Bjarne Laugeset ISR-MAG/67-19

Service State

6th March, 1967

RADIATION RESISTANCE OF GLASS REINFORCED EPOXY-RESINS

<u>by</u>

G. Pluym and M. van de Voorde

The radiation stability of different, pure and mineral filled epoxy resin compositions has been reported¹⁾. From this study we have concluded that the following resins and n se fr $\mathcal{A}_{\mathcal{L}}$ curing agents give the best results:

EPN 1138 - X33/1020 - Araldite F Resins: Curing Agents: HT 971 - HT 972 - HY 906

In this report results are given using epoxy resins with the following compositions:

On five specimens of each resin system and dose level ~ 2.7 the flexural strength was measured.

The dimensions of the samples were 125 x 12,7 x 3 mm.

1) G. Pluym and M. H. van de Voorde - ISR-MAG/67-3

PS/5845

The data derived from these measurements are presented in figure 1. It can be concluded that:

 \mathcal{C}

 \mathfrak{c} .

1) The resin composition X33/1020/DDM/Glass is more radiation resistant than F/DDM/Glass. The same conclusion was drawn in report $^{1)}$ with the corresponding unreinforced resin compositions.

In general, we can thus conclude that the basic epoxy structure X33/1020 is always more radiation resistant than the F structure, independent of:

- a) the type of curing agent used (compare curve (5) with (7) ;
- b) the glass-fiber addition (compare curve (2) with (4) .
- ²) Glass-reinforced epoxy resins are much more radiation resistant than those without. Compare curves (3) with (5) and (4) with (6) . At 5×10^5 rad, the mechanical resistance of all unreinforced epoxy resin compositions is very low while, at this level, the glass-reinforced ones are not seriously damaged.
- 3) The curing agent DDM seems to give more radiation resistant compositions than the MNA. Compare the curves (2) with (3) in the figure. Similar results are obtained in $report¹$ on unreinforced systems.
- 4) Results reported elsewhere²⁾ on the radiation resistance of glass-reinforced X33/1020/MNA differ from ours. This may be due to the difference in radiat.. ion fields used. Curve 1 was obtained using $\mathscr Y$ -rays from a spent fuel element facility. We irradiated in a reactor (25 $%$ neutrons and 75 $\%\mathscr{J}'$ s), which resulted in curve 3.

2) M. J. Price and R. Sheldon - RHEL/R 105

- 2 -

The difference can be qualitatively explained by the presence of boron in the glass, which has a high cross-section for thermal neutrons. The α' particles from the (n. α' .) reaction have an energy of 2,5 MeV, which will be locally absorbed and which will, therefore, rupture a high amount of chemical bonds.

Acknowledgement

 \mathbf{r}_i

Acknowledgement is made to R. Sheldon of the Rutherford High Energy Laboratory for his friendly collaboration in this study programme.

 $\label{eq:2.1} \frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^{2} \left(\frac{1}{\sqrt{2}}\right)^{2} \left(\$

 \mathcal{C}^{\pm}

 $\hat{\mathbf{y}}_i^{\text{c}}$

 $\mathcal{L}^{\mathcal{L}}$

 $\hat{\pi}$, $\hat{\pi}$, $\hat{\pi}$

 $\begin{aligned} \mathcal{L}^{2}(\mathcal{H},\mathcal{I})\\ \mathcal{L}^{2}(\mathcal{I})\\ \mathcal{L}^{2}(\mathcal{I})\\ \mathcal{L}^{2}(\mathcal{I})\end{aligned}$

 \mathcal{L}_{max} and \mathcal{L}_{max} .

 $\sim 10^7$

 $\sim 40\%$ $\mathcal{L}^{\text{max}}_{\text{max}}$ and $\mathcal{L}^{\text{max}}_{\text{max}}$ $\label{eq:2.1} \frac{1}{\sqrt{2}}\int_{\mathbb{R}^3}\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2.$

 \mathcal{L}^{max}

 $\overline{2}$

 $\mathbf 3$

 $\overline{4}$

5

 $\boldsymbol{6}$

 $\overline{7}$

0.

PROPERTY FLEXURAL STRENGTH

ň,

 \cdot

 $\ddot{}$

 $\pmb{\cdots}$

 $\pmb{\cdot}$

 α

'n.

 $\boldsymbol{\theta}$

 $\boldsymbol{\mu}$

 $\pmb{\cdots}$

 \bullet

 $\ddot{ }$

INITIAL VALUE 32,6 kg/mm²

 $36,8$ "

 $\ddot{ }$

 $\overline{\mathbf{u}}$

 $\pmb{\mu}$

 \cdot

39,4

 $39,1$ \mathcal{L}

 $13,3$

 $17⁷$

 $11,8$

COMPOSITION X 33.1020 + MNA + BDMA + GLASS X 33.1020 + DDM + GLASS X 33.1020 + MNA + BDMA + GLASS

 $F + DDM + GLASS$ X 33.1020 + MNA + BDMA

 $F + DDM$

 $F + MNA + BDMA$

 \mathbf{t}

 $\int_{-\infty}^{\infty}$ \bar{z} $\mathbf{g}_{\mathbf{q}}^{(l)}$ $\mathcal{L}_{\rm{max}}$

 $\hat{\mathcal{L}}$

 $\hat{\mathcal{N}}$

 $\mathcal{L}^{\mathcal{L}}$