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Neural Online Filtering Based on Preprocessed
Calorimeter Data

Rodrigo Coura Torres, Danilo Enoque Ferreira de Lima, Eduardo Furtado de Simas Filho, José Manoel de Seixas

Abstract—Aiming at coping with LHC high event rate, the
ATLAS collaboration has been designing a sophisticated three-
level online triggering system. A significant number of interesting
events decays into electrons, which have to be identified from a
huge background noise. This work proposes a highly-efficient
L2 electron / jet discrimination algorithm based on artificial
neural processing fed from preprocessed calorimeter information.
The feature extraction part of the proposed system provides a
ring structure for data description. Energy normalization is later
applied to the rings, making the proposed system usable for a
broad energy spectrum. Envisaging data compaction, Principal
Component Analysis and Principal Component of Discrimination
are compared in terms of both compaction rates and classi-
fication efficiency. For the pattern recognition section, a fully-
connected feedforward artificial neural network was employed.
The proposed algorithm was able to achieve an electron detection
efficiency of 96% for a false alarm of 7%.

Index Terms—Online Filtering, Calorimetry, Feature Extrac-
tion, Signal Compaction, Particle Identification, Neural Net-
works, Principal Components Analysis, Principal Components
of Discrimination.

I. INTRODUCTION

PARTICLE colliders are often used in high-energy physics
experiments. By accelerating and colliding particles, stud-

ies about the structure of matter can be performed. The Large
Hadron Collider (LHC) [1] is the largest particle accelerator
in the world. Having a circumference of ∼ 27 km, LHC will
be colliding proton beams with a centre-of-mass energy of
14 TeV and an unprecedented luminosity of 1034 cm−2 s−1.
For increasing the probability of detecting interesting physics,
LHC will provide a bunch crossing rate of 40 MHz.

The LHC ring has multiple collision points. At these sites,
detection laboratories were built in order to analyze the sub-
products originated from collisions. The largest LHC detec-
tor, ATLAS [2], comprises tracking, calorimetry and muon
detection systems (see Fig. 1). Due to its segmentation and
granularity, each bunch crossing will produce ∼ 1.5 MBytes
of information, resulting in a data stream of ∼ 60 TBytes/s.
Since it is impossible to store such a quantity of data, and
due to the fact that most data is from the huge background
noise, this rate must be reduced to ∼ 200 Hz in order to be
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Fig. 1: The ATLAS detector.

stored in mass storage devices for further offline analysis. For
such rate reduction, an online, three-level triggering system
has been designed. The first-level trigger will reduce the input
rate to ∼ 75 kHz analyzing coarse information from both
calorimeter and muon systems. The second-level trigger will
validate the events approved by the first level, using full
detector granularity, reducing the event rate to ∼ 2 kHz. The
third level will analyze all available information of each event,
providing the final online trigger decision.

High-energy electrons are among the most powerful indica-
tors of interesting physics processes [3]. However, in hadron
colliders, the interesting electrons are outnumbered by jets in
the same energy range by several orders of magnitude [4]. The
success of a hadron collider experiment often depends on the
electron detection efficiency in such difficult conditions.

The ATLAS triggering system strongly relies in calorime-
try. The ATLAS calorimeter is composed by electromagnetic
and hadronic sections. Both sections are divided into three
segments with distinct granularity and depth. In front of the
electromagnetic calorimeter there is also a pre-shower detector,
resulting in a total of seven calorimeter layers.

This paper presents a calorimeter based electron / jet sepa-
ration algorithm that is a candidate for operating at the second
level of the ATLAS triggering system. For reducing input
data dimension, and revealing relevant variables, a feature
extraction step is first performed. For this, calorimeter data
are described through a set of energy-normalized concentric
ring sums. For data compaction, Principal Component Anal-
ysis (PCA) [5] and Principal Component of Discrimination
(PCD) [6] are evaluated in terms of both compaction rates
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Fig. 2: Schematic view of the ATLAS triggering system.

and classification efficiency. Moreover, as signal decorrelation
is performed either linearly (PCA) or nonlinearly (PCD) in the
preprocessing phase, the classifier complexity can be reduced,
which also favors signal preprocessing adoption in level two
trigger strategy. For comparison, components were extracted
in a segmented way, i.e., by analyzing each calorimeter layer
individually, and non-segmented (concatenating layers).

For the pattern recognition section, an artificial neural net-
work [7] was employed. Neural networks are fast to execute,
and can provide nonlinear cuts in a high-dimensional space,
providing better pattern separation for complex problems when
compared to linear decision systems. Also, neural networks
are resilient to noise and missing data, which is attractive for
electron / jet discrimination.

This paper is organized as it follows: Sec. II will briefly
present the ATLAS triggering system. Next, in Sec. III, the ba-
sic concepts behind PCA and PCD are introduced. In Sec. IV,
the structure of the proposed electron / jet separation system
is detailed. Results obtained from such system are presented
in Sec. V. Finally, conclusions are derived in Sec. VI.

II. THE ATLAS TRIGGERING SYSTEM

The triggering system of the ATLAS detector was designed
to cope with the huge data stream produced by each LHC
collision, reducing it to feasible levels. The ATLAS Trigger [8]
comprises three sequential levels of analysis (see Fig. 2).

The first level (L1) will be responsible for the preliminary
rejection by analyzing both calorimeter and fast muon systems.
To cope with a maximum latency of 2.5µs, it is implemented
in low-programability devices (FPGA), and operates with
detector coarse granularity. During its analysis, L1 marks the
so-called Regions of Interest (RoI) of accepted events, which

contain the η and φ directions of the identified L1 objects, as
well as the transverse momentum thresholds that have been
passed. At the end of this level, the event rate will be reduced
to ∼ 75 kHz.

The second level (L2) is fed from the RoI approved by
L1, and is responsible for validating L1 decision. L2 includes
the tracking system information and analyzes each RoI in its
full granularity, reducing the event rate to ∼ 2 kHz. Since
L2 takes, in average, 40 ms to analyze each RoI, a set of
∼ 500 general-purpose server computers (PC) running Linux,
connected by gigabit ethernet switches are employed. The
algorithms developed for this level were implemented in high-
level computing language (C++), allowing the development of
more complex filtering algorithms.

The last level (also known as the Event Filter) provides the
final trigger decision, requiring ∼ 1, 600 server computers to
cope with an average processing time of ∼ 4 sec per event.
The events approved by this level (∼ 200 Hz) are forwarded
to mass storage devices for further offline analysis.

III. SIGNAL COMPACTION

The method of principal components is primarily a feature
extraction technique that obtains a linear or nonlinear trans-
formation of a group of correlated variables such that certain
optimal conditions are achieved [9]. The transformation is
designed in such a way that the dataset may be represented
by a reduced number of components, which still retain most
of its relevant information.

A. Principal Components Analysis

Principal Components Analysis (PCA) is a widely used
technique for feature selection in statistical pattern recognition
problems. Considering a random vector x ∈ RN , principal
components may be extracted by Single Value Decomposition
(SVD) [10] of the correlation matrix R of x. This implies
solving the following equation system

UT RU = Λ (1)
|U− λI| = 0 (2)

where U is an orthonormal matrix containing the eigenvectors
of R, Λ is a diagonal matrix, whose elements λ1, λ2, ...,λN

are the eigenvalues of R, and I is the identity matrix. Once
the eigenvectors are extracted, they can be ranked by their
associated eigenvalues, forming the principal component pro-
jection base. Usually, prior to the PCA extraction, the random
vector x is centralized by having its mean removed (x − x̄),
so that the correlation matrix becomes the covariance matrix.
In such condition, the eigenvalues give the amount of energy
(data variance) retained by the corresponding component.

Therefore, PCA provides a projection matrix U ∈ RN×N ,
where the components are ranked by the amount of statistical
variance they retain from x. By discarding the least energetic
components, one can achieve dimension reduction in an opti-
mal way, in the mean squared error (MSE) sense.
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Fig. 3: An example for which the most energetic PCA does
not provide useful information for pattern recognition.
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Fig. 4: Example on how PCD exploits directions useful for
pattern recognition.

However, for pattern recognition problems, not always the
best reconstruction corresponds to optimal discrimination per-
formance. Therefore, one can naively discard minor compo-
nents although they may point to directions where the bound-
aries of each pattern are well distinguishable. This is illustrated
in Fig. 3. In this example, the first PCA component, although
retaining 96% of the process variance, does not provide any
useful information for discrimination. On the other hand, the
boundaries of each pattern are very well established when
we look at the projection onto the second PCA component,
which carries only 4% of the original information. Therefore,
in classification problems, it may be more efficient to look to
the most discriminating components.

B. Principal Components of Discrimination

The Principal Components of Discrimination (PCD), instead
of finding directions that minimize the data representation
error, searches for directions that maximize discrimination
efficiency. Thus, for the example shown in Fig. 3, Fig. 4 shows
the projection onto PCD components. As it can be seen, PCD
correctly placed its first component in the direction that better
reveals the boundaries of each pattern.
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PCD components may be extracted using artificial neural
networks. Considering that the incoming events are in RN ,
a multi-layer perceptron network with a single neuron in the
hidden layer and a nonlinear activation function (in our case,
the hyperbolic tangent) can extract the first component. When
the training phase is completed, the weight values of the
hidden node contain the direction of the first PCD. Next,
a new node is inserted in the hidden layer, and the weight
vector connecting to the first node is frozen. The new neural
network is then trained, furnishing the second component.
This procedure is, then, carried out until the addition of
new components does not improve much the discrimination
performance.

IV. THE ELECTRON / JET SEPARATION ALGORITHM

The electron / jet separation algorithm comprises feature
extraction and pattern recognition sections. Moreover, it is
fed from a L1 approved RoI. Each RoI has, in average,
1,000 cells, providing a highly sparse data space. In order
to retrieve intelligent information from the RoI, while main-
taining its physical interpretation, a topological pre-processing
is performed. By knowing that electromagnetic showers have
smaller lateral dispersion than hadronic showers [4], for each
calorimeter layer, a set of concentric rings [11] are produced,
centered at the hottest cell of each layer (see Fig. 6). Next,



TABLE I: Number of rings in each calorimeter layer.

Layer PS EM1 EM2 EM3 HD1 HD2 HD3
# Rings 8 64 8 8 4 4 4
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Fig. 7: Processing flow for both approaches.

the cells belonging to a given ring are summed up, producing
a single value. A total of 100 rings are produced, organized
as presented in Tab. I.

In order to reduce the energy influence in our analysis, an
energy-based normalization by the total energy is performed:

r′i =
ri∑100

j=1 rj

(3)

where ri is the original i-th ring sum.
Once the ring sums are computed, the feature extraction

progresses by two different ways, as illustrated in Fig. 7: in
the standard case (Fig. 7a), the 100 ring sums are considered
as a single input vector, which means that both PCA and PCD
extraction and projection phases are performed by analyzing
all layers as a whole. In the segmented case (Fig. 7b), the
PCA and PCD are extracted for each layer individually,
meaning that each layer will have their own projection matrix.
Once the projection is performed in such per-layer basis, the
resulting components are concatenated, producing the final
vector containing the desired components to be used by the
classifier. The greatest advantage of such segmented approach,
when compared to the standard case, is that it is possible
to know how each calorimeter segment constitutes to the
classifier performance.

Once the feature extraction section is performed, the re-
sulting vector is fed into a feedforward neural network which
implements the pattern recognition section. Previous analysis
pointed out that 10 nodes in the hidden layer are enough.
Furthermore, both hidden and output layers use hyperbolic
tangent as the activation function. The training algorithm is
the Resilient Backpropagation [12].

V. RESULTS

Monte Carlo simulation data were used for evaluating the
performance of the proposed L2 algorithm. Simulation data
comprised ∼ 160k single electrons with transverse energy
(ET ) between 7 and 80 GeV and ∼ 100k QCD dijets events,
which contain at least one e/γ candidate with ET > 17 GeV.
Both datasets were initially pre-filtered by the standard L1
algorithm, considering energy, EM and HAD isolation [13].
A total of ∼ 140k electron and ∼ 13k fake electron (jets) RoI
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Fig. 8: Datasets transverse energy distribution for the events
reaching L2.

passed L1 cuts and reached the L2 system. Fig. 8 shows the
transverse energy distribution for both datasets. For developing
and validating the proposed system, the datasets were halved.
The first half (training set) was used for system development
(PCA/PCD extraction and neural network training). The sec-
ond half was used to avoid overtraining [7] of the neural
classifier design, as well as for validating the developed
algorithm regarding its detection efficiency.

For comparing the results obtained from each approach, the
Receiver Operating Characteristics (ROC) curve [14] will be
used. The ROC curve is generated by analyzing the electron
and jet probability density functions (PDF) estimation obtained
at the classifier’s output, when fed from these two datasets. By
varying the decision threshold over the dynamic range of the
classifier’s output, it is possible to compute, for a given thresh-
old value, the electron detection probability (referred to as
Detection Efficiency), and also the probability of background
noise misclassification (referred to as False Alarm).

A. Component Selection by the Number of PCA Components
The number of PCA components was chosen using the

Average Root criterium [9]. This criterium establishes that the
i-th PCA component should be retained if

λi > 0.7× λ̄ (4)

where λi is the eigenvalue associated to the i-th PCA com-
ponent, and λ̄ is the average value of the eigenvalues. Tab. II
shows the number of PCA components retained for both each
layer (segmented case) and for the standard (non-segmented)
case. The table also shows that the amount of variance retained
in each case is quite high, showing that the information is not
spread over the whole space. The exceptions are EM3, HD1,
HD2 and HD3. Since these layers sample little energy for L1
qualified events, most of the information read from these layers
is composed by uncorrelated noise. This results in more spread
information through the data space, reducing the compaction
capabilities of PCA.

After selecting the number of PCA components for both
segmented and non-segmented approaches, we forced the



TABLE II: Number of components selected by the Average
Root criterium for both standard and segmented approaches.

Approach Segmented Standard
Layer PS EM1 EM2 EM3 HD1 HD2 HD3 Total Total
# PC 2 5 2 2 2 2 1 16 10
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Fig. 9: Results employing PCA-based component selection.

number of PCD components to match exactly the number of
PCA components retained for each case. In Fig. 9, the ROC
curves obtained for each approach are displayed, considering
both PCA and PCD analysis. As is quite noticeable, the PCA
performance is poorer with respect to PCD. For instance, for
the standard case, considering a fixed electron detection prob-
ability of 96%, PCD achieved a false alarm ∼ 1.6 percentage
points (pp) lower than its PCA counterpart, even though PCA
components recover ∼ 95% of data variance.

B. Component Selection by Relevance Mapping
In order to optimize the minimum number of components

needed for efficient classification, the relevance mapping was
employed [15]. This technique evaluates, for a given devel-
oped classification system, the impact of each component to
the classifier detection efficiency. Here, the SP product was
employed for measuring component relevance. The SP value
is given by

SP = 100×
√

√
Pe × Pj ×

(Pe + Pj)
2

(5)

where Pe and Pj are the electron and jet detection probabili-
ties. The maximum SP value indicates a good threshold value
for the ROC curve, in which high discrimination efficiency is
obtained for electrons and also high rejection rates are obtained
for background noise. The relevance for a given component
xi may be computed through

Ri = SP (x)− SP (x|xi=x̄i) (6)

where x̄i is the average value of the i-th component. The
higher the relevance of a given component, the poorer the
classifier will perform without it. In this work, a component
is considered relevant if its relevance is at least 10% of the
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Fig. 10: Relevance mapping for the segmented (left) and
standard (right) approaches for both PCD and PCA.

TABLE III: Number of components selected by the Rele-
vance Mapping criterium for both standard and segmented
approaches.

Approach Segmented Standard
Layer PS EM1 EM2 EM3 HD1 HD2 HD3 Total Total
# PCA 1 3 0 0 0 0 0 4 4
# PCD 1 3 1 0 1 0 0 6 1

relevance of the most relevant component for a given design
approach.

The results for the relevance mapping can be visualized in
Fig. 10. As it can be seen, relevance pointed out that, for the
PCA case, the first components are not necessarily the ones
which matter the most for classification. It is interesting to
notice, that, for the PCA case, some components provided
a negative relevance, which shows that they are actually
degrading the classifier performance. On the other hand, since
PCD are ranked by their discriminating power, the first PCD
components are always the most relevant components for the
classifier. It is presented in Tab. III the number of retained
components based on relevance mapping.

In order to analyze the most relevant component projection
for PCA and PCD, considering the standard approach, elec-
trons and jets were projected onto such privileged directions
(see Fig. 11a and Fig. 11b). It becomes clear the advantage
of PCD in discrimination tasks. Fig. 12 shows the ROC
curve obtained when varying a decision threshold over each
projection. As expected, the ROC points a clear advantage of
PCD over PCA.

The neural classifiers were then retrained, fed only from
the relevant components (Tab. III). Despite the input layer, all
other parameters regarding the classifier topology (number of
hidden nodes, activation function, etc.) were kept unchanged.
The results obtained for each case can be observed in Fig. 13.
As a reference, it is also shown the result obtained when
training a classifier fed only from the ring sums (without any
principal component projection or relevance selection).

PCA (both segmented and standard cases) suffered from
further component reduction, when compared to their PCD
counterparts. This happens because PCD can compact discrim-
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Fig. 11: Electron and jet projections onto the most relevant
PCA and PCD components.

inating information in fewer components, meaning that it will
suffer smaller efficiency reduction when multiple components
are removed at the same time. Both PCD based approaches
manage to provide ROC curves extremely close to the refer-
ence curve, showing that PCD is more resilient when multiple
components are removed.

The standard PCD case provided the best classification effi-
ciency and also the highest compaction rate, being able to have
a false alarm difference of only 0.57 pp from the reference
curve, for an electron efficiency of 96%. This interesting result
also points out that since a single PCD provided a good
result, linear discriminants [16] could be employed, resulting
in further design simplification to the classification section.

Although the standard PCD case provided the best detection
efficiency, this approach has the drawback that it is impossible
to evaluate how much each segment is contributing to the
classifier output. On the other hand, the segmented PCD
approach provides such information, while achieving good
discrimination capabilities, being more useful during nominal
trigger operation.

Fig. 14 presents operational analysis considering the seg-
mented PCD case after the relevance mapping selection (six
components). The upper-left plot shows the neural network
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output for electrons and jets. It can be observed that both
patterns are very well separated. The upper-right plot shows
the detection efficiency and false alarm obtained as a function
of the transverse energy. The plot shows higher false alarm
values after 20 GeV, which happens since the amount of jet
events with ET > 20 GeV is quite small. Next, the lower-
left plot shows the performance as a function of η, where it
can be observed a very good efficiency over that coordinate,
with some reduction in |η| ≈ 1.5, which corresponds to the
calorimeter crack region [17]. Finally, the lower-right plot
shows how performance varies with respect to φ, which, as
expected, is constant.

VI. CONCLUSIONS

This paper presented an electron / jet candidate algorithm
for operating in the second level of the ATLAS online trig-
gering system based on calorimetry. In order to select intelli-
gent information, while maintaining physics interpretation, a
topological pre-processing based on ring sums was employed.
Further, efficient signal compaction was obtained through both
PCA and PCD. PCA and PCD components were extracted
both by considering the 100 rings as a single input vector, as
well as treating each calorimeter layer individually. The main
advantage from a segmented analysis is that it is possible to
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Fig. 14: Neural classifier Output, ET , η and φ analysis for the
segmented PCD case with relevance selection.

identify how much each calorimeter layer is contributing to
the discrimination system performance.

When PCA and PCD were forced to have the same number
of components, PCD managed to outperform PCA both in the
segmented and non-segmented approaches, showing that this
technique was able to retrieve the most relevant information
from the discrimination point of view.

PCD also performed better than PCA when components
were selected based on the relevance mapping. The relevance
analysis showed that only one PCD for the standard case
suffices for good classification performance, pointing out that
linear discriminants might be a good solution for the classifi-
cation section, bringing further simplification to the proposed
algorithm, with direct impact on speed performance.

Finally, it was shown that relevance mapping can act as a
knob, allowing system operators to optimally decide which
components to discard, when faster execution is required,
minimizing classification efficiency losses.

ACKNOWLEDGMENT

The authors would like to express their gratitude to CNPq,
FINEP, CAPES, FAPERJ (Brazil) and CERN (Switzerland) for
the financial support. We also thank the ATLAS collaboration
at CERN for providing the simulated calorimeter data and for
fruitful discussions concerning this work.

REFERENCES

[1] L. Evans and P. Bryant, “LHC machine,” Journal of Instrumentation,
vol. 1, no. 2008 JINST 3 S08001, August 2008.

[2] G. Aad, E. Abat, J. Abdallah, A. A. Abdelalim, A. Abdesselam,
and O. Abdinov, “The ATLAS experiment at the CERN large hadron
collider,” Journal of Instrumentation, vol. 1, no. 2008 JINST 3 S08003,
August 2008.

[3] G. Altareli and L. Di Lella, Proton-Antiproton Collider Physics. World
Scientific Publishing, 1989.

[4] R. Wigmans, Calorimetry: Energy Measurement In Particle Physics.
Oxford, 2000.

[5] I. T. Jolliffe, Principal Component Analysis, 2nd ed. Springer, 2002.
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