight section 

end without coil connections facing a straight section 

end facing the other block of a long magnet unit. 

The coil connections of all magnet units are at the counterclockwise 

end. The effective lengths LB and LG of all kinds of blocks are then 

sums of the appropriate tBs and tGs and Ln. 

I. 3 Equilibrium Orbit in Individual Magnet Blocks 

form: 
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I.3.1 Relative Position of Equilibrium Orbit and Magnet Centre Line 

In a rectangular magnet unit, the magnetic field has the following 

d
B

i 
2 d2B

I B(x,o) = B(o�o) + x dx 
+ � 

a.x2 
o,o o,o 

(5) 



and a gradient 

= d.BI + X d
2Bl 

dx O ,o a.x2 
0 ,o 

(6) 

Since the e4uilibrium orbit will be curved it will not pass through 

the same magnetic field along the whole magnet block. We shall first 

calculate how the equilibrium orbit must pass through the field (5) in 

order to undergo the same total deflection as in a curved magnet of 

the same length and field B .  
0 

We approximate the equilibrium orbit by a parabola starting at 

a distance x from the magnet centre line in the middle of the block 
0 

as. shown in Fig. 1: 

2 s 
X = X +-

0 2p (7) 

The following e4uation should hold with the integration path c extended 
·· ·· .. :.. 

over half a magnet block: 

BL = / B(x) ds 
0 

L is the abbreviation for L = L /2 + iB. n 

(8) 

Substituting (5) into (8) and performing some algebra yields the 

following solution 

X = 

n' n 14 L4 ' 2 1 

p ± p (l + 180 2 (: ) -) 2 

n' 
p 

(9) 

�nen doing the integral in (8) we neglect the small angle between the 

trajectory and the z axis and integrate with respect to z. The 
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resulting small error is taken care of later on by applying a 

"curvature correction" (I. 3.2). 

Developing the square root in (9) we find 

1
2 

7 

L4 

(�) X = - + --
6p 180 2 n 

The following shorthand was used 

n 1 dB = 
B dx 

n' 1 d
2

B -= �-
B 

dx2 
0 

(10) 

(11) 

(12) 

In the constant gradient case with n' 

sagitta of the particle trajectory. 

= 0, x is just 1/3 of the 
0 

In the case of xhe IS R the 

correction term for n' 'f O is 300 times smaller than the first term. 

A similar integration may be performed to find the total focusing 

power of a straight magnet 

dB 
J dx ds (13) 

This becomes by substituting (6) into (13) and doing some algebra, 

again integrating with respect to z: 

f 
dB ds 
dx 

1
4 

(�)2 C 
1 + _J_ 

L 180 2 n 
dx p 

(14) 
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Here L is an abbreviation for L = Ln/2 + !G. Inserting ISR para= 

meters into (14) shows that the change of focusing power due to the 

assumed rectangular magnet blocks is completely negligible. 

On the basis of (10) it was decided to put the equilibrium orbit 

into all magnet blocks in the mann�r shown in .Fig. 1. 'I'he equilibrium 

orbit crosses the effective border of the magnetic field at a distance 

a = = 7.2 mm inside the magnet centre line. 

I.3.2 Effective lengths of the magnet blocks 

Knowing the position of the equilibrium orbit in the magnet 

blocks permits an accurate calculation of their effective lengths LB 
and LG. We have to take into account the following length modifications: 

i) 

ii) 

iii) 

Effective length 

Exit corrections, 

corrections 

add c3LB a--
ax 

!B or 

or 

Curvature correction, multiply by 

,Q,G. 

c3LG 
aax. 

. .! sin 2• 

The second correction is due to the radial variation of the effective 

lengths ,Q,B and iG which must be taken at the radial position where the 

equilibrium orbit actually crosses the end of the magnet. The third 

correction is necessary because we integrate (8) and (13) with respect 

to z rather than along the trajectory s. 

The formula for calculating the bending length LB of a magnet block 

becomes: 

L' B = L + 1 + 1 + a -.- · +a -- 1 . [ (aLB) (aLB) ] /2 
n Bl B2 clx 1 _a

x 2 sincj>/2 

The corresponding formula for-�he focusing length LG is: 
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= [ L + .Q, + .Q, + a ( �
LG) + a ( 

a LG) ] n Gl G2 . dX 1 ax 
2 

¢/2 
sin<t>/2 (16) 

The indices 1 and 2 refer to the two ends of the magnet block. An 

approximate value must be used for¢ at this stage. This is 

sufficient since the curvature correction is small. The bending 

lengths L13 and the focusing lengths LG were calculated from the data 

shown in Tab. l; they are SUlllmarized in Tab. 2. 

I.3,3 Bending .Angles of the Blocks 

The bending angles can be calculated using the following argument. 

The total bending angle 1n a superperiod is TT/2, and the total effective 

length of the magnets in a superperiod I: can be calculated by multi··" 

plying their lengths given in Tab. 2 by their number. We find: 

and hence 

The bending angle <f> 

The results are also 

E = 123,44808 m 

p 

1.S then 

shown 

= _I:_ = 78,5895 m 
TT/2 

simply: 

LB 

in Tab. 2. 

I. 3. 4 Effective Lengths of the Straight Sections 

(17) 

(18) 

The physical length of the straight sections in the ISR is 

defined as the distance between the two points where the centre lines 

of two neighbouring magnet blocks cross their end faces, This is 

shown in Fig. 1. The total length of the magnet blocks and straight 

sections is chosen such that the equilibrium orbit has the correct 
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TAB• le MAGNET PARAMETERS• 

MAXIMUM FIE�D AT EOUILIBRtUM ORBIT 

CORE LENGTH' OF A LONG MAGNE1° UN
°
I t 

CORE LENGTH OF A SHORT MAGNET UNIT 

SPACE BETWEEN THE T�O BLOCKS IN A LONG UNIT 

BENDING RADIUS 

8ZERO 
··a..cL., 

I. cs) 

Al 

·RHO 

1.2 

5e03o· 

2♦440. 

o.1so 

78e5895 

T 

M 

M 

. M  

M 

BENDING ANGLE IN CONNECTION HALF OF LONG F UNIT .. · Oe0326060S7 RAD 

o.oa2s72972 ·. RAO 

Oe032579335 RAD 

0•032546250 RAD 

Oe03299569t+ RAO 

0•032948484 RAD 

BENDING ANGLE lN CONNECTION HAI..F OF LONG D UNIT 

BENDING ANGLE IN FREE HALF OF LONG F UNIT 

BENO I.NG ANGLE. IN FREE HALF OF. LONG D UNIT 

BENDING ANGLE IN SHORT F UNIT . . .  

BENDING ANGLE IN SHORT D UNIT 

PROFILE PARAMETER INF MAGNETS 

PROFILE PARAMETER IN D MAGNETS 
RADIAL DERIVATIVE OF F PROFILE PARAMETER 

RADIAL DERIVATIVE OF D PROFILE PARAMETER 

ASSU�ED EFFECTIVE LENGTHS 

CONNECTION END OF F BLOCK 

CONNECTION END OF D BLOCK 

FREE END OF F BLOCK 

FREE END OF O BLOCK 

HALF JUNCTION OF L6NG F UNIT 

HALF JUNCTION OF LONG D UNIT 

N.IRHOCF) •3• 133. ll'M 

N/RHOCO) +3.018 1/M 

Nt/RHO(F) -1.940 1/M*M 

N 1/RHO(D) +1e496 1/M*M 

FJELD GRADIENT 

Oe0766 Oe0329 M 

0.0766 Oe0335 M 

Oe0745 Oe0334 M 

010745 Oe0339 M 

010445 0•0297 M 

0.0445 0•0257 M 

ASSUMFO RADIAL OERIVATIVES OF �FFECTIVE LENGTHe· 

AVERAGE CF rONN�CTICN AND FRFE PND OF F RLOCK 

�v��AG� OF CONNECTION �ND FRFF fND OF O PL0C� 

HALF JUNCTION OF L(,, I(; F UtJ IT 

FIELD 

-0.132 

-1-0. 12n 

-o.01i6 

GRADIENT 

-(1-228 

+o. 22f3 

-0.099 

!-'ALF JU'JCTIO:'J OF L(lr.G rJ U�<IT +Oe0'-'>7 +Oel23 

29 





. . ' . . 

Tab. 2. Effective Lengths anq. Bending Angles of Magnet Blocks 

Type L' B [m]. L' G [m] <p [rad] 

Block of long F unit . 2.56249 
with: coil connection 

2.,5051 0,032606057 

Block of long F unit 2.56039 2.5056 0,032579335 
without coil connection 

Block of long D unit 2,55989 2,4968 0,032572972 
with coil connection 

Block of long D unit 
without coii connection 

2.55779 2.4972 0.032546250 

Short F unit 2,59312 2.5097 0.032995694 
: ;·_:.-:·,.· .. 

Short D unit 2.58941 2.5042 o. qJ2948484 
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circumference (I. 4.1). The effective length of a straight section 

is small�r than their physical l(·mgth for two reasons: 

i) · The effective length added to the neighbouring magnet blocks 

must be subtracted. 

ii) There is an angle between the magnet end faces and the 

equilibrium orbit crosses the straight section· at a distance 

a = - 7.2 mm. 

We have the following expression for the "effective focusing 

length" of a straight section: 

LS is the physical length of a straight section. The indices 1 and 2 

refer to the magnet ends ori either side of the straight section. A 

comparison between the physical lengths and the effective lengths of 

the straight sections is shown in Tab. 3. 

Tab. 3. Straight_.Section Lengths 

Type Ls [mJ LSG [m] 

AO, coil connection on F block 1,63 1,5630 
no connection on D block 

AO, coil connection on D block 1.63 1.5629 
no connection on F block 

Al, between F blocks 0. 15 0.0889 

Al, between D blocks 0. 15 0.1001 

A2 16.783 16.7132 

A3 2.000 1,9356 

A'· 13,0042 12.9344 

A5 2.000 1,9356 

A6 9.600 9,5302 
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I.4 ISR Geometry 

I.4.1 The circumference of the ISR 

The _circumference of the ISR equilibrium. orbit is determined by 

the requirement that within tolerances given below the circumference 

of the ISR, injection orbi'L be equal ·1;,o · 3/2 of' the circumference of 

the PS ejection orbit. 

It turns out that the circumference of the ISR injection orbit 

is not a unique number. Rather, a range of values is required 

depending on the following operational parameters: 

i) the size of the injected beam 

ii) the closed orbit distortions in the ISR 

iii) the Terwilliger scheme. 

The necessary range to cover the operation with and without the 

TerwiUiger scheme with the present ISR beam size is 

(21) 

If two-turn injection into the ISR from booster + PS i;3 to. be included 
�0 .. . . 

the required range increases to 

ilR 
R 

=4 - 1.88 X 10 (22) 

If there is no frequency difference between the ISR and the PS, the 

range of ejection orbit radius is also given by (21) and (22). 

The following equation must hold 

(23) 
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where the index e indicates ejection, and i indicates injection. 

To find the radius RIS R  of the ISR equilibrium �rbit we must now find 

the relations between �S and RPS and between R�S R and RIS R' We do 

this for the case of the present IS R beam without Terwilliger scheme. 

It has been decided to eject this beam from an orbit which has 

a radial displacement 

tlR = . = 11. 2 mm (24) 

over most of the circumference. A bump near the ejection septum 

magnet will increase the average radius a little such that 

(25) 

Thus we have: 

(26) 

1 The relation between the average radius of the injection orbit RIS R 
and the equilibrium. orbit radius RIS R can be found as follows, 

anticipating orbit parameters which can only be calculated when the 

gradients are known. The radial position of the injection orblt at 

the kicker magnet 

tlR = = 44,5 mm KM 

and the momentum compaction function a
KM 

there 

a = 2. 262 m KM 

(27) 

(28) 

are known and allow us to calculate the momentum. error of' the injected 

beam: 
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. lill,, 
-'--'p . .... 0. 0197' 

: 4 ··1- .-• . ••; ·: •. •i;(:f • �! ,;: -·./ f • :•·:.: .-;-- ._,:. : " _ -; 
Know:i:ng· tlie�·transition ·energy ·yt - 8.9685

1) _ and its defi�ition 
.F .. '.� L •.. ' : };: ::� 

. . _.; .. ·---� . .  

= (30) 

di�ectl/allm.;s to convert the momentum er:ror j.nto a ch.ange. ip. .. : 

circumference 

Hence: 

Ri 
. 

R (1 4 . . ·10-4) •. 
ISR · = . tBR . 7' 2 ' 5' x . ' . . · 

(31) 

·. (32) 

Com,pin�ng (g�), (26)•.ap.d.(32) . and using �S =· 1oo·m-then '. yieldthe 

RISR = 150,0253 m (33) 

942. 6368 m 

.; ; 

The physical lengths of the straight sections (Tab. ::3) and of the 

magnet blocks (Tab. 1) were chosen such as to yield the circumference 

of,the, ISR.equilibrium orbit given above. ···,: . . - .,� � - -· � .. . - . . 

The tolerance on the relation (23) between the PS and ISR radius 

is determined by the requirement that the bunches be well enough 

centered ip. :tne ISR buckets to limit the dilution in synchr'otron phase 

space to a.reasonable value. It turns·out that this req_uiremerit is 

met when the P_S ejection orbit radius is within ± ·1 cni from the 
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correct value - as long as the transfer of all 20 bunches together 

is considered. The tolerance on the radius drops to about± l mm 

for two-turn injection into the ISR, since then the number of RF 

cycles between the first and the last bunch in the ISR is much higher. 

r. 4. 2 � ___ shape of the ISR 

The geometry of one ring of the ISR is uniquely determined by a 

polygon, which is formed by 

i) 

ii) 

the straight sections of the length L ,  and s 
the magnet centre lines of the length Ln. 

The bending angles define the angles of the polygon. 

The second ring is obtained by rotating the first one by TI/4. 

The intiarap.ecticm radius, pi = 148 . 6151 m, i's the same for all 

intersection points, since a single ring exhibits a periodicity with 

the period TI/2. 

There is no machine radius with respect to which the rings have 

mirror symmetry due to the effect of the coil' connections. Thus the 

corresponding distances from the intersection point to the neighbouring 

magnet are not equal. 

The distances from the intersection point to the nearest magnet 

cores are given in Tab. 4. 

Tab. 4 

cl,ockwise in the outer arc 6.9608 m 

clockwise in the inner arc 9,8243 m 

counterclockwise in the outer arc 6.9587 m 

counterclockwise in the inner arc 9,8222 m 
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I,5 Gradient of IS R Magnets 

All the effective focusing lengths of the IS R magnet blocks and 

of the straight sect ions are summarized in Tabs. 2 and 3. They were 

used to calculate �, wi tn the AGS program2) = the gradients which 

yield the coi·rect Q valu.es. 

Since the magnets are straight ones this option in the program 

was used. The result of the AGS program are two focusing parameters 

� and KD which take the· following values: 

� 

IS 
= 

""2 --- 0.03987 m 
=2 + 0. 03840 m 

(34) 
(35) 

In order to obtain the profile parameters these values have to be 

multiplied by the bending radius p given in (18): 

(n/p )F = 

(n/p)D = 

. - =l 
= 3,133 m 

=l 
+ 3.018 m 

(36) 

(37) 

The Q values are made approx .. mately independent of momentum by 

adding a quadratic variation with radius to the field of the IS R 

magnets. The sextupole com�onent required to achieve this aim was 

also calculated by the AGS program. Again, the result is given in 

the form of radial derivatives of the focusing parameter 

Kir = 

is = 
= 0. 02469 m=3 

+ 0.01903 m-3 
(38) 

(39) 

and must be transformed into derivatives of the profile parameter by 

multiplication with p: 
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(n'/p)F = •= 1.940 m=2 

(n'/p)D = + 1,496 m=2 
(40) 

(41) 

The resulting variation of the Q values with the momentum error 

6p/p is shown in Tab. 5. The quadratic variation of the Q values 

with 6p/p is to be expected in a magnet with a linear variation in 

gradient and a linear variation of the effective length across the 

aperture. 

Tab. 5, Q values in the hard edge approximation 

6p/p � 

= 0.02 8.791 8.714 

= 0.01 8,793 8.704 

0 8.793 8.700 

+ 0.01 8.793 8.703 

+ 0.02 8.791 8.713 
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Part II. Tracking of Proton Orbits in the ISR 

II, l Introduction 

,·i: 

This part describes the results of tracking proton orbits through 

the magnet structure of the ISR by direct numerical integration of the 

equations of_motion3). 

This integr�tion is based on a table of the magnetic field :in 

the median plane of the ISR. Details about the field table are given 

in Chapter II.2. 

The purpose of this work is to check the validity of the 

approximations made in the determination of the ISR geometry and of 

the magnet profile parameter by the hard-edge matrix method described 

in Part I. This aim is achieved by finding the closed orbits for a 

range of momenta, and by calculating the transfer matrices for small 

oscillations in their vicinity. The results on the closed orbit are 

given in Chapter II.3, those on the transfer matrices in Chapter II.4. 

Chapter·Ir.5 summarizes the conclusions. 

II.2 The Magnetic Field 

II.2.1 Fieldtable 

Since the field in the junction of two blocks forming a long. 
magnet is quite different from the fringing field at the end, we have 

to deal with four different fieldtables {F�end� F=junction, D=end, 

D=juriction). Connection erid and free end of a magnet block were 

considered equal. The average fringe field was used in the fieldtable. 

The coordinate system used in the median plane (y = 0) of a 

magnet block is shown in Fig. 1. z = 0 is in the middle of the block. 
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The field was given in terms of B(x,o)/B(o,o) in the nodes of 

the mesh described by Tab. 5, The field is symmetrical to z = 0 in a 

short unit and vanishes at a distance of 0.5 m (z = = 1.72) from the 

end face of the magnet. 

Region 

-1.72 < z _::. -0.92 

-0.92 _::. z < O 

O < z _::. +0,995 

+1.095..s._ z _::. +0. 995 

+1,345.::, z _::. +1.095 

-0,06 < X < 0�06 

0.06 ..s._lxl.::. o. 42 

All lengths in m. 

Tab. 5 

Step width 

l:J.z = 0.02 

constant field 

constant field 

t>.z = 0.02 

l:J.z :::: 0.01 

l:J.x = 0.01 

l:J.x = 0.02 

Magnet type 

S,L 

S,L 

L 

L 

L 

S,L 

S,L 

At the time when the fieldtable was established only a magnet 

model existed which did not have exactly the same profile and effective 

lengths as the final ISR magnets. 

Therefore a slight adjustment was necessary in order to arrive 

at a field table which had exactly the same overall properties as the 

field of the final ISR magnets. 

The change in the profile was taken into account by multiplying 

B1(x,z) by B2(x,o)/B1(x,o), the ratio of the new field to the old 

field at z = 0 calculated from the gradients. 
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The ef,fective length was changed by performing the transformation 

where B2 is the result of the first transformation and B3 the result 

of the second one. 

II. 2. 2 The interpolation in the fieldtable 

The interpolation in the x=direction was done by means of a 

parabola fitted to the field in 9 points which were disposed symmetrical 

to the x-axis.. The step width between two points was 0.01 m. This was 

done for every z=coordinate where the field was specified. 

It was made sure afterwards that the orbits are within 

-0.05 < x < 0.05. Although the field at x = ± 0.05 m was not included 

in the fit, one can be fairly sure that the approximation is still good 

in the region 0,05 > JxJ > 0,04. 

Linear interpolation was used in the z=direction. 

II.3 The Closed Orbits 

The geometry· of the ISR was established by the hard=edge method. 

The central orbit in this approximation does not precisely 

correspond to a real proton orbit. One of the aims of this investigation 

was to find that real proton orbit = and the momentum of the.protons = 

which comes closest to the central orbit, defined in Part I as the 

orbit coinciding outside the magnetic field with a line g defined in 

every straight section. · The relat·ive position of this line can be seen 

in Fig. 1. 
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"Closest II was interpreted in the way that this real _proton orbit 

should have the same maximum posi.J ,ive and negative deviation from the 

lines g over an octant. 

The question arises: why is it not possible to have an orbit 

coinciding with the lines g7 The answer is that the trajectory for a 

particle of a certain momentum does not leave the magnetic field at 

the same x in all four types of the magnets if one wants to retain 

the bending angles given by the hard edge method. 

This can be seen from the following argument. The equations of 

motion in the median plane of a magnet are: 

Or 

d2x 

dt2 

d2z 

dt2 

dx 
dt 

dz 
dt 

du 
dt 

dv 
dt 

= 

= 

= 

= 

= 

= 

u 

V 

_ dz B!L 
dt me 

dx B !L 
dt me 

- v B(x,z) L cm 

u B (x,z) cm 
e 

The solutions of this system of differential equations are: 
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X = gl (C . ,t) 
1 

z = g2 (C .,t) 
1 

(3) 

hl (C . ,t) dt 1 

dz h2 (Ci � t) dt 

The C . ,  i = 1 ,2 ,3,4 are constants determined by the conditions 
' ' ' 1 

one imposes o.n M+�. s.olutions. One of the constants is determined by 

z(t = 0) = z , which can be chosen arbitrarily. 
0 

Theri we are left with 

three constants. 

A solution of the equations (3) can be found for magnet 1, being 

someone or other of the 4 types of magnets, which fulfil$ 

i) symmetry to the ver�ical symmetry plane of the magnet (not 

of the magnet block) ; 

ii) bending angle ; 

iii) x shall have a certain value at the exit of the field. 

The trajectory is fixed uniquely by these conditions, therefore 

also the momentum p of the particle, which shall be equal for all magnets. 

Thus for the remaining magnets we can maintain only two of the above 

conditions, p being the third one. 

If one does not want to touch i) and if one wants to keep the 

bending angles, evaluated by the hard-edge method , iii) will no longer 

hold for the 3 magnets left, since the bending angles were calculated 

by the hard=edge method which assumes the same shape of the trajectory 

for all magnets. In reality the trajectory will have a different shape 

in different types of magnets: e. g. the D=magnet bends more at the ends 
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and less in the middle than the F=magnet. Thus the trajectory in 

these magnets will leave them at the wanted angle , i.e. parallel to 

the straight section , but with a displacement x different for every 

magnet. 

The next question one may ask is : how much is this difference in 

the exit coordinate at the border of the hard=edge field ? 

Table II shows the result of a tracking procedure where the approach 

described above was used. LD was chosen to be the magnet 1 and the 

third condition had the form 

x ( z  = L /2 + £ )  = 0. 0072 m. n B 

The momentum p = m yv turned out to be 23. 585 GeV/c. 
0 

SF 

SD 

LF 

LD  

b = x(  z = 0) ; 

a [mm] 

6.72 

7.38 

6.59 

7.20 

Table II 

b [mm] 

3.98 

3 . 20 

3 ,85 

3,14 

a+b [mm] 

10,70 

10. 58 

10.44 

10 ,34 

a + b is larger for F=magnets since the curvature increases towards the 

middle of the magnet whereas a D-magnet bends more at the ends . Further 

one can see that the a values are different , which proves the argument 

put forward above. 

There are now two ways of proceeding. Either we change the bending 

angles in order to get equal a's in all magnets, or we accept a closed 
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orbit whose maximum deviation from the lines g would probably 'be of 

the same magnitude as the difference in the values of a. Since the 

former alternative would have involved a rearrangement of the ISR 

geometry, and since the difference in a turned out to be rather small, 

the latter alternative was chosen. 

At a field level of lT , the orbit of a particle with . p = 23.558 GeV/c 

turned out to  be closest to  the central orbit defined before. Henceforth 

we refer to this orbit as the orbit with 6p/p = 0. 

Figure 2 shows the displacement of this orbit from the lines g .  in 
1 

the straight sections of an octant . It is sufficient to consider an·  

octant since we did not take into account the influence of the • coil . · . 
connections onto the magnetic field. 

The maximum deviation from the lines g .  1s ~ 0. 4 mm, as expected, 
1 

which is small compared to the horizontal closed orbit distortions, which 

are assumed to be about 15 mm1 ) . 

Figures 3 and 4 show this deviation for the orbits with 6p/p = ±0.02 

and compares it with the result of the hard=edge method. The agreement 

is satisfactory. 

II.4 The Q-values 

As far as the numerical methods used to calculate the transfer 

matrices are concerned,  the reader is referred to 3 ) 

The result of the computations is shown in Table III and Fig. 5 , 
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Table · III 

6p/p =0.02 =0. 01 0.00 +0. 01 +0. 02 

� 
8.779 8.781 8.781 8.781 8. 781 ·. 

'¼ 8.667 8. 671 8. 677 8.686 8.694 

6p/p = 0 - p = 23,558 GeV/c. 

The agreement with the values, given in Part I and shown in Fig. 6, 

is quite good, 6Q/Q being less than � 5 . 10 
=3. To prove this was the 

second obj ective of this work. 

The Q-values · turned out to be extremely sensitive to the inter= 

polation procedure. Thus the difference in the Q�values reflects 

mainly this difficulty. 

II. 5 Conclusions 

It was shown by a numerical integration of the equations of motion 

· that a closed orbit can be found in the ISR, which does not deviate more 

than ± o. 4 mm 'from: the orbit. found by the hard-edge approximation. · 

The computations were based on a fieldtable 3 which was derived 

from measurements on a prototype magnet at a field level· • of Q.; 5  T. 

The Q=values derived from the numerically evaluated transfer 

matrices were found to be in agreement with those Q=values evaluated 

by the hard0·edge model, the difference being 

/),'¼ 
5 10·�3 < . , 

'¼ 
-

/),� 10=3 . 
� 

< 
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Figure Captions 

Fig. 1 The relative position of the straight sections , the central 

orbit and the reference lines g .  

Fig. 2 The displacement of the orbit !J.p/p = 0 from the lines g in one 

octant. The scale in the different straight sections is chosen 

to give the same length for all. 

Fig. 3 The displacement of the orbit !J.p/p = 0 . 02 relative to g in the 

mid-points of the straight sections in one octant 

• hard=edge method 

X tracking 

Fig. 4 Corresponds to Fig . 3 but for !J.p/p = = 0 .02 . 
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Fig. 5 
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�,Qv
=diagram . The numbers at the points of confl\l,ence of 

the resonance lines give the order of the resonances. 

T re  rectangle enclosing the calculated Q�values shows the 

tolerances on the Q=values ( 11bullet=size"). 

The numbers next to the points correspond to the momentum 

spread in percent. 

• hard=edge method 

x tracking program. 
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